From 3041e2f8428af39b805da91722f65157efd9ec1c Mon Sep 17 00:00:00 2001 From: Madhu Date: Wed, 27 Sep 2017 10:48:00 +0530 Subject: [PATCH] Arranged Cells Correctly(to display the result) --- support_vector_machine_lesson.ipynb | 72 +++++++++++++++++++++-------- 1 file changed, 52 insertions(+), 20 deletions(-) diff --git a/support_vector_machine_lesson.ipynb b/support_vector_machine_lesson.ipynb index 817490d..fd75669 100644 --- a/support_vector_machine_lesson.ipynb +++ b/support_vector_machine_lesson.ipynb @@ -63,7 +63,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 1, "metadata": { "collapsed": false }, @@ -71,18 +71,18 @@ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 6, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VHX+xfH3Z1IIBAi9d2ki3dAhsdBBUMSGgmJBBaS5\nq+tafuoW2xqKKIgoNmygIIKUoGxCx4QmVSmiICWKUkT69/dHEpd1QQbI5M5Mzut58pjEy8x5EA93\n7sycmHMOEREJHT6vA4iIyLlRcYuIhBgVt4hIiFFxi4iEGBW3iEiIUXGLiIQYFbeISIhRcYuIhBgV\nt4hIiIkMxI2WKFHCValSJRA3LSISltLT039wzpX059iAFHeVKlVIS0sLxE2LiIQlM9vm77G6VCIi\nEmJU3CIiIUbFLSISYlTcIiIhRsUtIhJiVNwiIiFGxS05qu+svvSd1dfrGCJhTcUtIhJi/CpuMyti\nZpPNbIOZrTezFoEOJiIip+fvOydHArOccz3NLBooEMBMIiLyB85a3GYWByQAtwE4544CRwMRZte+\nwyQlb+TBjrUpXjBfIO5Cctjvr2en7U477fcndJyQa5lEwp0/l0qqAhnABDNbYWbjzSz29weZWT8z\nSzOztIyMjPMKk7ZtL1NW7KBtUgofr9yBc+68bkdEJJzZ2crRzOKBJUAr59xSMxsJ7HfOPXqmXxMf\nH+/Od2Rq464DPPDhalZ99zNX1i7F36+pS9m4/Od1W5L7ss+0dYYtcm7MLN05F+/Psf6ccW8Htjvn\nlmZ9PRlofL7hzqZWmUJ8dG9LHulyMQs3/0C7pFQmLt3GyZM6+xYRAT+K2zm3C/jOzGplfetKYF0g\nQ0X4jDvbVGP2kATqlY/j4Slr6DV+Cd/88Esg71ZEJCT4+zru+4CJZrYaaAj8M3CR/qNy8VjeuasZ\nT/eox9od++kwIpVxqZs5fuJkbty9iEhQOus17vNxIde4z2TXvsM8MvVL5q7fQ4MKcTzTsz61yxTO\n0fsQEfFKTl/jDgpl4mJ4pU88L9zUiO0//UrXUQtISv6KI8dPeB1NRCRXhUxxA5gZVzUoR/KwRLrW\nL8uoz77mqhcWsOLbn7yOJiKSa0KquLMVi41mxI2NeO22eA4cPk6PMYv42/R1HDp63OtoIiIBF5LF\nne2K2qWZMzSBXk0r8eqCrXQcMZ9Fm37wOpaISECFdHEDFIqJ4h/X1OO9fs3xGfQav5S/fLiafb8e\n8zqaiEhAhHxxZ2terTgzBydwd0I1Pkj7jvbDU0het9vrWCIiOS5sihsgf3QED3W+mKkDWlG0QDR3\nvZnGwHeW88PBI15HExHJMWFV3NnqVyjCtIGtGdauJrPX7qJdUgpTV2i0SkTCQ1gWN0B0pI9BV9Zg\nxqA2VC4ey5D3V3LHG2l8//OvXkcTEbkgYVvc2WqWLsSH97bk0a51WLz5R9oPT+XtJRqtEpHQFfbF\nDZmjVXe0rsrsIQk0qBjHI1PXcNMrS9iq0SoRCUF5orizVSpegLfvaMYz19Zj3c79dByRysspGq0S\nkdCSp4obMt82f0OTSswdlkhCzZI8NXMDPcYsYv3O/V5HExHxS54r7mylC8cwrveljO7ViB0//cpV\nLywgac5GjVaJSNDLs8UNmWffXeuXY+6wRK5qUI5Rn2+i66gFLNdolYgEsTxd3NmKxkYz/IaGTLit\nCQePHOfaMYt48hONVolIcFJxn+Ly2qWYMzSBm5tV4rWFW+kwIpWFGq0SkSCj4v6dQjFR/P3qerzf\nrzmRPh83j1/Kg5M1WiUiwUPFfQbNqhVn5uA23J1YjUnp39EuKYU5a3d5HUtERMX9R2KiInioU+Zo\nVbHYaPq9lc6Ad5aTcUCjVSLiHRW3H+pXKMIn97Xm/nY1SV67m3bDU5iyYrtGq0TEEypuP0VF+Ljv\nyhrMGNSaqiViGfr+Kvq+/gU7NFolIrlMxX2OapQuxOR7WvJY1zos3bKX9kkpvKXRKhHJRSru8xDh\nM25vXZU5QxNoVKkoj05dw43jlrAl46DX0UQkD1BxX4CKxQrw1h1Nefba+qzftZ9OI+czVqNVIhJg\nKu4LZGZc36Qic4clklizJE/P3MDVLy1k3fcarRKRwPCruM3sGzP70sxWmllaoEOFotKFY3i596W8\n2Ksxu/YdptvoBTyv0SoRCYBzOeO+3DnX0DkXH7A0Ic7M6FK/LMlDE+nWsBwvfL6JLqMWkL5No1Ui\nknN0qSQAisZGk3R9Qyb0bcKhI8fpOXYRT3yyll+OaLRKRC6cv8XtgLlmlm5m/QIZKJxcXqsUc4Yl\n0rt5ZSYs/IYOI1KZ/3WG17FEJMT5W9ytnXMNgU7AADNL+P0BZtbPzNLMLC0jQ+WUrWC+SJ7sXpcP\n7m5BVISP3q8u44HJq9h3SKNVInJ+7Fzftm1mjwMHnXP/OtMx8fHxLi1Nz2H+3uFjJxj52deMS91C\nsdho/ta9Lh3rlvE6logEATNL9/c5xLOecZtZrJkVyv4caA+subCIeVNMVAQPdqzN1P6tKFEwH/e8\nnc6AiRqtEpFz48+lktLAAjNbBSwDZjjnZgU2VnirVyGOaQNb8ecOtUhelzla9dFyjVaJiH/O+VKJ\nP3SpxH+b9hzggcmrWf7tz1xWqyT/uKYe5Yvk9zqWiOSyHL1UIoFVvVQhJt3TksevqsOyrVmjVYu/\n0WiViJyRijsIRPiM21pVZfaQBBpXLsqjH6/VaJWInJGKO4hULFaAN29vynM967Nh1346jpzPmH9r\ntEpE/puKO8iYGdfFZ45WXV6rJM/M0miViPw3FXeQKlU4hpd7xzPm5sbs2neEbqMX8K/ZGzl8TKNV\nInmdijvIdapXlrnDEujesDyj522iy6j5pG/b63UsEfGQijsEFCkQzfPXN+CN25ty+NhJeo5dzOPT\nNFolklepuENIYs2SzB6aQJ/mlXl9kUarRPIqFXeIKZgvkie612XSPS2IjswcrfrzJI1WieQlKu4Q\n1aRKMT4d1Ib+l13ERyt20HZ4CrPW7PI6lojkAhV3CIuJiuCBjrX5eEArSmaNVvWfmM6eA4e9jiYi\nAaTiDgN1y8fxcdZo1dz1e2iXlMqH6RqtEglXKu4wERXhY8Dl1fl0UBuqlyrI/ZNWceuEL9j+0yGv\no4lIDlNxh5nqpQoy6e4WPNHtEtK+2UuH4am8uVijVSLhRMUdhnw+49aWVX4brXrs47XcMG4xmzVa\nJRIWVNxhLHu06l/XNeCr3QfpNHI+L/17E8c0WiUS0lTcYc7M6HlpBZKHJXBl7VI8O2sjV7+4kDU7\n9nkdTUTOk4o7jyhVKIYxt1zKmJsbs3v/Ebq/uJDnZm/QaJVICFJx5zHZo1XXNCrPi/M203nUfNK+\n0WiVSChRcedBRQpE86/rGvDm7U05cuwk172s0SqRUKLizsMSapZkztAEbm1RhTcWf0P74amkfqXR\nKpFgp+LO42LzRfJ4t0uYdHcL8kX56PPaMv40aRU/HzrqdTQROQMVtwAQnzVaNeDyi5iyYgdtk1KZ\n+eVOr2OJyGmouOU3MVER/LlDbaYNbEXpwvm4d+Jy7n1bo1UiwUbFLf/jknJxTB3Qigc61uKzDZmj\nVZPSvtNolUiQUHHLaUVF+Oh/WXVmDm5DzdIF+fPk1fR5bRnf7Q290aptvfuwrXcfr2OI5Bi/i9vM\nIsxshZlND2QgCS4XlSzI+/1a8GT3S1i+7Sc6jEjl9YVbNVol4qFzOeMeDKwPVBAJXj6f0adFFWYP\nTSC+SjEe/2Qd17+8mE17NFol4gW/itvMKgBdgPGBjSPBrELRArzRtwnPX9eAr/ccpPPI+bw4T6NV\nIrkt0s/jRgAPAIVy8s5veHmxX8e9f3eLnLxbuQBmxrWXViChZkn+b9oanpu9kRmrd/Jsz/rULR/n\ndTyA/7mefeiLL077/cpvvZlrmURy0lnPuM2sK7DHOZd+luP6mVmamaVlZOjdd+GuZKF8vHTzpYy9\npTEZBzNHq56ZpdEqkdxgZ3uJl5k9BfQGjgMxQGHgI+fcLWf6NfHx8S4tLS0nc0oQ23foGH+fsY5J\n6dupViKWZ3rWp0mVYl7H+k32mbbOsCWYmVm6cy7en2PPesbtnHvIOVfBOVcFuBH4/I9KW/KeuAJR\nPHddA966oylHT5zkurGLeezjNRzUaJVIQOh13JJj2tQoyewhCdzWsgpvLdlGh+GppGi0SiTHnVNx\nO+f+7ZzrGqgwEvqyR6sm39OCmCgft762jGEfrNRolUgOOus17vOha9wCcPjYCUZ/vomxKZspUiCK\nJ7vXpXO9sl7HEglKOXqNW+R8xURF8KcOtfh4YCvKxMXQf+Jy7nkrnT37NVolciFU3BJwl5SLY2r/\nVjzYsTafb9xD26QUPtBolch5U3FLroiM8HHvZRcxa3AbapcpzAMhPFol4jUVt+SqaiUL8l6/5vzt\nlNGqCQu3ckKjVSJ+U3FLrvP5jN4tqjBnWCJNqhTjid9Gqw54HU0kJKi4xTPli+Tn9b5NSLq+AZsz\nDtJ55AJGf/61RqtEzkLFLZ4yM3o0rkDy0ETaXVKaf835im6jF7Jmxz6vo4kELRW3BIWShfLxYq/G\nvNz7Un7IGq16eqZGq0ROR8UtQaXDJWWYOzSRno0rMDZlM51HzmfZ1r1exxIJKipuCTpxBaJ4pmd9\n3r6jGUdPnOT6lxfz6FSNVolkU3FL0GpdowRzhiZwe6uqvL10G+2TUpi3cY/XsUQ8p+KWoFYgOpLH\nrqrD5HtaUiBfJH0nfMGw91fy0y8arZK8S8UtIeHSykWZMag1g66ozrRV39NueAozVu/U2+YlT1Jx\nS8jIFxnBsPa1mDawNWXj8jPgneXcrdEqyYNU3BJy6pQrzJT+LXmoU21SvsrgyqQUPvhCo1WSd6i4\nJSRFRvi4O/EiZg5uw8VlC/PAh6vp/apGqyRvUHFLSKtWsiDv3dWcv19dl5Xf/Uz74am8tkCjVRLe\nVNwS8nw+45bmlZkzNIFm1Yrx5PR1XDd2EV/v1miVhCcVt4SNckXyM+G2Joy4oSFbf/iFLqMW8MJn\nGq2S8KPilrBiZlzdqDzJwxJpf0lpnk/+iqteWMCX2zVaJeFDxS1hqUTBfIzu1ZhxvS9l7y9H6f7i\nAp6auV6jVRIWVNwS1tpfUobkYYlcH1+Rl1O20GnkfJZu+dHrWCIXRMUtYS8ufxRPX1ufiXc24/jJ\nk9wwbgmPTP2SA4ePeR1N5LyouCXPaFW9BLOHJHBH66pMXPotHYanMm+DRqsk9Ki4JU8pEB3Jo13r\n8OG9LYnNF0nf179g6Psr2avRKgkhKm7JkxpXKsr0Qa0ZdGUNPln1Pe2SUpi++nu9bV5CwlmL28xi\nzGyZma0ys7Vm9kRuBBMJtHyREQxrV5NP7mtN+aL5GfjOCvq9lc5ujVZJkPPnjPsIcIVzrgHQEOho\nZs0DG0sk91xctjAf3duSv3auTepXGbRNSuH9L77V2bcErbMWt8t0MOvLqKwP/YmWsBIZ4aNfwkXM\nHpJAnbKFefDDL7l5/FK+/VGjVRJ8/LrGbWYRZrYS2AMkO+eWnuaYfmaWZmZpGRkZOZ1TJFdUKRHL\nu3c15x/X1GX19n10GJHKqxqtkiBj5/Jw0MyKAFOA+5xza850XHx8vEtLS8uBeCLe2bnvVx6esobP\nN+yhYcUiPNuzPjVLF/I6loQpM0t3zsX7c+w5varEOfczMA/oeD7BREJJ2bj8vHprPCNvbMi2H3+h\ny6j5jPrsa44e12iVeMufV5WUzDrTxszyA+2ADYEOJhIMzIzuDcszd1giHeuWJSn5K7qNXsCq7372\nOprkYf6ccZcF5pnZauALMq9xTw9sLJHgUrxgPl64qRGv9Innp0NHuealhTz16Xp+ParRKsl9kWc7\nwDm3GmiUC1lEgl67OqVpVq0YT326npdTtzB77S6evrY+zasV9zqa5CF656TIOSocE8VTPerzzp3N\nOOngxnFLeHiKRqsk96i4Rc5Ty6zRqjtbV+XdZd/Sfngqn2/Y7XUsyQNU3CIXIH90BI9kjVYVionk\n9tfTGPLeCo1WSUCpuEVyQKNKRZl+XxsGX1mDGV/upG1SCtNWabRKAkPFLZJDoiN9DM0arapYND+D\n3l3BXW+ms2ufRqskZ6m4RXJY7TKF+ah/Kx7ufDELNmXQLimFd5dptEpyjopbJAAifMZdCdWYNTiB\nS8oX5qGPvqTXK0vZ9uMvXkeTMKDiFgmgKiVieefO5vzzmnqs2ZE5WjV+/haNVskFUXGLBJjPZ/Rq\nVok5wxJodVEJ/j5jPdeOWcRXuw94HU1ClIpbJJeUjcvP+KzRqm/3HqLLqPmMnKvRKjl3Km6RXJQ9\nWpU8NIHO9coyfK5Gq+TcqbhFPFC8YD5G3tiI8X3i+fnQMa55aSH/1GiV+EnFLeKhtnVKM2dYAjc2\nrcS41C10GpnK4s0/eh1LgpyKW8RjhWOi+Oc19XjnrmY44KZXlvDXKV+yX6NVcgYqbpEg0fKiEswa\nnMBdbary3rJvaZ+k0So5PRW3SBDJHx3Bw13q8FH/VsTlj+L219MY/N4Kfjx4xOtoEkRU3CJBqGHF\nInxyX2uGtK3Bp1/upN3wVI1WyW9U3CJBKjrSx5C2NZl+XxsqFiuQNVqVptEqUXGLBLtaZQrx0b0t\neaTLxSzY9INGq0TFLRIKInzGnW2qMXtIAnXLx2m0Ko9TcYuEkMrFY3nnrmY81UOjVXmZilskxJgZ\nNzWtRPKwRFpXzxyt6jFmERt3abQqr1Bxi4SoMnExvNInnlE3NeK7vYfo+sJ8Rsz9SqNVeYCKWySE\nmRndGpRj7rBEOtcry4i5X3PVCwtYqdGqsKbiFgkDxWKjGXljI169NZ59vx6jx0sL+ceMdRqtClMq\nbpEwcuXF/xmtemX+VjqMSGXR5h+8jhWWpjy/nCnPL/fkvs9a3GZW0czmmdk6M1trZoNzI5iInJ/s\n0ap372qOGfR6ZSkPfaTRqnDizxn3ceB+51wdoDkwwMzqBDaWiFyoFhcVZ9bgBPolVOP9L76lXVIK\nc9dptCocnLW4nXM7nXPLsz4/AKwHygc6mIhcuPzREfy188VM6d+KogWiufPNNAa9q9GqUGfn8rZZ\nM6sCpAJ1nXP7z3RcfHy8S0tLu+BwIpJzjh4/yZh/b2b0vK8pmC+Sx7tdQrcG5TAzr6OFhN9fz/7+\n68xX7pSrUeS/vn/N/Y3P6/bNLN05F+/PsX4/OWlmBYEPgSGnK20z62dmaWaWlpGR4X9aEckV0ZE+\nBretwYxBbahcPJbB763kzjfS2LnvV6+jyTny64zbzKKA6cBs51zS2Y7XGbdIcDtx0jFh4Vb+NWcj\nkT4fD3WuzU1NKuHz6ezbX9ln4Od7hv17OXrGbZmPo14F1vtT2iIS/LJHq+YMSaR+hTgenrKGXuOX\n8M0PGq0KBf5cKmkF9AauMLOVWR+dA5xLRHJBpeIFmHhnM57uUY+1O/bTYUQq41I3c/yE3jYfzCLP\ndoBzbgGgx08iYcrMuLFpJS6rVYpHpq7hn59uYMbqnTzTsz61yxT2Op6cxjm9qsRfusYtEpqcc0xf\nvZPHp61l36/H6H95dQZcfhH5IiO8jhb2AvKqEhEJf2bGVQ3KkTwskasalGPUZ5mjVSu+/cnraHIK\nFbeI/I9isdEMv6Ehr90Wz4HDx+kxZhF/m76OQ0ePex1NUHGLyB+4onZp5gxN4OZmlXh1wVY6jpjP\nok0arfKailtE/lChmCj+fnU93uvXHJ9Br/FL+cuHq9n3q0arvKLiFhG/NK9WnFlDErg7sRofpH1H\n++EpJGu0yhMqbhHxW0xUBA91upipAzJHq+56M42B7yznB41W5SoVt4ics/oVijBtYGvub1eTOWt3\n0y4phakrdhCIlxfL/1Jxi8h5iY70cd+VNZgxqDVVSsQy5P2V3PFGGt//rNGqQFNxi8gFqVG6EJPv\nacljXeuwePOPtB+eyttLtnHypM6+A0XFLSIXLMJn3N66KrOHJNCgYhyPTF3DTa8sYatGqwJCxS0i\nOaZS8QK8fUcznr22Put27qfjiFReTtFoVU5TcYtIjjIzrm9SkbnDEkmoWZKnZm6gx5hFrN95xh+a\nJedIxS0iAVG6cAzjel/Ki70a8/3Pv3LVCwtImrORI8dPeB0t5Km4RSRgzIwu9cuSPDSRbg3KMerz\nTXQdtYDlGq26ICpuEQm4orHRJN3QkAl9m/DLkeNcO2YRT36i0arzpeIWkVxzea1SzB6awC3NKvPa\nwq10GJHKQo1WnTMVt4jkqkIxUfzt6rq83685kT4fN49fyoOTNVp1LlTcIuKJZtWKM3NwG+5JvIjJ\ny7fTLimFOWt3eR0rJKi4RcQzMVER/KVTbab2b0Xxgvno91Y6A95ZTsYBjVb9ERW3iHiuXoU4pg1s\nxZ/a1yR57W7aDU9hyortGq06AxW3iASFqAgfA6+owaeDW1OtRCxD319F39e/YIdGq/6HiltEgkr1\nUoWYdE9L/u+qOizdspf2SSm8pdGq/6LiFpGgE+Ez+raqypyhCTSqVJRHp67hxnFL2JJx0OtoQUHF\nLSJBq2KxArx1R1Oe7VmfDbv202nkfMZqtErFLSLBzcy4Pj5ztOqyWiV5euYGrn5pIeu+z7ujVSpu\nEQkJpQrHMPaWS3np5sbs2neYbqMX8HweHa06a3Gb2WtmtsfM1uRGIBGRMzEzOtfLGq1qWI4XPt9E\nl1ELSN+Wt0ar/Dnjfh3oGOAcIiJ+KxobTdL1DXm9bxN+PXqCnmMX8cQna/nlSN4YrYo82wHOuVQz\nqxL4KCKS6yZ08e+4vjMCm+M8XZY1WvXsrA1MWPgNyet281SPerSpUdLraAGVY9e4zayfmaWZWVpG\nRkZO3ayIyB8qmC+SJ7vX5YO7WxAd4aP3q8t4YPIq9h0K39Eq8+ctpVln3NOdc3X9udH4+HiXlpZ2\nYclERM7R4WMnGPnZ14xL3UKx2Gj+1r0uHeuW8TqWX8ws3TkX78+xelWJiISNmKgIHuxYm48HtKJk\nwXzc83Y6AyaG32iViltEwk7d8nF8PLAVf+5Qi+R1u2mblMKH6eEzWuXPywHfBRYDtcxsu5ndEfhY\nIiIXJirCx4DLq/Pp4DZUL1WQ+yet4rYJ4TFa5dc17nOla9wiEkxOnnS8ufgbnp29EQMe7FSbW5pV\nxuczr6P9Rte4RURO4fMZt7WqyuwhCTSuXJTHPl7LDeMWszlER6tU3CKSZ1QsVoA3b2/Kcz3rs3HX\nATqNnM9L/94UcqNVKm4RyVPMjOviKzL3/kSuqFWKZ2dt5OqXFrL2+31eR/ObiltE8qRShWIY2/tS\nxtzcmF37jtBt9EKem72Bw8eCf7RKxS0ieVqnemWZOyyBqxuW58V5m+kyaj7p2/Z6HesPqbhFJM8r\nUiCa569vwBu3N+XwsZP0HLuYx6cF72iViltEJEtizZLMHppAn+aVeWPxN7QfnkrqV8G3vaTiFhE5\nRcF8kTyRNVqVL8pHn9eW8adJwTVapeIWETmNJlWK8emgNvS/7CKmrNhB2+EpzFqz0+tYgIpbROSM\nYqIieOC/RquWc+/b6ew5cNjTXCpuEZGzOHW06rMNe2iXlMpkD0erVNwiIn74bbRqUBtqlCrIn7JG\nq44ez/13XZ71R5eJiMh/VC9VkA/ubsHbS7exJeMXoiNz//xXxS0ico58PqNPiyre3b9n9ywiIudF\nxS0iEmJU3CIiIUbFLSISYlTcIiIhRsUtIhJiVNwiIiFGxS0iEmIsEO+1N7MMYNt5/vISwA85GCen\nBGOuYMwEwZkrGDNBcOYKxkwQnLlyMlNl51xJfw4MSHFfCDNLc87Fe53j94IxVzBmguDMFYyZIDhz\nBWMmCM5cXmXSpRIRkRCj4hYRCTHBWNzjvA5wBsGYKxgzQXDmCsZMEJy5gjETBGcuTzIF3TVuERH5\nY8F4xi0iIn8gKIvbzJ4zsw1mttrMpphZEa8zAZjZdWa21sxOmpmnz26bWUcz22hmm8zsL15myWZm\nr5nZHjNb43WWbGZW0czmmdm6rP92g4MgU4yZLTOzVVmZnvA6UzYzizCzFWY23ess2czsGzP70sxW\nmlma13mymVkRM5uc1VXrzaxFbt13UBY3kAzUdc7VB74CHvI4T7Y1QA8g1csQZhYBvAh0AuoAN5lZ\nHS8zZXkd6Oh1iN85DtzvnKsDNAcGBMHv1RHgCudcA6Ah0NHMmnucKdtgYL3XIU7jcudcwyB7OeBI\nYJZzrjbQgFz8fQvK4nbOzXHOHc/6cglQwcs82Zxz651zG73OATQFNjnntjjnjgLvAd09zoRzLhXY\n63WOUznndjrnlmd9foDM/7nKe5zJOecOZn0ZlfXh+ZNNZlYB6AKM9zpLsDOzOCABeBXAOXfUOfdz\nbt1/UBb379wOzPQ6RJApD3x3ytfb8biMQoGZVQEaAUu9TfLbJYmVwB4g2TnneSZgBPAAkPs//faP\nOWCumaWbWT+vw2SpCmQAE7IuLY03s9jcunPPitvM5prZmtN8dD/lmIfJfKg7MZhySegxs4LAh8AQ\n59x+r/M450445xqS+WiyqZnV9TKPmXUF9jjn0r3McQats36vOpF5qSvB60Bk/rzexsAY51wj4Bcg\n155r8uyHBTvn2v7Rvzez24CuwJUuF1+zeLZcQWIHUPGUrytkfU9Ow8yiyCztic65j7zOcyrn3M9m\nNo/M5wa8fFK3FdDNzDoDMUBhM3vbOXeLh5kAcM7tyPrnHjObQualQk+fZyLzUe72Ux4pTSYXizso\nL5WYWUcyH7J1c84d8jpPEPoCqGFmVc0sGrgRmOZxpqBkZkbmdcj1zrkkr/MAmFnJ7FdKmVl+oB2w\nwctMzrmHnHMVnHNVyPzz9HkwlLaZxZpZoezPgfZ4+xccAM65XcB3ZlYr61tXAuty6/6DsriB0UAh\nIDnrJUBjvQ4EYGbXmNl2oAUww8xme5Ej64nbgcBsMp9s+8A5t9aLLKcys3eBxUAtM9tuZnd4nYnM\nM8newBVZf5ZWZp1VeqksMM/MVpP5l3Cycy5oXn4XZEoDC8xsFbAMmOGcm+Vxpmz3AROz/js2BP6Z\nW3esd07CU699AAAAOElEQVSKiISYYD3jFhGRM1Bxi4iEGBW3iEiIUXGLiIQYFbeISIhRcYuIhBgV\nt4hIiFFxi4iEmP8HX67tlYF/BHAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VHX+xfH3Z1IIhN47iDSRbqiBxEIHQREbCooFFZDm\nrq6r7k/dYltDEQURxYYNFESQEiwJoZrQpCpFFKREUYpI//7+SOKyLsgAmdyZyXk9Tx5JvGTOQznc\n3LlzYs45REQkdPi8DiAiImdHxS0iEmJU3CIiIUbFLSISYlTcIiIhRsUtIhJiVNwiIiFGxS0iEmJU\n3CIiISYyEJ+0dOnSrnr16oH41CIiYSkjI+MH51wZf44NSHFXr16d9PT0QHxqEZGwZGZb/T1Wl0pE\nREKMiltEJMSouEVEQoyKW0QkxKi4RURCjIpbRCTEqLglV/Wb3Y9+s/t5HUMkrKm4RURCjF/FbWbF\nzWyKma03s3Vm1irQwURE5NT8feXkKGC2c66XmUUDhQKYSURE/sAZi9vMigIJwK0AzrkjwJFAhNm5\n9xBJyRt4oFNdShUuEIiHkFz2++vZ6bvST/nxiZ0m5lkmkXDnz6WSGkAmMNHMlpvZBDOL/f1BZtbf\nzNLNLD0zM/OcwqRv3cPU5dtpl5TChyu245w7p88jIhLO7EzlaGZxwGIg3jm3xMxGAfucc4+c7ufE\nxcW5cx2Z2rBzP/e/v4qV3/3MFXXL8o+r61OhWMFz+lyS93LOtHWGLXJ2zCzDORfnz7H+nHFvA7Y5\n55Zkvz8FaHqu4c6kTvkifHBPax7uehELNv1A+6RUJi3ZyokTOvsWEQE/its5