-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
267 lines (207 loc) · 8.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
'''Train CIFAR10 with PyTorch.'''
from sklearn import datasets
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
from sklearn.metrics import confusion_matrix
from madrys import MadrysLoss
import pickle
import os
import argparse
import numpy as np
from PIL import Image
import random
from models import *
from util import setup_logger, progress_bar
from models.vit import ViT
from models.MLP import MLP
from augmentations import *
from poison_loaders import *
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--poison_type', default=None, help='poison type')
parser.add_argument('--poison_path', default=None, help='path to the folder of poisoned images')
parser.add_argument('--poison_rate', default=1, type=float, help='poison rate (by a random seed)')
parser.add_argument('--grayscale', default=False, type=bool, help='grayscale compression')
parser.add_argument('--jpeg', default=None, type=int, help='JPEG quality factor')
parser.add_argument('--bdr', default=None, type=int, help='bit depth')
parser.add_argument('--AT', default=False, type=bool, help='PGD Adversarial training')
parser.add_argument('--AT_eps', default=0.031, type=float, help='poison_rate')
parser.add_argument('--TrainAUG', default='', help='Train augmentations')
parser.add_argument('--lowpass', default='', help='filtering')
parser.add_argument('--ISS_both_train_test', default=False)
parser.add_argument('--indices_path', default=None)
parser.add_argument('--adaptive_path', default=None)
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--net', default='resnet18', help='models to train')
parser.add_argument('--exp_path', default='../EXPERIMENTS/TEMP/', help='exp_path')
parser.add_argument('--progress_bar_show', default=False, type=bool)
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if args.indices_path is not None:
non_pois_np = np.load(args.indices)
else:
non_pois_np = None
if not os.path.exists(args.exp_path):
os.makedirs(args.exp_path)
log_file_path = os.path.join(args.exp_path, args.poison_type)
logger = setup_logger(name=args.poison_type, log_file=log_file_path + ".log")
logger.info("PyTorch Version: %s" % (torch.__version__))
logger.info('Poisons are: %s', args.poison_type)
logger.info('Poisons are at path: %s', args.poison_path)
logger.info('Mixup / Cutout / CutMix: %s', str(args.TrainAUG))
logger.info('Grayscale compression for both train and test: %s', str(args.grayscale))
logger.info('Bit Depth Reduction: %s', str(args.bdr))
logger.info('JPEG compression quality: %s', str(args.jpeg))
logger.info('Lowpass: %s', str(args.lowpass))
logger.info('Training on: %s', str(args.net))
logger.info('AT: %s' 'with epsilon %s', str(args.AT), str(args.AT_eps))
logger.info('both train and test: %s', str(args.ISS_both_train_test))
logger.info('poison rate: %s', str(args.poison_rate))
logger.info('fixed indices at: %s', str(args.indices_path))
# Data
print('==> Preparing data augmentation')
transform_train = aug_train(args.jpeg, args.grayscale, args.bdr, args.TrainAUG, args.lowpass)
transform_test = aug_test(args.ISS_both_train_test, args.jpeg, args.grayscale, args.bdr)
logger.info("Training transformation %s" % (transform_train))
logger.info("Test transformation %s" % (transform_test))
if args.poison_type == 'CLEAN':
trainset = ST_load(T=transform_train, poison_rate=args.poison_rate, non_poison_indices=non_pois_np)
else:
trainset = folder_load(path = args.poison_path, T=transform_train, poison_rate=args.poison_rate, non_poison_indices=non_pois_np)
testset = torchvision.datasets.CIFAR10(root='~/data', train=False, download=True, transform=transform_test)
if 'mixup' in args.TrainAUG:
trainset = MixUp(trainset, num_class=10)
elif 'cutmix' in args.TrainAUG:
trainset = CutMix(trainset, num_class=10)
else:
pass
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=4)
testloader = torch.utils.data.DataLoader(
testset, batch_size=100, shuffle=False, num_workers=4)
print('==> Building model..')
if args.net == 'resnet18':
net = ResNet18(num_classes=10)
elif args.net == 'resnet34':
net = ResNet34(num_classes=10)
elif args.net == 'vgg19':
net = VGG('VGG19', num_classes=10)
elif args.net == 'densenet121':
net = DenseNet121(num_classes=10)
elif args.net == 'mobilenetv2':
net = MobileNetV2(num_classes=10)
elif args.net == 'mlp':
net = MLP()
elif args.net == 'vit':
net = ViT(image_size = 32, patch_size = 4,
num_classes = 10,
dim = 512,
depth = 6,
heads = 8,
mlp_dim = 512,
dropout = 0.1,
emb_dropout = 0.1)
else:
raise NotImplementedError
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
if 'mixup' in args.TrainAUG:
criterion = cross_entropy
elif 'cutmix' in args.TrainAUG:
criterion = CutMixCrossEntropyLoss()
else:
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=0.9, weight_decay=5e-4)
if args.AT:
epochs = 100
else:
epochs = 60
if args.net == 'vit':
epochs = 200
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs)
best_acc = 0
start_epoch = 0
progress_bar_show =False
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
if args.AT:
outputs, loss = MadrysLoss(cutmix=('cutmix' in args.TrainAUG), epsilon=args.AT_eps)(net, inputs, targets, optimizer)
else:
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
if ('mixup' in args.TrainAUG) or ('cutmix' in args.TrainAUG):
targets = torch.argmax(targets, dim=1)
correct += predicted.eq(targets).sum().item()
if progress_bar_show:
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
logger.info("")
logger.info("="*20 + "Training Epoch %d" % (epoch) + "="*20)
logger.info("Training Loss %.3f" % (train_loss/(batch_idx+1)))
logger.info("Training Acc %.3f (%d/%d)" % (100.*correct/total, correct, total))
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
outputlist = []
targetlist = []
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
outputlist.append(outputs.argmax(1).detach().cpu().numpy())
targetlist.append(targets.detach().cpu().numpy())
loss = nn.CrossEntropyLoss()(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if progress_bar_show:
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
# if checkpoints are necessary
# if not os.path.isdir(args.exp_path + '/checkpoint'):
# os.mkdir(args.exp_path + '/checkpoint')
# torch.save(state, args.exp_path + '/checkpoint' + '/ckpt.pth')
best_acc = acc
cm = confusion_matrix(np.concatenate(targetlist, axis=0), np.concatenate(outputlist, axis=0))
logger.info("")
logger.info("="*20 + "Validation Epoch %d" % (epoch) + "="*20)
logger.info("Validation Loss %.3f" % (test_loss/(batch_idx+1)))
logger.info("Validation Acc %.3f (%d/%d)" % (100.*correct/total, correct, total))
logger.info("Best validation Acc %.3f" % (best_acc))
logger.info(cm)
for epoch in range(start_epoch, start_epoch+epochs):
train(epoch)
test(epoch)
scheduler.step()