-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdtrain.py
324 lines (259 loc) · 14.9 KB
/
dtrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import logging
import os
import argparse
from tqdm import tqdm
from model.dynamic_model import DTHGNN
from model.astgcn import ASTGCN
import torch
import torch.nn as nn
from utils.hgraph_utils import *
from utils.utils import *
def train(model, train_loader, valid_loader, test_loader, optimizer, num_epochs, logging, device, args):
best_valid_mrr = float('-inf')
best_test_metrics = None
for epoch in range(num_epochs + 1):
model.train()
flag = True
for sample in train_loader:
sim_states, patient_zero = sample['sim_states'].to(device), sample['patient_zero'].to(device)
# print(f"patient_zero type: {type(patient_zero)}")
# print(f"patient_zero shape: {patient_zero.shape}")
# print(f"data type of patient_zero: {patient_zero.dtype}")
for i in range(len(sample['dynamic_edge_list'])):
sample['dynamic_edge_list'][i] = sample['dynamic_edge_list'][i][0].to(device)
dynamic_edge_list = sample['dynamic_edge_list']
# print(type(dynamic_edge_list))
# print(f"length of the dynamic list: {len(dynamic_edge_list)}")
# print(f"type of the first element: {type(dynamic_edge_list[0])}")
# print(f"shape of the first element: {dynamic_edge_list[0].shape}")
optimizer.zero_grad()
output = model(sim_states, dynamic_edge_list)
# print(f"output shape: {output.shape}") [batch_size. num_nodes, 1]
target = torch.zeros_like(output)
for i in range(args.batch_size):
target[i, patient_zero[i]] = 1
num_positive = target.sum()
num_negative = target.numel() - num_positive
pos_weight = num_negative / num_positive
criterion = nn.BCEWithLogitsLoss(pos_weight=pos_weight)
criterion.to(device)
# print(f"output shape: {output.shape}, target shape: {target.shape}")
loss = criterion(output, target)
loss.backward()
# if flag == True:
# for name, param in model.named_parameters():
# if param.grad is not None:
# print(f"{name} grad mean: {param.grad.mean()}, grad std: {param.grad.std()}")
# flag = False
nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
logging.info(f'Epoch {epoch}/{num_epochs}, Loss: {(loss.item()):.3f}')
print(f'Epoch {epoch}/{num_epochs}, Loss: {(loss.item()):.3f}')
if epoch % 10 == 0:
mrr, hits_at_1, hits_at_10, hits_at_100 = evaluate_model(model, train_loader, device)
logging.info(f'Train: MRR: {(mrr):.3f}, Hits@1: {(hits_at_1):.3f}, Hits@10: {(hits_at_10):.3f}, Hits@100: {(hits_at_100):.3f}')
valid_mrr, valid_hits_at_1, valid_hits_at_10, valid_hits_at_100 = evaluate_model(model, valid_loader, device)
logging.info(f'Valid: MRR: {(valid_mrr):.3f}, Hits@1: {(valid_hits_at_1):.3f}, Hits@10: {(valid_hits_at_10):.3f}, Hits@100: {(valid_hits_at_100):.3f}')
test_mrr, test_hits_at_1, test_hits_at_10, test_hits_at_100 = evaluate_model(model, test_loader, device)
logging.info(f'Test: MRR: {(test_mrr):.3f}, Hits@1: {(test_hits_at_1):.3f}, Hits@10: {(test_hits_at_10):.3f}, Hits@100: {(test_hits_at_100):.3f}')
if valid_mrr > best_valid_mrr:
best_valid_mrr = valid_mrr
best_test_metrics = {
'MRR': test_mrr,
'Hits@1': test_hits_at_1,
'Hits@10': test_hits_at_10,
'Hits@100': test_hits_at_100
}
logging.info("Final Result:")
logging.info(f'MRR: {(best_test_metrics["MRR"]):.3f}, Hits@1: {(best_test_metrics["Hits@1"]):.3f}, Hits@10: {(best_test_metrics["Hits@10"]):.3f}, Hits@100: {(best_test_metrics["Hits@100"]):.3f}')
def evaluate_model(model, data_loader, device):
model.eval()
total_mrr = 0.0
total_hits_at_1 = 0.0
total_hits_at_10 = 0.0
total_hits_at_100 = 0.0
total_samples = 0
with torch.no_grad():
for sample in data_loader:
# Remove [0] to include all samples in the batch
for i in range(len(sample['dynamic_edge_list'])):
sample['dynamic_edge_list'][i] = sample['dynamic_edge_list'][i][0].to(device)
dynamic_edge_list = sample['dynamic_edge_list']
sim_states = sample['sim_states'].to(device)
patient_zero = sample['patient_zero'].to(device) # Shape: [batch_size]
output = model(sim_states, dynamic_edge_list) # Output shape: [batch_size, num_nodes]
batch_size, num_nodes, out_channle = output.shape
# Calculate rankings for each sample in the batch
for i in range(batch_size):
output_scores = output[i].squeeze(dim=1) # Shape: [num_nodes]
true_index = patient_zero[i] # Scalar
# print(f"output_scores shape: {output_scores.shape}, true_index shape: {true_index.shape}")
# Sort the scores in descending order
_, indices = torch.sort(output_scores, descending=True)
# Find the rank of the true index (add 1 for 1-based ranking)
rank = (indices == true_index).nonzero(as_tuple=False).item() + 1
# Update metrics
total_mrr += 1.0 / rank
total_hits_at_1 += 1.0 if rank <= 1 else 0.0
total_hits_at_10 += 1.0 if rank <= 10 else 0.0
total_hits_at_100 += 1.0 if rank <= 100 else 0.0
total_samples += 1
# Compute average metrics
mrr = total_mrr / total_samples
hits_at_1 = total_hits_at_1 / total_samples
hits_at_10 = total_hits_at_10 / total_samples
hits_at_100 = total_hits_at_100 / total_samples
return mrr, hits_at_1, hits_at_10, hits_at_100
def main():
"""
Main file to run from the command line.