txP4zszqZH/oCmBt\nIENF+Iw72tZgztAEGlQqxkNTV9N7wmK++eGXQD6siEhI8Pc+7nuBSWa2CmgM/Ctwkf6jWqlY3rqz\nBU/2bMCa7fvoODKV8ambOHb8RF48vIhIUDrjNe5zcT7XuE9n595DPDztS+at202jysV4qldD6pYv\nmquPISLildy+xh0UyheL4aW+cTx3YxO2/fQr3UankZT8FYePHfc6mohIngqZ4gYwM65sVJHk4Yl0\na1iB0Z98zZXPpbH825+8jiYikmdCqrhzlIyNZuQNTXjl1jj2HzpGz7EL+fuMtRw8cszraCIiAReS\nxZ3j8rrlmDssgd7Nq/Jy2hY6jZzPwo0/eB1LRCSgQrq4AYrERPHPqxvwTv+W+Ax6T1jCX95fxd5f\nj3odTUQkIEK+uHO0rFGKWUMSuCuhBu+lf0eHESkkr93ldSwRkVwXNsUNUDA6gge7XMS0gfGUKBTN\nna+nM+itZfxw4LDX0UREck1YFXeOhpWLM31QG4a3r82cNTtpn5TCtOUarRKR8BCWxQ0QHelj8BW1\nmDm4LdVKxTL03RXc/lo63//8q9fRRETOS9gWd47a5Yrw/j2teaRbPRZt+pEOI1J5c7FGq0QkdIV9\ncUPWaNXtbS5gztAEGlUpxsPTVnPjS4vZotEqEQlB+aK4c1QtVYg3b2/BU9c0YO2OfXQamcqLKRqt\nEpHQkq+KG7JeNn99s6rMG55IQu0yPDFrPT3HLmTdjn1eRxMR8Uu+K+4c5YrGML7PJYzp3YTtP/3K\nlc+lkTR3g0arRCTo5dvihqyz724NKzJveCJXNqrI6E830m10Gss0WiUiQSxfF3eOErHRjLi+MRNv\nbcaBw8e4ZuxCHv9Io1UiEpxU3Ce5rG5Z5g5L4KYWVXllwRY6jkxlgUarRCTIqLh/p0hMFP+4qgHv\n9m9JpM/HTROW8MAUjVaJSPBQcZ9GixqlmDWkLXcl1mByxne0T0ph7pqdXscSEVFx/5GYqAge7Jw1\nWlUyNpr+b2Qw8K1lZO7XaJWIeEfF7YeGlYvz0b1tuK99bZLX7KL9iBSmLt+m0SoR8YSK209RET7u\nvaIWMwe34YLSsQx7dyX9Xv2C7RqtEpE8puI+S7XKFWHK3a35W7d6LNm8hw5JKbyh0SoRyUMq7nMQ\n4TNua3MBc4cl0KRqCR6Ztpobxi9mc+YBr6OJSD6g4j4PVUoW4o3bm/P0NQ1Zt3MfnUfNZ5xGq0Qk\nwFTc58nMuK5ZFeYNTySxdhmenLWeq15YwNrvNVolIoHhV3Gb2Tdm9qWZrTCz9ECHCkXlisbwYp9L\neL53U3buPUT3MWk8q9EqEQmAsznjvsw519g5FxewNCHOzOjasALJwxLp3rgiz326ka6j08jYqtEq\nEck9ulQSACVio0m6rjET+zXj4OFj9Bq3kMc+WsMvhzVaJSLnz9/idsBcM8sws/6BDBROLqtTlrnD\nE+nTshoTF3xDx5GpzP860+tYIhLi/C3ueOdcU6AzMNDMEn5/gJn1N7N0M0vPzFQ55ShcIJLHe9Tn\nvbtaERXho8/LS7l/ykr2HtRolYicGzvbl22b2aPAAefcv093TFxcnEtP13OYv3fo6HFGffI141M3\nUzI2mr/3qE+n+uW9jiUiQcDMMvx9DvGMZ9xmFmtmRXJ+DHQAVp9fxPwpJiqCBzrVZdqAeEoXLsDd\nb2YwcJJGq0Tk7PhzqaQckGZmK4GlwEzn3OzAxgpvDSoXY/qgeP7csQ7Ja7NGqz5YptEqEfHPWV8q\n8Yculfhv4+793D9lFcu+/ZlL65Thn1c3oFLxgl7HEpE8lquXSiSwapYtwuS7W/PolfVYuiV7tGrR\nNxqtEpHTUnEHgQifcWv8BcwZmkDTaiV45MM1Gq0SkdNScQeRKiUL8fptzXmmV0PW79xHp1HzGfu5\nRqtE5L+puIOMmXFtXNZo1WV1yvDUbI1Wich/U3EHqbJFY3ixTxxjb2rKzr2H6T4mjX/P2cChoxqt\nEsnvVNxBrnODCswbnkCPxpUY89lGuo6eT8bWPV7HEhEPqbhDQPFC0Tx7XSNeu605h46eoNe4RTw6\nXaNVIvmVijuEJNYuw5xhCfRtWY1XF2q0SiS/UnGHmMIFInmsR30m392K6Mis0ao/T9ZolUh+ouIO\nUc2ql+TjwW0ZcOmFfLB8O+1GpDB79U6vY4lIHlBxh7CYqAju71SXDwfGUyZ7tGrApAx27z/kdTQR\nCSAVdxioX6kYH2aPVs1bt5v2Sam8n6HRKpFwpeIOE1ERPgZeVpOPB7elZtnC3Dd5JbdM/IJtPx30\nOpqI5DIVd5ipWbYwk+9qxWPdLyb9mz10HJHK64s0WiUSTlTcYcjnM25pXf230aq/fbiG68cvYpNG\nq0TCgoo7jOWMVv372kZ8tesAnUfN54XPN3JUo1UiIU3FHebMjF6XVCZ5eAJX1C3L07M3cNXzC1i9\nfa/X0UTkHKm484myRWIYe/MljL2pKbv2HabH8wt4Zs56jVaJhCAVdz6TM1p1dZNKPP/ZJrqMnk/6\nNxqtEgklKu58qHihaP59bSNev605h4+e4NoXNVolEkpU3PlYQu0yzB2WwC2tqvPaom/oMCKV1K80\nWiUS7FTc+VxsgUge7X4xk+9qRYEoH31fWcqfJq/k54NHvI4mIqeh4hYA4rJHqwZediFTl2+nXVIq\ns77c4XUsETkFFbf8JiYqgj93rMv0QfGUK1qAeyYt4543NVolEmxU3PI/Lq5YjGkD47m/Ux0+WZ81\nWjU5/TuNVokECRW3nFJUhI8Bl9Zk1pC21C5XmD9PWUXfV5by3Z7QG63a2qcvW/v09TqGSK7xu7jN\nLMLMlpvZjEAGkuByYZnCvNu/FY/3uJhlW3+i48hUXl2wRaNVIh46mzPuIcC6QAWR4OXzGX1bVWfO\nsATiqpfk0Y/Wct2Li9i4W6NVIl7wq7jNrDLQFZgQ2DgSzCqXKMRr/Zrx7LWN+Hr3AbqMms/zn2m0\nSiSvRfp53EjgfqBIbj749S8u8uu4d+9qlZsPK+fBzLjmksok1C7D/01fzTNzNjBz1Q6e7tWQ+pWK\neR0P4H+uZx/84otTfrzaG6/nWSaR3HTGM24z6wbsds5lnOG4/maWbmbpmZl69V24K1OkAC/cdAnj\nbm5K5oGs0aqnZmu0SiQv2Jlu8TKzJ4A+wDEgBigKfOCcu/l0PycuLs6lp6fnZk4JYnsPHuUfM9cy\nOWMbNUrH8lSvhjSrXtLrWL/JOdPWGbYEMzPLcM7F+XPsGc+4nXMPOucqO+eqAzcAn/5RaUv+U6xQ\nFM9c24g3bm/OkeMnuHbcIv724WoOaLRKJCB0H7fkmra1yjBnaAK3tq7OG4u30nFEKikarRLJdWdV\n3M65z51z3QIVRkJfzmjVlLtbERPl45ZXljL8vRUarRLJRWe8xn0udI1bAA4dPc6YTzcyLmUTxQtF\n8XiP+nRpUMHrWCJBKVevcYucq5ioCP7UsQ4fDoqnfLEYBkxaxt1vZLB7n0arRM6HilsC7uKKxZg2\nIJ4HOtXl0w27aZeUwnsarRI5ZypuyRORET7uufRCZg9pS93yRbk/hEerRLym4pY8VaNMYd7p35K/\nnzRaNXHBFo5rtErEbypuyXM+n9GnVXXmDk+kWfWSPPbbaNV+r6OJhAQVt3imUvGCvNqvGUnXNWJT\n5gG6jEpjzKdfa7RK5AxU3OIpM6Nn08okD0uk/cXl+Pfcr+g+ZgGrt+/1OppI0FJxS1AoU6QAz/du\nyot9LuGH7NGqJ2dptErkVFTcElQ6XlyeecMS6dW0MuNSNtFl1HyWbtnjdSyRoKLilqBTrFAUT/Vq\nyJu3t+DI8RNc9+IiHpmm0SqRHCpuCVptapVm7rAEbou/gDeXbKVDUgqfbdjtdSwRz6m4JagVio7k\nb1fWY8rdrSlUIJJ+E79g+Lsr+OkXjVZJ/qXilpBwSbUSzBzchsGX12T6yu9pPyKFmat26GXzki+p\nuCVkFIiMYHiHOkwf1IYKxQoy8K1l3KXRKsmHVNwScupVLMrUAa15sHNdUr7K5IqkFN77QqNVkn+o\nuCUkRUb4uCvxQmYNactFFYpy//ur6POyRqskf1BxS0irUaYw79zZkn9cVZ8V3/1MhxGpvJKm0SoJ\nbypuCXk+n3Fzy2rMHZZAixoleXzGWq4dt5Cvd2m0SsKTilvCRsXiBZl4azNGXt+YLT/8QtfRaTz3\niUarJPyouCWsmBlXNalE8vBEOlxcjmeTv+LK59L4cptGqyR8qLglLJUuXIAxvZsyvs8l7PnlCD2e\nT+OJWes0WiVhQcUtYa3DxeVJHp7IdXFVeDFlM51HzWfJ5h+9jiVyXlTcEvaKFYziyWsaMumOFhw7\ncYLrxy/m4Wlfsv/QUa+jiZwTFbfkG/E1SzNnaAK3t7mASUu+peOIVD5br9EqCT0qbslXCkVH8ki3\nerx/T2tiC0TS79UvGPbuCvZotEpCiIpb8qWmVUswY3AbBl9Ri49Wfk/7pBRmrPpeL5uXkHDG4jaz\nGDNbamYrzWyNmT2WF8FEAq1AZATD29fmo3vbUKlEQQa9tZz+b2SwS6NVEuT8OeM+DFzunGsENAY6\nmVnLwMYSyTsXVSjKB/e05q9d6pL6VSbtklJ494tvdfYtQeuMxe2yHMh+Nyr7TX+iJaxERvjon3Ah\nc4YmUK9CUR54/0tumrCEb3/UaJUEH7+ucZtZhJmtAHYDyc65Jac4pr+ZpZtZemZmZm7nFMkT1UvH\n8vadLfnn1fVZtW0vHUem8rJGqyTI2Nl8OWhmxYGpwL3OudWnOy4uLs6lp6fnQjwR7+zY+ysPTV3N\np+t307hKcZ7u1ZDa5Yp4HUvClJllOOfi/Dn2rO4qcc79DHwOdDqHXCIhpUKxgrx8SxyjbmjM1h9/\noevo+Yz+5GuOHNNolXjLn7tKymSfaWNmBYF2wPpABxMJBmZGj8aVmDc8kU71K5CU/BXdx6Sx8ruf\nvY4m+Zg/Z9wVgM/MbBXwBVnXuGcENpZIcClVuADP3diEl/rG8dPBI1z9wgKe+Hgdvx7RaJXkvcgz\nHeCcWwU0yYMsIkGvfb1ytKhRkic+XseLqZuZs2YnT17TkJY1SnkdTfIRvXJS5CwVjYniiZ4NeeuO\nFpxwcMP4xTw0VaNVkndU3CLnqHX2aNUdbS7g7aXf0mFEKp+u3+V1LMkHVNwi56FgdAQPZ49WFYmJ\n5LZX0xn6znKNVklAqbhFckGTqiWYcW9bhlxRi5lf7qBdUgrTV2q0SgJDxS2SS6IjfQzLHq2qUqIg\ng99ezp2vZ7Bzr0arJHepuEVyWd3yRflgQDwPdbmItI2ZtE9K4e2lGq2S3KPiFgmACJ9xZ0INZg9J\n4OJKRXnwgy/p/dIStv74i9fRJAyouEUCqHrpWN66oyX/uroBq7dnjVZNmL9Zo1VyXlTcIgHm8xm9\nW1Rl7vAE4i8szT9mruOasQv5atd+r6NJiFJxi+SRCsUKMiF7tOrbPQfpOno+o+ZptErOnopbJA/l\njFYlD0ugS4MKjJin0So5eypuEQ+UKlyAUTc0YULfOH4+eJSrX1jAvzRaJX5ScYt4qF29cswdnsAN\nzasyPnUznUelsmjTj17HkiCn4hbxWNGYKP51dQPeurMFDrjxpcX8deqX7NNolZyGilskSLS+sDSz\nhyRwZ9sLeGfpt3RI0miVnJqKWySIFIyO4KGu9fhgQDzFCkZx26vpDHlnOT8eOOx1NAkiKm6RINS4\nSnE+urcNQ9vV4uMvd9B+RKpGq+Q3Km6RIBUd6WNou9rMuLctVUoWyh6tStdolai4RYJdnfJF+OCe\n1jzc9SLSNv6g0SpRcYuEggifcUfbGswZmkD9SsU0WpXPqbhFQki1UrG8dWcLnuip0ar8TMUtEmLM\njBubVyV5eCJtamaNVvUcu5ANOzValV+ouEVCVPliMbzUN47RNzbhuz0H6fbcfEbO+0qjVfmAilsk\nhJkZ3RtVZN7wRLo0qMDIeV9z5XNprNBoVVhTcYuEgZKx0Yy6oQkv3xLH3l+P0vOFBfxz5lqNVoUp\nFbdIGLniov+MVr00fwsdR6aycNMPXscKS1OfXcbUZ5d58thnLG4zq2Jmn5nZOjNbY2ZD8iKYiJyb\nnNGqt+9siRn0fmkJD36g0apw4s8Z9zHgPufcRUBLYKCZ1QtsLBE5X60uLMXsIQn0T6jBu198S/uk\nFOat1WhVODhjcTvndjjnlmX/eD+wDqgU6GAicv4KRkfw1y4XMXVAPCUKRXPH6+kMflujVaHOzuZl