-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmodel.py
394 lines (337 loc) · 18 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import torch
from torch import nn
from transformers import BertModel
import torch.nn.functional as F
from utils import calculate_ce_loss
class BertModelStage1(nn.Module):
def __init__(self, args):
super(BertModelStage1, self).__init__()
self.args = args
self.encoder = BertModel.from_pretrained(args.pretrained_model)
self.linear_layer = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(args.pretrained_model_hidden_size, len(self.args.IO_mode)),
)
print('IO_mode length', len(self.args.IO_mode))
def convert_label_id_to_bioes(self, label_ids):
# 输入实体标签类别【0,12,12,0,45,0,0,46,46,46,0,0】,输出【0,1,3,0,4,0,0,1,2,3,0,0】
# 写一段python代码,其中O对应于0,B对应于1,I对应于2,E对应于3,S对应于4
output = []
prev_label = None
for idx, label_id in enumerate(label_ids):
if label_id == 0:
if prev_label is not None:
# revise the former one
output[idx - 1] = 3 # E -> 3
output.append(0) # O -> 0
prev_label = None
elif label_id != 0:
if label_id == prev_label:
output.append(2) # I -> 2
else:
output.append(1) # B -> 1
if prev_label is not None:
output[idx - 1] = 3 # E -> 3
prev_label = label_id
if prev_label is not None:
output[-1] = 3 # E -> 3
# 将单个的3转化为4
label_bieos = []
prev_label = None
for idx, label_id in enumerate(output):
if label_id == 0:
label_bieos.append(0)
prev_label = None
elif label_id != 0:
if label_id == 3 and prev_label is None:
label_bieos.append(4)
else:
label_bieos.append(label_id)
prev_label = label_id
if label_bieos[-1] == 2: # 最后一个是2-I,就应该转为3-E
label_bieos[-1] = 3 # E -> 3
elif label_bieos[-1] == 1: # 最后一个是1,就应该转为4-S
label_bieos[-1] = 4 # E -> 3
return label_bieos
def convert_label_id_to_bio(self, label_ids):
# 写一段python代码,其中O对应于0,B对应于1,I对应于2
label_bieos = self.convert_label_id_to_bioes(label_ids)
# 将4->1,3->2
label_bio = []
for idx, label in enumerate(label_bieos):
if label == 4:
label_bio.append(1)
elif label == 3:
label_bio.append(2)
else:
label_bio.append(label)
return label_bio
def convert_label_id_to_io(self, label_ids):
label_io = []
for idx, label in enumerate(label_ids):
if label > 0:
label_io.append(1)
else:
label_io.append(0)
return label_io
def extract_entity_span_label_BIO(tags):
"""
:param labels_id: [B-PER,I-PER,0]
:return: [{"start":0,"end":1,"label":PER}]
"""
spans_label = []
entity_start = None
entity_label = None
for i, tag in enumerate(tags):
if tag.startswith('B-'):
# 开始新的实体
if entity_start is not None:
# 上一个实体还未结束,先将其添加到列表中
entity_end = i - 1
spans_label.append({"start": entity_start, "end": entity_end, "label": entity_label})
entity_start = i
entity_label = tag[2:]
elif tag.startswith('I-'):
# 实体内部
if entity_start is None:
# 非法的标签序列,直接跳过。指的是O, I-ORG这种
continue
if entity_label != tag[2:]:
# 非法的标签序列,将前面已有的作为一个预测。指的是B-LOC, I-ORG这种
entity_end = i - 1 # 最后一个实体的i - 1
spans_label.append({"start": entity_start, "end": entity_end, "label": entity_label})
entity_start = None
else:
# 标签为O,表示实体结束
if entity_start is not None:
entity_end = i - 1 # 最后一个实体的i - 1
spans_label.append({"start": entity_start, "end": entity_end, "label": entity_label})
entity_start = None
entity_label = None
if entity_start is not None:
# 最后一个实体还未结束,将其添加到列表中
entity_end = len(tags) - 1
spans_label.append({"start": entity_start, "end": entity_end, "label": entity_label})
return spans_label
def extract_bioes_to_span(self, label_ids):
spans = []
entity_start = None
for idx, tag in enumerate(label_ids):
if tag == 1: # B-
# 开始新的实体
entity_start = idx
elif tag == 2: # I-
# 实体内部
continue
elif tag == 3: # E-
if entity_start is not None:
spans.append({"start": entity_start, "end": idx})
entity_start = None
elif tag == 4: # S-
spans.append({"start": idx, "end": idx})
entity_start = None
return spans
def extract_bio_to_span(self, label_ids):
spans = []
entity_start = None
for idx, tag in enumerate(label_ids):
if tag == 1:
# 开始新的实体
if entity_start is not None:
# 上一个实体还未结束,先将其添加到列表中
entity_end = idx - 1
spans.append({"start": entity_start, "end": entity_end})
entity_start = idx
elif tag == 2:
continue
else:
# 标签为O,表示实体结束
if entity_start is not None:
entity_end = idx - 1 # 最后一个实体的i - 1
spans.append({"start": entity_start, "end": entity_end})
entity_start = None
if entity_start is not None:
# 最后一个实体还未结束,将其添加到列表中
entity_end = len(label_ids) - 1
spans.append({"start": entity_start, "end": entity_end})
