-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_multi.py
395 lines (355 loc) · 15.8 KB
/
train_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# author = liuwei
# date = 2022-06-27
import logging
import os
import json
import pickle
import math
import random
import time
import datetime
from tqdm import tqdm, trange
import argparse
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data.sampler import RandomSampler, Sampler, SequentialSampler
from torch.utils.data.dataloader import DataLoader
from transformers.optimization import AdamW, get_linear_schedule_with_warmup
from transformers import RobertaConfig, RobertaTokenizer
from utils import cal_acc_f1_score_with_ids, cal_acc_f1_score_per_label, labels_from_file, get_connectives_with_threshold
from task_dataset import MultiTaskDataset
from models import MultiTaskForConnRelCls
# set logger, print to console and write to file
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
BASIC_FORMAT = "%(asctime)s:%(levelname)s: %(message)s"
DATE_FORMAT = '%Y-%m-%d %H:%M:%S'
formatter = logging.Formatter(BASIC_FORMAT, DATE_FORMAT)
chlr = logging.StreamHandler() # 输出到控制台的handler
chlr.setFormatter(formatter)
logger.addHandler(chlr)
# for output
dt = datetime.datetime.now()
TIME_CHECKPOINT_DIR = "checkpoint_{}-{}-{}_{}:{}".format(dt.year, dt.month, dt.day, dt.hour, dt.minute)
PREFIX_CHECKPOINT_DIR = "checkpoint"
def get_argparse():
parser = argparse.ArgumentParser()
# path
parser.add_argument("--data_dir", default="data/dataset", type=str)
parser.add_argument("--dataset", default="pdtb2", type=str, help="pdtb2, pdtb3")
parser.add_argument("--output_dir", default="data/result", type=str)
parser.add_argument("--model_name_or_path", default="roberta-base", type=str)
parser.add_argument("--fold_id", default=-1, type=int, help="-1, 1 to 12")
# hyperparameters
parser.add_argument("--relation_type", default="implicit", type=str)
parser.add_argument("--label_file", default="labels_level_1.txt", type=str, help="the label file path")
parser.add_argument("--conn_threshold", default=100.0, type=float)
# for training
parser.add_argument("--do_train", default=False, action="store_true")
parser.add_argument("--do_dev", default=False, action="store_true")
parser.add_argument("--do_test", default=False, action="store_true")
parser.add_argument("--train_batch_size", default=16, type=int)
parser.add_argument("--eval_batch_size", default=32, type=int)
parser.add_argument("--max_seq_length", default=256, type=int)
parser.add_argument("--num_train_epochs", default=10, type=int, help="training epoch")
parser.add_argument("--learning_rate", default=1e-5, type=float, help="learning rate")
parser.add_argument("--max_grad_norm", default=2.0, type=float)
parser.add_argument("--weight_decay", default=0.1, type=float)
parser.add_argument("--warmup_ratio", default=0.06, type=float)
parser.add_argument("--seed", default=106524, type=int, help="random seed")
return parser
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def get_dataloader(dataset, args, mode="train"):
print("{} dataset length: ".format(mode), len(dataset))
if mode.lower() == "train":
sampler = RandomSampler(dataset)
batch_size = args.train_batch_size
else:
sampler = SequentialSampler(dataset)
batch_size = args.eval_batch_size
data_loader = DataLoader(
dataset=dataset,
batch_size=batch_size,
shuffle=False,
num_workers=0,
pin_memory=True,
sampler=sampler
)
return data_loader
def get_optimizer(model, args, num_training_steps):
specific_params = []
no_deday = ["bias", "LayerNorm.weigh"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_deday)],
"weight_decay": args.weight_decay
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_deday)],
"weight_decay": 0.0
}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=int(num_training_steps * args.warmup_ratio),
num_training_steps=num_training_steps
)
return optimizer, scheduler
def train(model, args, train_dataset, dev_dataset, test_dataset, conn_list, label_list, tokenizer):
## 1. prepare data
train_dataloader = get_dataloader(train_dataset, args, mode="train")
t_total = int(len(train_dataloader) * args.num_train_epochs)
num_train_epochs = args.num_train_epochs
print_step = int(len(train_dataloader) // 4)
## 2.optimizer
optimizer, scheduler = get_optimizer(model, args, t_total)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataloader.dataset))
logger.info(" Num Epochs = %d", num_train_epochs)
logger.info(" Batch size per device = %d", args.train_batch_size)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss = 0.0
