-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.sh
27 lines (20 loc) · 1.29 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#!/bin/bash --login
########## SBATCH Lines for Resource Request ##########
#SBATCH --time=4:00:00 # limit of wall clock time - how long the job will run (same as -t)
#SBATCH --nodes=1 # number of different nodes - could be an exact number or a range of nodes (same as -N)
#SBATCH --ntasks=1 # number of tasks - how many tasks (nodes) that you require (same as -n)
#SBATCH --cpus-per-task=4 # number of CPUs (or cores) per task (same as -c)
#SBATCH --mem-per-cpu=48G # memory required per allocated CPU (or core) - amount of memory (in bytes)
#SBATCH --job-name hgnn4epi # you can give your job a name for easier identification (same as -J)
#SBATCH --gres=gpu:v100:1
########## Command Lines for Job Running ##########
ssh dev-amd20-v100
conda activate torch18
cd /mnt/home/jinwei2/simon/HGNN4EPIDEMIC ### change to the directory where your code is located.
models=("DTGNN" "DTHGNN" "MSTGCN" "ASTGCN")
pred_interval=(5 10 20)
for interval in ${pred_interval[@]}; do
python ftrain.py --timestep_hidden 20 --device "cuda" --model "ASTGCN" --partial --pred $interval
done
#python dtrain.py --timestep_hidden 20 --device "cuda" --model "ASTGCN" --partial --agg
scontrol show job $SLURM_JOB_ID ### write job information to SLURM output file.