return spans
def extract_io_to_span(self, label_io_list):
mention_spans = []
if len(label_io_list) > 1: # Only those longer than 1 will be considered next
if label_io_list[0] == 1 and label_io_list[1] == 0:
mention_spans.append({"start": 0, "end": 0})
if label_io_list[0] == 1 and label_io_list[1] == 1:
# If it is B, the span is stored temporarily and updated the next time it encounters E
mention_spans.append({"start": 0, "end": -1})
elif len(label_io_list) == 1:
if label_io_list[0] == 1:
mention_spans.append({"start": 0, "end": 0})
return mention_spans
for i in range(1, len(label_io_list) - 1):
if label_io_list[i] == 1 and label_io_list[i - 1] == 0 and label_io_list[i + 1] == 0:
# If it is S, then the mention is extracted directly
mention_spans.append({"start": i, "end": i})
elif label_io_list[i] == 1:
if label_io_list[i - 1] == 0 and label_io_list[i + 1] == 1:
# If it is B, the span is stored temporarily and updated the next time it encounters E
mention_spans.append({"start": i, "end": -1})
elif label_io_list[i - 1] == 1 and label_io_list[i + 1] == 0:
# Meet E
mention_spans[-1]["end"] = i
# If it is 1 before or after, it is not processed
if label_io_list[-1] == 1: # If the last one is 1
if len(label_io_list) > 1: # Only those longer than 1 will be considered next
if label_io_list[-2] == 0: # If the last one is 1 and the previous one is 0
mention_spans.append({"start": len(label_io_list) - 1, "end": len(label_io_list) - 1})
elif label_io_list[-2] == 1: # If the last one is 1 and the previous one is 1
mention_spans[-1]["end"] = len(label_io_list) - 1
return mention_spans
def decode_label_ids(self, label_ids):
if self.args.IO_mode == 'BIOES':
spans = self.extract_bioes_to_span(label_ids)
elif self.args.IO_mode == 'BIO':
spans = self.extract_bio_to_span(label_ids)
elif self.args.IO_mode == 'IO':
spans = self.extract_io_to_span(label_ids)
return spans
def forward(self, input_ids=None, token_type_ids=None, attention_mask=None, label_ids=None):
bert_output_raw = \
self.encoder(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, )[0]
logits = self.linear_layer(bert_output_raw)
logits_flatten = torch.flatten(logits, start_dim=0, end_dim=1)[:]
label_ids_flatten = torch.flatten(label_ids, start_dim=0, end_dim=1)[:]
# filter out those masked tokens
filtered_indices = torch.where(label_ids_flatten >= 0)[0].cpu().numpy().tolist()
filtered_logits_flatten = logits_flatten[filtered_indices]
filtered_label_ids_flatten = label_ids_flatten[filtered_indices]
if self.args.IO_mode == 'BIOES':
converted_label_ids_for_stage1 = self.convert_label_id_to_bioes(filtered_label_ids_flatten)
elif self.args.IO_mode == 'BIO':
converted_label_ids_for_stage1 = self.convert_label_id_to_bio(filtered_label_ids_flatten)
elif self.args.IO_mode == 'IO':
converted_label_ids_for_stage1 = self.convert_label_id_to_io(filtered_label_ids_flatten)
loss = calculate_ce_loss(filtered_logits_flatten,
torch.tensor(converted_label_ids_for_stage1).to(self.args.device),
weight=None)
return loss, filtered_logits_flatten, converted_label_ids_for_stage1
class BertModelStage2(nn.Module):
def __init__(self, args):
super(BertModelStage2, self).__init__()
self.args = args
self.encoder = BertModel.from_pretrained(args.pretrained_model)
if self.args.traditional_contrastive:
# in this mode, we add a mlp following previous supervised contrastive method to avoid model collapse
self.mlp_pair_contrastive = nn.Sequential(
nn.ReLU(),
nn.Linear(args.pretrained_model_hidden_size, args.pretrained_model_hidden_size),
)
# we add a linear layer to work like parameters
self.linear_layer = nn.Linear(args.pretrained_model_hidden_size, args.source_class_num)
if self.args.stage2_use_mlp:
self.mlp = nn.Sequential(
nn.ReLU(),
nn.Linear(args.pretrained_model_hidden_size, args.pretrained_model_hidden_size),
)
def forward(self, input_ids=None, token_type_ids=None, attention_mask=None, label_ids=None,
finetune=False):
bert_outputs_raw = \
self.encoder(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask,
output_hidden_states=True)
bert_output_raw = bert_outputs_raw[0]
# label_id of O-tokens will be -1 and be filtered later
label_ids = label_ids - 1
# (batch_size,n,768)->(batch_size*n,768), n is the length of padded sentence
bert_output_raw_flatten = torch.flatten(bert_output_raw, start_dim=0, end_dim=1)[:]
label_ids_flatten = torch.flatten(label_ids, start_dim=0, end_dim=1)[:]
