-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_GCN.py
115 lines (102 loc) · 3.97 KB
/
model_GCN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#224 0.9299 200epoch
#su 91.88 200epoch
#all 99.08 200epoch
#label 71.17/94.21/81.08 200epoch
import os.path as osp
import argparse
import data_deal as dd
import create_dataset as cd
import torch_geometric.utils as tu
import torch
import torch.nn.functional as F
from torch_geometric.datasets import Planetoid
import torch_geometric.transforms as T
from torch_geometric.nn import GCNConv, ChebConv # noqa
import data_deal as dd
parser = argparse.ArgumentParser()
parser.add_argument('--use_gdc', action='store_true',
help='Use GDC preprocessing.')
args = parser.parse_args()
epoch_list=[]
value_list=[]
type_list=[]
# dataset = 'Cora'
# path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', dataset)
# dataset = Planetoid(path, dataset, transform=T.NormalizeFeatures())
# data = dataset[0]
dataset=cd.MyOwnDataset(transform=T.NormalizeFeatures())
dataset.shuffle()
data=dataset[0]
print(data)
data.edge_attr=data.edge_attr.flatten()
if args.use_gdc:
gdc = T.GDC(self_loop_weight=1, normalization_in='sym',
normalization_out='col',
diffusion_kwargs=dict(method='ppr', alpha=0.05),
sparsification_kwargs=dict(method='topk', k=128,
dim=0), exact=True)
data = gdc(data)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = GCNConv(dataset.num_features, 16, cached=True,
normalize=not args.use_gdc)
self.conv2 = GCNConv(16, 2, cached=True,
normalize=not args.use_gdc)
# self.conv1 = ChebConv(data.num_features, 16, K=2)
# self.conv2 = ChebConv(16, data.num_features, K=2)
def forward(self,data):
x, edge_index, edge_weight = data.x, data.edge_index, data.edge_attr
x = F.relu(self.conv1(x, edge_index, edge_weight))
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index, edge_weight)
return F.log_softmax(x, dim=1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model, data = Net().to(device), data.to(device)
optimizer = torch.optim.Adam([
dict(params=model.conv1.parameters(), weight_decay=5e-4),
dict(params=model.conv2.parameters(), weight_decay=0)
], lr=0.01) # Only perform weight-decay on first convolution.
def train():
model.train()
optimizer.zero_grad()
F.nll_loss(model(data)[data.train_mask], data.y[data.train_mask]).backward()
optimizer.step()
@torch.no_grad()
def test():
model.eval()
logits, accs = model(data), []
for _, mask in data('train_mask', 'val_mask', 'test_mask'):
pred = logits[mask].max(1)[1]
print(tu.precision(pred, data.y[mask], 2))
print(tu.recall(pred, data.y[mask], 2))
print(tu.f1_score(pred, data.y[mask], 2))
print('\n')
acc = pred.eq(data.y[mask]).sum().item() / mask.sum().item()
accs.append(acc)
value_list.append(tu.precision(pred, data.y[mask], 2)[1].item())
value_list.append(tu.recall(pred, data.y[mask], 2)[1].item())
value_list.append(tu.f1_score(pred, data.y[mask], 2)[1].item())
type_list.append('precision')
type_list.append('recall')
type_list.append('f1')
return accs
best_val_acc = test_acc = 0
for epoch in range(1, 201):
train()
train_acc, val_acc, tmp_test_acc = test()
epoch_list.append(epoch)
epoch_list.append(epoch)
epoch_list.append(epoch)
if val_acc > best_val_acc:
best_val_acc = val_acc
test_acc = tmp_test_acc
log = 'Epoch: {:03d}, Train: {:.4f}, Val: {:.4f}, Test: {:.4f}'
print(log.format(epoch, train_acc, best_val_acc, test_acc))
dd.plot_solute(epoch_list,value_list,type_list)
#epoch 500
# _, pred = model(data).max(1)
# dd.get_pred(pred,data.y)
#1pre0.9679 f1 0.6294 recall 0.4664
#2pre 0.9237 f10.6747 recall 0.5317
#3pre0.9675 f10.6190 recall 0.4551