"""
from config import model_dict
import datetime
now = datetime.datetime.now()
parser = argparse.ArgumentParser()
parser.add_argument("--device", type=str, default='cuda')
parser.add_argument("--dataset", type=str, default='UVA')
parser.add_argument("--model", type=str, default='DTHGNN', choices=model_dict.keys())
parser.add_argument("--timestep_hidden", type=int, default=20)
parser.add_argument("--known_interval", type=int, default=10)
parser.add_argument("--pred_interval", type=int, default=1)
args, _ = parser.parse_known_args()
model_name = args.model
model_args = model_dict[model_name]['default_args']
for arg, default in model_args.items():
parser.add_argument(f"--{arg}", type=type(default), default=default)
parser.add_argument("--agg", action="store_true")
parser.add_argument("--partial", action="store_true")
args = parser.parse_args()
set_seed(args.seed)
log_path = f'./log/{args.dataset}/{args.model}/detect'
init_path(log_path)
log_path += f'/tsh{args.timestep_hidden}-lr{args.lr}-b{args.batch_size}-drop{args.dropout}'
log_path += f'-agg' if args.agg else ''
log_path += f'-partial' if args.partial else ''
log_path += '.log'
logging.basicConfig(filename=log_path, level=logging.INFO)
logging.info(now)
logging.info(args)
device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
interested_interval = args.timestep_hidden + args.known_interval
if args.dataset == 'UVA':
if args.agg == True:
logging.info('Aggregated Hypergraph')
data = torch.load('data/sim#0/DynamicSim_uva_ic1_pathogen_aggH.pt')
if args.agg == False:
logging.info('Sparse Hypergraph')
data = torch.load('data/sim#0/DynamicSim_uva_ic1_pathogen.pt')
data.forecast_label = data.sim_states[:, interested_interval:interested_interval + args.pred_interval, :, 1]
data.dynamic_hypergraph = data.dynamic_hypergraph[0:interested_interval, :, :]
data.dynamic_edge_list = process_hyperedges_incidence(data.dynamic_hypergraph, interested_interval)
horizon = data.hyperparameters['horizon']
assert data is not None, 'Data not found'
if args.dataset == 'EpiSim':
data = torch.load("data/epiSim/simulated_epi.pt")
data.sim_states = data.sim_states.float()
data.patient_zero = torch.unsqueeze(data.patient_zero, 1).to(dtype=torch.int64)
data.dynamic_hypergraph = data.dynamic_hypergraph.float()
horizon = data.sim_states.shape[1]
pre_symptom = data.sim_states[:, interested_interval:interested_interval + args.pred_interval, :, 1]
symptom = data.sim_states[:, interested_interval:interested_interval + args.pred_interval, :, 2]
critical = data.sim_states[:, interested_interval:interested_interval + args.pred_interval, :, 3]
#combine the three states into one using OR operation
data.forecast_label = torch.logical_or(torch.logical_or(pre_symptom, symptom), critical)
data.dynamic_hypergraph = data.dynamic_hypergraph[:, 0:interested_interval, :, :]
data.dynamic_edge_list = process_hyperedges_incidence(data.dynamic_hypergraph, interested_interval, multiple_instance=True)
args.in_channels = 10
print(data)
assert horizon > args.timestep_hidden, 'Horizon should be greater than timestep_hidden'
data.sim_states[:, 0:args.timestep_hidden, :, :] = 0 # mask the first timestep_hidden timesteps
data.sim_states = data.sim_states[:, 0:interested_interval, :, :]
args.len_input = interested_interval
args.num_for_predict = 1 # for source detection
if args.model == 'ASTGCN' or args.model == 'MSTGCN':
data.sim_states = data.sim_states.permute(0, 2 ,3 ,1)
if args.dataset == 'UVA':
train_data, valid_data, test_data = split_dataset(data, seed=args.seed)
train_data, valid_data, test_data = DynamicHypergraphDataset(train_data), DynamicHypergraphDataset(valid_data), DynamicHypergraphDataset(test_data)
if args.dataset == 'EpiSim':
train_data, valid_data, test_data = split_dataset(data, seed=args.seed, is_multiple_instance=True)
train_data, valid_data, test_data = DynamicHypergraphDataset(train_data, multiple_instance=True), DynamicHypergraphDataset(valid_data, multiple_instance=True), DynamicHypergraphDataset(test_data, multiple_instance=True)
train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True)
valid_loader = DataLoader(valid_data, batch_size=args.batch_size, shuffle=False)
test_loader = DataLoader(test_data, batch_size=args.batch_size, shuffle=False)
model = model_dict[model_name]['class']
model = model(args).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
logging.info('******************* Training Started *******************')
print('******************* Training Started *******************')
train(model, train_loader, valid_loader, test_loader, optimizer, args.epochs, logging, device, args)
logging.info('******************* Training Finished *******************')
if __name__ == "__main__":
main()