logging_loss = 0.0
best_dev = 0.0
best_dev_epoch = 0
best_test = 0.0
best_test_epoch = 0
res_list = []
train_iterator = trange(1, int(num_train_epochs) + 1, desc="Epoch")
for epoch in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration")
model.train()
model.zero_grad()
for step, batch in enumerate(epoch_iterator):
batch = tuple(t.to(args.device) for t in batch)
global_step += 1
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"conn_ids": batch[2],
"labels": batch[3],
"flag": "Train"
}
outputs = model(**inputs)
loss = outputs[0]
conn_loss = outputs[1]
rel_loss = outputs[2]
optimizer.zero_grad()
loss.backward()
logging_loss = loss.item()
tr_loss += logging_loss
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step()
if global_step % print_step == 0:
print(" Current conn_loss=%.4f, rel_loss=%.4f, loss=%.4f, global average loss=%.4f" % (
conn_loss.item(), rel_loss.item(), logging_loss, tr_loss / global_step)
)
# evaluation and save
model.eval()
# train_conn_acc, train_acc, train_f1 = evaluate(
# model, args, train_dataset, conn_list, label_list,
# tokenizer, epoch, desc="train"
# )
dev_conn_acc, dev_acc, dev_f1 = evaluate(
model, args, dev_dataset, conn_list, label_list,
tokenizer, epoch, desc="dev"
)
test_conn_acc, test_acc, test_f1 = evaluate(
model, args, test_dataset, conn_list, label_list,
tokenizer, epoch, desc="test"
)
res_list.append((dev_acc, dev_f1, test_acc, test_f1))
print(" Epoch=%d"%(epoch))
# print(" Train conn_acc=%.4f, acc=%.4f, f1=%.4f"%(train_conn_acc, train_acc, train_f1))
print(" Dev conn_acc=%.4f, acc=%.4f, f1=%.4f"%(dev_conn_acc, dev_acc, dev_f1))
print(" Test conn_acc=%.4f, acc=%.4f, f1=%.4f"%(test_conn_acc, test_acc, test_f1))
if dev_acc+dev_f1 > best_dev:
best_dev = dev_acc + dev_f1
best_dev_epoch = epoch
if test_acc+test_f1 > best_test:
best_test = test_acc + test_f1
best_test_epoch = epoch
# output_dir = os.path.join(args.output_dir, TIME_CHECKPOINT_DIR)
output_dir = os.path.join(args.output_dir, "model")
output_dir = os.path.join(output_dir, f"{PREFIX_CHECKPOINT_DIR}_{epoch}")
os.makedirs(output_dir, exist_ok=True)
torch.save(model.state_dict(), os.path.join(output_dir, "pytorch_model.bin"))
print(" Best dev: epoch=%d, acc=%.4f, f1=%.4f" % (
best_dev_epoch, res_list[best_dev_epoch-1][0], res_list[best_dev_epoch-1][1])
)
print(" Best test: epoch=%d, acc=%.4f, f1=%.4f\n" % (
best_test_epoch, res_list[best_test_epoch-1][2], res_list[best_test_epoch-1][3])
)
def evaluate(model, args, dataset, conn_list, label_list, tokenizer, epoch, desc="dev", write_file=False):
dataloader = get_dataloader(dataset, args, mode=desc)
all_input_ids = None
all_conn_ids = None
all_pred_conn_ids = None
all_label_ids = None
all_possible_label_ids = None
all_predict_ids = None
for batch in tqdm(dataloader, desc=desc):
batch = tuple(t.to(args.device) for t in batch)
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"conn_ids": batch[2],
"labels": batch[3],
"flag": "Eval"
}
with torch.no_grad():
outputs = model(**inputs)
conn_preds = outputs[0]
rel_preds = outputs[1]
input_ids = batch[0].detach().cpu().numpy()
conn_ids = batch[2].detach().cpu().numpy()
label_ids = batch[3].detach().cpu().numpy()
possible_label_ids = batch[4].detach().cpu().numpy()
# print(possible_label_ids)
pred_conn_ids = conn_preds.detach().cpu().numpy()
pred_ids = rel_preds.detach().cpu().numpy()
if all_label_ids is None:
all_input_ids = input_ids
all_conn_ids = conn_ids
all_pred_conn_ids = pred_conn_ids
all_label_ids = label_ids
all_possible_label_ids = possible_label_ids
all_predict_ids = pred_ids
else:
all_input_ids = np.append(all_input_ids, input_ids, axis=0)
all_conn_ids = np.append(all_conn_ids, conn_ids)
all_pred_conn_ids = np.append(all_pred_conn_ids, pred_conn_ids)
all_label_ids = np.append(all_label_ids, label_ids)
all_possible_label_ids = np.append(all_possible_label_ids, possible_label_ids, axis=0)
all_predict_ids = np.append(all_predict_ids, pred_ids)
conn_acc = np.sum(all_conn_ids == all_pred_conn_ids) / all_conn_ids.shape[0]
"""
_ = cal_acc_f1_score_per_label(
pred_ids=all_predict_ids,
label_ids=all_label_ids,
possible_label_ids=all_possible_label_ids,
label_list=label_list
)
"""
acc, f1 = cal_acc_f1_score_with_ids(
pred_ids=all_predict_ids,
label_ids=all_label_ids,
possible_label_ids=all_possible_label_ids
)
if write_file:
all_conns = [conn_list[int(idx)] for idx in all_conn_ids]
all_pred_conns = [conn_list[int(idx)] for idx in all_pred_conn_ids]