# we only select those label_id>=0 (filtering out masked tokens and non-entity tokens)
filtered_indices = torch.where(label_ids_flatten >= 0)[0].cpu().numpy().tolist()
filtered_bert_output_raw_flatten = bert_output_raw_flatten[filtered_indices]
filtered_label_ids_flatten = label_ids_flatten[filtered_indices]
if self.args.use_type_name:
if finetune:
labels_emb = self.linear_layer.weight
words_emb = filtered_bert_output_raw_flatten
logits = torch.matmul(words_emb, labels_emb.T)
loss = calculate_ce_loss(logits=logits,
label_ids=filtered_label_ids_flatten,
weight=None)
return loss
else:
# get labels_emb
labels = self.args.id2proxy_label_train
labels_last_hidden_states = []
for label in labels:
input_ids = self.args.tokenizer.encode(label, add_special_tokens=True)
input_ids = torch.tensor([input_ids]).to(self.args.device)
last_hidden_states = self.encoder(input_ids)[0]
last_hidden_states = last_hidden_states.squeeze(0)
if self.args.stage2_use_mlp:
labels_last_hidden_states.append(self.mlp(last_hidden_states[0]))
else:
# use the [CLS] output for representing this label
labels_last_hidden_states.append(last_hidden_states[0])
labels_emb = torch.stack(labels_last_hidden_states).to(self.args.device)
words_emb = filtered_bert_output_raw_flatten
words_corresponding_label_emb = labels_emb[filtered_label_ids_flatten]
loss = self.calculate_type_aware_contrastive_loss(words_emb=words_emb,
words_corresponding_label_emb=words_corresponding_label_emb,
label_ids=filtered_label_ids_flatten)
return loss
else:
if self.args.virtual_proxy:
# virtual_labels
# in this mode, we use random tensor to replace labels_emb for comparison
virtual_labels_emb = self.linear_layer.weight
words_emb = filtered_bert_output_raw_flatten
words_corresponding_label_emb = virtual_labels_emb[filtered_label_ids_flatten]
loss = self.calculate_type_aware_contrastive_loss(words_emb=words_emb,
words_corresponding_label_emb=words_corresponding_label_emb,
label_ids=filtered_label_ids_flatten)
return loss
elif self.args.traditional_contrastive:
# in this mode, we calculate traditional supervised contrastive loss for comparison to our methods
# we didn't pay much attention on it due to its bad performance
filtered_bert_output_raw_flatten = self.mlp_pair_contrastive(bert_output_raw_flatten[filtered_indices])
loss = self.calculate_CONTaiNER_contrastive_loss(features=filtered_bert_output_raw_flatten,
labels=filtered_label_ids_flatten,
args=self.args
)
return loss
def calculate_type_aware_contrastive_loss(self, words_emb, words_corresponding_label_emb, label_ids):
num_words = len(label_ids)
pos_words_labels = torch.eq(label_ids.unsqueeze(1).repeat(1, num_words),
label_ids.unsqueeze(0).repeat(num_words, 1)
).float().to(self.args.device)
labels_words_emb = torch.cat((words_corresponding_label_emb, words_emb), dim=-1)
words_labels_emb = torch.cat((words_emb, words_corresponding_label_emb), dim=-1)
logits = torch.matmul(labels_words_emb, words_labels_emb.T)
logits = F.normalize(logits, p=2, dim=0)
logits = logits / torch.tensor(0.05)
softmax_logits = torch.softmax(logits, dim=-1)
log_softmax_logits = torch.log(softmax_logits)
lines_loss = -torch.mean(log_softmax_logits * pos_words_labels, dim=-1)
loss = torch.sum(lines_loss)
return loss
def calculate_CONTaiNER_contrastive_loss(self, features, labels, args, temperature=1):
"""
calculate traditional supervised contrastive loss for comparison
Reference: https://github.com/HobbitLong/SupContrast
"""
diagonal = torch.eye(labels.shape[0], dtype=torch.bool).float().to(args.device)
mask_label_equal = torch.eq(labels, labels.T).float().to(args.device)
positive_mask = mask_label_equal - diagonal # 1 only when label is same(not include itself)
negtive_mask = 1. - mask_label_equal
anchor_dot_contrast = torch.div(torch.matmul(features, features.T), temperature) # 计算两两样本间点乘相似度
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
exp_logits = torch.exp(logits)
# for every row, the num of positive pairs
num_positives_per_row = torch.sum(positive_mask, dim=1)
denominator = torch.sum(exp_logits * negtive_mask, dim=1, keepdim=True) + torch.sum(exp_logits * positive_mask,
dim=1, keepdim=True)
log_probs = logits - torch.log(denominator)
log_probs = torch.sum(log_probs * positive_mask, dim=1)[num_positives_per_row > 0] / num_positives_per_row[
num_positives_per_row > 0]
loss = -log_probs
loss = loss.mean()
return loss