-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
38 lines (31 loc) · 1.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from model.model import *
from model.dataset import train_Loader
from torch import optim
import torch
def train_net(net, train_dataset, device, batch_size, lr, epochs):
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=1e-2, amsgrad=False)
# optimizer = optim.RMSprop(net.parameters(), lr=lr, eps=1e-08, weight_decay=1e-2, momentum=0.9)
best_loss = float('inf')
for epoch in range(epochs):
net.train()
for curve, label in train_loader:
optimizer.zero_grad()
curve = curve.unsqueeze(1).to(device=device, dtype=torch.float32)
label = label.to(device=device, dtype=torch.long)
out = net(curve)
loss = criterion(out, label)
if loss < best_loss:
best_loss = loss
torch.save(net.state_dict(), fr"xxx.pth")
loss.backward()
optimizer.step()
print(f'epoch:{epoch}/{epochs}, loss:{loss.item()}')
print(f'best_loss:{best_loss.item()}')
if __name__ == "__main__":
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
ResNet = ResNet().to(device=device)
dataset = train_Loader(fr"xxx\train.npy", fr"xxx\train_label.npy")
train_net(net=ResNet, train_dataset=dataset, device=device,
batch_size=1024, lr=0.0001, epochs=300)