# def main():
# """
# Main file to run from the command line.
# """
# from config import model_dict
# import datetime
# now = datetime.datetime.now()
# parser = argparse.ArgumentParser()
# parser.add_argument("--device", type=str, default='cuda')
# parser.add_argument("--dataset", type=str, default='UVA')
# parser.add_argument("--model", type=str, default='DTHGNN', choices=model_dict.keys())
# parser.add_argument("--struct", type=str, default='RNN-GNN')
# parser.add_argument("--timestep_hidden", type=int, default=20)
# parser.add_argument("--known_interval", type=int, default=10)
# parser.add_argument("--pred_interval", type=int, default=10)
# args, _ = parser.parse_known_args()
# model_name = args.model
# model_args = model_dict[model_name]['default_args']
# for arg, default in model_args.items():
# parser.add_argument(f"--{arg}", type=type(default), default=default)
# parser.add_argument("--agg", action="store_true")
# parser.add_argument("--partial", action="store_true")
# args = parser.parse_args()
# set_seed(args.seed)
# log_path = f'./log/UVA/{args.model}'
# init_path(log_path)
# log_path += f'/tsh{args.timestep_hidden}-lr{args.lr}-b{args.batch_size}-drop{args.dropout}'
# log_path += f'-agg' if args.agg else ''
# log_path += f'-partial' if args.partial else ''
# log_path += '.log'
# logging.basicConfig(filename=log_path, level=logging.INFO)
# logging.info(now)
# logging.info(args)
# device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
# if args.agg == True:
# logging.info('Aggregated Hypergraph')
# data = torch.load('data/sim#0/DynamicSim_uva_ic1_pathogen_aggH.pt')
# if args.agg == False:
# logging.info('Sparse Hypergraph')
# data = torch.load('data/sim#0/DynamicSim_uva_ic1_pathogen.pt')
# horizon = data.hyperparameters['horizon']
# assert data is not None, 'Data not found'
# assert horizon > args.timestep_hidden, 'Horizon should be greater than timestep_hidden'
# data.sim_states[:, 0:args.timestep_hidden, :, :] = 0 # mask the first timestep_hidden timesteps
# args.len_input = horizon
# interested_interval = args.timestep_hidden + args.known_interval
# data.forecast_label = data.sim_states[:, interested_interval:interested_interval + args.pred_interval, :, 1]
# data.sim_states = data.sim_states[:, 0:interested_interval, :, :]
# data.dynamic_hypergraph = data.dynamic_hypergraph[0:interested_interval, :, :]
# data.dynamic_edge_list = process_hyperedges_incidence(data.dynamic_hypergraph, interested_interval)
# args.len_input = interested_interval
# if args.model == 'ASTGCN' or args.model == 'MSTGCN':
# data.sim_states = data.sim_states.permute(0, 2 ,3 ,1)
# train_data, valid_data, test_data = split_dataset(data, seed=args.seed)
# train_data, valid_data, test_data = DynamicHypergraphDataset(train_data), DynamicHypergraphDataset(valid_data), DynamicHypergraphDataset(test_data)
# train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True)
# valid_loader = DataLoader(valid_data, batch_size=args.batch_size, shuffle=False)
# test_loader = DataLoader(test_data, batch_size=args.batch_size, shuffle=False)
# model = model_dict[model_name]['class']
# model = model(args).to(device)
# optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# logging.info('******************* Training Started *******************')
# print('******************* Training Started *******************')
# train(model, train_loader, valid_loader, test_loader, optimizer, args.epochs, logging, device, args)
# logging.info('******************* Training Finished *******************')
# if __name__ == "__main__":
# main()