all_labels = [label_list[int(idx)] for idx in all_label_ids]
all_predictions = [label_list[int(idx)] for idx in all_predict_ids]
all_input_texts = [
tokenizer.decode(all_input_ids[i], skip_special_tokens=True) for i in range(len(all_input_ids))
]
pred_dir = os.path.join(args.data_dir, "preds")
os.makedirs(pred_dir, exist_ok=True)
file_name = os.path.join(pred_dir, "multi+{}_l{}+{}+{}.txt".format(
desc, args.label_level, epoch, args.seed))
error_num = 0
with open(file_name, "w", encoding="utf-8") as f:
f.write("%-16s\t%-16s\t%-16s\t%-16s\t%s\n" % ("Conn", "Pred_conn", "Label", "Pred", "Text"))
for conn, pred_conn, label, pred, text in zip(
all_conns, all_pred_conns, all_labels, all_predictions, all_input_texts
):
if label == pred:
f.write("%-16s\t%-16s\t%-16s\t%-16s\t%s\n" % (conn, pred_conn, label, pred, text))
else:
error_num += 1
f.write("%-16s\t%-16s\t%-16s\t%-16s\t%s\n" % (conn, pred_conn, label, pred, str(error_num) + " " + text))
return conn_acc, acc, f1
def main():
args = get_argparse().parse_args()
if torch.cuda.is_available():
args.n_gpu = 1
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
args.n_gpu = 0
args.device = device
logger.info("Training/evaluation parameters %s", args)
set_seed(args.seed)
## 1. prepare data
data_dir = os.path.join(args.data_dir, args.dataset)
if args.fold_id == -1:
data_dir = os.path.join(data_dir, "fine-v1")
else:
assert args.fold_id in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], (args.fold_id)
data_dir = os.path.join(data_dir, "xval")
data_dir = os.path.join(data_dir, "fold_{}".format(args.fold_id))
args.data_dir = data_dir
output_dir = os.path.join(args.output_dir, args.dataset)
output_dir = os.path.join(output_dir, "multi_task")
if args.fold_id > -1:
output_dir = os.path.join(output_dir, "xval")
output_dir = os.path.join(output_dir, "fold_{}".format(args.fold_id))
else:
output_dir = os.path.join(output_dir, "fine-v1")
train_data_file = os.path.join(data_dir, "train.json")
dev_data_file = os.path.join(data_dir, "dev.json")
test_data_file = os.path.join(data_dir, "test.json")
label_list = labels_from_file(os.path.join(data_dir, args.label_file))
label_level = int(args.label_file.split(".")[0].split("_")[-1])
conn_list, conn_idfs = get_connectives_with_threshold(args.data_dir, threshold=args.conn_threshold)
args.label_level = label_level
args.num_labels = len(label_list)
args.num_connectives = len(conn_list)
output_dir = os.path.join(output_dir, "l{}+{}".format(label_level, args.seed))
os.makedirs(output_dir, exist_ok=True)
args.output_dir = output_dir
## 2. define models
args.model_name_or_path = os.path.join("data/pretrained_models", args.model_name_or_path)
config = RobertaConfig.from_pretrained(args.model_name_or_path)
config.HP_dropout = 0.5
tokenizer = RobertaTokenizer.from_pretrained(args.model_name_or_path)
model = MultiTaskForConnRelCls(config=config, args=args)
model = model.to(args.device)
## 3. prepare dataset
dataset_params = {
"relation_type": args.relation_type,
"tokenizer": tokenizer,
"max_seq_length": args.max_seq_length,
"label_list": label_list,
"label_level": label_level,
"connective_list": conn_list
}
if args.do_train:
train_dataset = MultiTaskDataset(train_data_file, params=dataset_params)
dev_dataset = MultiTaskDataset(dev_data_file, params=dataset_params)
test_dataset = MultiTaskDataset(test_data_file, params=dataset_params)
print("Fold {} acc".format(args.fold_id))
train(model, args, train_dataset, dev_dataset, test_dataset, conn_list, label_list, tokenizer)
if args.do_dev or args.do_test:
# l1_ji, 5, 9, 7, 7, 8
seed_epoch = {106524: 5, 106464: 9, 106537: 7, 219539: 7, 430683: 8}
epoch = seed_epoch[args.seed]
checkpoint_file = os.path.join(args.output_dir, "model/checkpoint_{}/pytorch_model.bin".format(epoch))
print(checkpoint_file)
model.load_state_dict(torch.load(checkpoint_file))
args.output_dir = os.path.dirname(checkpoint_file)
model.eval()
if args.do_dev:
dataset = MultiTaskDataset(dev_data_file, params=dataset_params)
conn_acc, acc, f1 = evaluate(
model, args, dataset, conn_list, label_list, tokenizer,
epoch, desc="dev", write_file=False
)
print(" Dev: conn_acc=%.4f, acc=%.4f, f1=%.4f\n" % (conn_acc, acc, f1))
if args.do_test:
dataset = MultiTaskDataset(test_data_file, params=dataset_params)
conn_acc, acc, f1 = evaluate(
model, args, dataset, conn_list, label_list, tokenizer,
epoch, desc="test", write_file=False
)
print(" Test: conn_acc=%.4f, acc=%.4f, f1=%.4f\n" % (conn_acc, acc, f1))
if __name__ == "__main__":
main()