\ns2ZWHUgF6jvn9p3uuLi4OJeenn7e4UQk9xw5doKxn29izGdfU7hAJI92v5jujSpiZl5HCwm/v579\n/ddZd+5UrFX8vz5+9X1Nz+nzm1mGcy7On2P9fnLSzAoD7wNDT1XaZtbfzNLNLD0zM9P/tCKSJ6Ij\nfQxpV4uZg9tSrVQsQ95ZwR2vpbNj769eR5Oz5NcZt5lFATOAOc65pDMdrzNukeB2/IRj4oIt/Hvu\nBiJ9Ph7sUpcbm1XF59PZt79yzsDP9Qz793L1jNuyvo56GVjnT2mLSPDLGa2aOzSRhpWL8dDU1fSe\nsJhvftBoVSjw51JJPNAHuNzMVmS/dQlwLhHJA1VLFWLSHS14smcD1mzfR8eRqYxP3cSx43rZfDCL\nPNMBzrk0QF8/iYQpM+OG5lW5tE5ZHp62mn99vJ6Zq3bwVK+G1C1f1Ot4cgpndVeJv3SNWyQ0OeeY\nsWoHj05fw95fjzLgspoMvOxCCkRGeB0t7AXkrhIRCX9mxpWNKpI8PJErG1Vk9CdZo1XLv/3J62hy\nEhW3iPyPkrHRjLi+Ma/cGsf+Q8foOXYhf5+xloNHjnkdTVBxi8gfuLxuOeYOS+CmFlV5OW0LnUbO\nZ+FGjVZ5TcUtIn+oSEwU/7iqAe/0b4nPoPeEJfzl/VXs/VWjVV5RcYuIX1rWKMXsoQnclViD99K/\no8OIFJI1WuUJFbeI+C0mKoIHO1/EtIFZo1V3vp7OoLeW8YNGq/KUiltEzlrDysWZPqgN97Wvzdw1\nu2iflMK05dsJxO3F8r9U3CJyTqIjfdx7RS1mDm5D9dKxDH13Bbe/ls73P2u0KtBU3CJyXmqVK8KU\nu1vzt271WLTpRzqMSOXNxVs5cUJn34Gi4haR8xbhM25rcwFzhibQqEoxHp62mhtfWswWjVYFhIpb\nRHJN1VKFePP2Fjx9TUPW7thHp5GpvJii0arcpuIWkVxlZlzXrArzhieSULsMT8xaT8+xC1m347Tf\nNEvOkopbRAKiXNEYxve5hOd7N+X7n3/lyufSSJq7gcPHjnsdLeSpuEUkYMyMrg0rkDwske6NKjL6\n0410G53GMo1WnRcVt4gEXInYaJKub8zEfs345fAxrhm7kMc/0mjVuVJxi0ieuaxOWeYMS+DmFtV4\nZcEWOo5MZYFGq86ailtE8lSRmCj+flV93u3fkkifj5smLOGBKRqtOhsqbhHxRIsapZg1pC13J17I\nlGXbaJ+Uwtw1O72OFRJU3CLimZioCP7SuS7TBsRTqnAB+r+RwcC3lpG5X6NVf0TFLSKea1C5GNMH\nxfOnDrVJXrOL9iNSmLp8m0arTkPFLSJBISrCx6DLa/HxkDbUKB3LsHdX0u/VL9iu0ar/oeIWkaBS\ns2wRJt/dmv+7sh5LNu+hQ1IKb2i06r+ouEUk6ET4jH7xFzB3WAJNqpbgkWmruWH8YjZnHvA6WlBQ\ncYtI0KpSshBv3N6cp3s1ZP3OfXQeNZ9xGq1ScYtIcDMzrovLGq26tE4Znpy1nqteWMDa7/PvaJWK\nW0RCQtmiMYy7+RJeuKkpO/ceovuYNJ7Np6NVZyxuM3vFzHab2eq8CCQicjpmRpcG2aNVjSvy3Kcb\n6To6jYyt+Wu0yp8z7leBTgHOISLitxKx0SRd15hX+zXj1yPH6TVuIY99tIZfDueP0arIMx3gnEs1\ns+qBjyIieW5iV/+O6zczsDnO0aXZo1VPz17PxAXfkLx2F0/0bEDbWmW8jhZQuXaN28z6m1m6maVn\nZmbm1qcVEflDhQtE8niP+rx3VyuiI3z0eXkp909Zyd6D4TtaZf68pDT7jHuGc66+P580Li7Opaen\nn18yEZGzdOjocUZ98jXjUzdTMjaav/eoT6f65b2O5Rczy3DOxflzrO4qEZGwERMVwQOd6vLhwHjK\nFC7A3W9mMHBS+I1WqbhFJOzUr1SMDwfF8+eOdUheu4t2SSm8nxE+o1X+3A74NrAIqGNm28zs9sDH\nEhE5P1ERPgZeVpOPh7SlZtnC3Dd5JbdODI/RKr+ucZ8tXeMWkWBy4oTj9UXf8PScDRjwQOe63Nyi\nGj6feR3tN7rGLSJyEp/PuDX+AuYMTaBptRL87cM1XD9+EZtCdLRKxS0i+UaVkoV4/bbmPNOrIRt2\n7qfzqPm88PnGkButUnGLSL5iZlwbV4V59yVyeZ2yPD17A1e9sIA13+/1OprfVNwiki+VLRLDuD6X\nMPampuzce5juYxbwzJz1HDoa/KNVKm4Rydc6N6jAvOEJXNW4Es9/tomuo+eTsXWP17H+kIpbRPK9\n4oWiefa6Rrx2W3MOHT1Br3GLeHR68I5WqbhFRLIl1i7DnGEJ9G1ZjdcWfUOHEamkfhV820sqbhGR\nkxQuEMlj2aNVBaJ89H1lKX+aHFyjVSpuEZFTaFa9JB8PbsuASy9k6vLttBuRwuzVO7yOBai4RURO\nKyYqgvv/a7RqGfe8mcHu/Yc8zaXiFhE5g5NHqz5Zv5v2SalM8XC0SsUtIuKH30arBrelVtnC/Cl7\ntOrIsbx/1eUZv3WZiIj8R82yhXnvrla8uWQrmzN/IToy789/VdwiImfJ5zP6tqru3eN79sgiInJO\nVNwiIiFGxS0iEmJU3CIiIUbFLSISYlTcIiIhRsUtIhJiVNwiIiHGAvFaezPLBLae408vDfyQi3Fy\nSzDmCsZMEJy5gjETBGeuYMwEwZkrNzNVc86V8efAgBT3+TCzdOdcnNc5fi8YcwVjJgjOXMGYCYIz\nVzBmguDM5VUmXSoREQkxKm4RkRATjMU93usApxGMuYIxEwRnrmDMBMGZKxgzQXDm8iRT0F3jFhGR\nPxaMZ9wiIvIHgrK4zewZM1tvZqvMbKqZFfc6E4CZXWtma8zshJl5+uy2mXUysw1mttHM/uJllhxm\n9oqZ7Taz1V5nyWFmVczsMzNbl/17NyQIMsWY2VIzW5md6TGvM+UwswgzW25mM7zOksPMvjGzL81s\nhZmle50nh5kVN7Mp2V21zsxa5dVjB2VxA8lAfedcQ+Ar4EGP8+RYDfQEUr0MYWYRwPNAZ6AecKOZ\n1fMyU7ZXgU5eh/idY8B9zrmLgJbAwCD4tToMXO6cawQ0BjqZWUuPM+UYAqzzOsQpXOacaxxktwOO\nAmY75+oCjcjDX7egLG7n3Fzn3LHsdxcDlb3Mk8M5t845t8HrHEBzYKNzbrNz7gjwDtDD40w451KB\nPV7nOJlzbodzbln2j/eT9ZerkseZnHPuQPa7Udlvnj/ZZGaVga7ABK+zBDszKwokAC8DOOeOOOd+\nzqvHD8ri/p3bgFlehwgylYDvTnp/Gx6XUSgws+pAE2CJt0l+uySxAtgNJDvnPM8EjATuB/L+u9/+\nMQfMNbMMM+vvdZhsNYBMYGL2paUJZhabVw/uWXGb2TwzW32Ktx4nHfMQWV/qTgqmXEHATvExz8/Y\ngpmZFQbeB4Y65/Z5ncc5d9w515isryabm1l9L/OYWTdgt3Muw8scpxHvnGtK1qXBgWaW4HUgsr5f\nb1NgrHOuCfALkGfPNXn2zYKdc+3+6P+b2S1AN+AKl4f3LJ4pV5DYBlQ56f3KwPceZQl6ZhZFVmlP\ncs594HWekznnfjazz8l6bsDLJ3Xjge5m1gWIAYqa2ZvOuZs9zASAc+777P/uNrOpZF0q9PR5JrL+\nDm476SulKeRhcQflpRIz6wQ8AHR3zh30Ok8Q+gKoZWYXmFk0cAMw3eNMQcnMjKzrkOucc0le5wEw\nszI5d0qZWUGgHbDey0zOuQedc5Wdc9XJ+vP0aTCUtpnFmlmRnB8DHfD2HzgAnHM7ge/MrE72h64A\n1ubV4wdlcQNjgCJAcvYtQOO8DgRgZleb2TagFTDTzOZ4kSP7idtBwByynmx7zzm3xossJzOzt4FF\nQB0z22Zmt3udiawzyT7A5dl/llZkn1V6qQLwmZmtIusf4WTnXNDcfhdkygFpZrYSWArMdM7N9jhT\njnuBSdn3a8DgAAAAQ0lEQVS/j42Bf+XVA+uVkyIiISZYz7hFROQ0VNwiIiFGxS0iEmJU3CIiIUbF\nLSISYlTcIiIhRsUtIhJiVNwiIiHm/wGVde6UqmWnmQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -184,7 +184,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 2, "metadata": { "collapsed": true }, @@ -239,11 +239,55 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEKCAYAAADticXcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD6dJREFUeJzt3X+MZXV5x/H3I8svtQjIVLeCDGuxhjb+WCYNi42xiFiQ\nYAJEpbaitW4LbUFNUIh/GK3/SJAQqimuVqKUUoXSFrCCZAs0pi0wawGhQFkRCxXKbC1SjQWEp3/c\n79jLsjP3x8y9d+aZ9yu5ued8z7n3PGe+dz458z1nzo3MRJJUw/MmXYAkafkY6pJUiKEuSYUY6pJU\niKEuSYUY6pJUiKEuSYUY6pJUiKEuSYWsG/cGDzjggJyenh73ZiVpVdu2bduOzJzqtd7YQ316eprZ\n2dlxb1aSVrWI+F4/6zn8IkmFGOqSVIihLkmFGOqSVIihLkmFGOqSVIihLkmFGOqSVIihLkmFGOqS\nVIihLkmFGOqSVIihLkmFGOqSVIihLkmFGOqSVIihLkmFGOqSVIihLkmFGOqSVMhYQj0iNkfEbETM\nzs3NjWOTkrQmjSXUM3NLZs5k5szU1NQ4NilJa5LDL5JUiKEuSYUY6pJUiKEuSYUY6pJUiKEuSYUY\n6pJUiKEuSYUY6pJUiKEuSYUY6pJUiKEuSYUY6pJUiKEuSYUY6pJUiKEuSYUY6pJUiKEuSYUY6pJU\niKEuSYUY6pJUiKEuSYUY6pJUiKEuSYUY6pJUiKEuSYUY6pJUiKEuSYUY6pJUiKEuSYUY6pJUiKEu\nSYUY6pJUiKEuSYUY6pJUiKEuSYUY6pJUiKEuSYUY6pJUiKEuSYUY6pJUiKEuSYWMJdQjYnNEzEbE\n7Nzc3Dg2KUlr0lhCPTO3ZOZMZs5MTU2NY5OStCY5/CJJhRjqklSIoS5JhRjqklSIoS5JhRjqklSI\noS5JhRjqklSIoS5JhRjqklSIoS5JhRjqklTIusUWRsTVQC60PDNPWPaKJElDWzTUgfPa84nAS4E/\nb/OnAA+MqCZJ0pAWDfXMvAkgIv44M9/QtejqiPiHkVYmSRpYv2PqUxGxYX4mIg4BvDG6JK0wvYZf\n5n0QuDEi7m/z08DvjaQiSdLQ+gr1zLw2Ig4FXtWa7snMJ0ZXliRpGH0Nv0TE84GzgD/MzNuBl0fE\n8SOtTJI0sH7H1C8GngQ2tfmHgE+OpCJJ0tD6DfVXZOa5wFMAmfkTIEZWlSRpKP2G+pMRsTftH5Ei\n4hWAY+qStML0e/XLx4BrgYMi4lLg9cB7RlWUJGk4/V79cn1EfAs4gs6wy5mZuWOklUmSBrbo8EtE\nvKo9bwQOBh4Gvk/n6peNoy9PkjSIXkfqHwI2A5/exbIEjlr2iiRJQ+sV6te35/dl5v2LrilJmrhe\nV7+c056vGHUhkqSl63Wk/l8RcQNwSERctfNC76cuSStLr1B/K7ARuIRdj6tLklaQXvdTfxL454g4\nMjPnxlSTJGlIvb7O7oLM/ADwxYh4ztfaOfwiSStLr+GXS9rzeYuuJUlaEXoNv2xrzzfNt0XEfsBB\nmXnHiGuTJA2o3/up3xgR+0TE/sDtwMURcf5oS5MkDarfuzS+KDMfB04ELs7Mw4GjR1eWJGkY/Yb6\nuohYD7wduGaE9UiSlqDfUP8EcB2wPTNvjYgNwH2jK0uSNIy+Qj0zL8/MV2fm6W3+/sw8abSlPdf0\n2V9b8mPn9+men59eqG3n5Qst63d6OeaX2rac7b2WLcfy5VxnkPVGue4w60/qdUt97XK8frneYxTv\nNYr3G1S/J0rPbSdKd4+IrRGxIyJ+a9TFSZIG0+/wyzHtROnxdL50+pXAWSOrSpI0lH5Dfff2fBxw\nWWb+YJCNRMTmiJiNiNm5Oe82IEmj0m+oXx0R9wAzwNaImAL+t9+NZOaWzJzJzJmpqalh6pQk9aHf\nE6VnA5uAmcx8Cvgx8LZRFiZJGlxfXzzdvAx4c0Ts1dX25WWuR5K0BJH5nJsvPneliI8BbwQOA/4O\nOBb4ZmaePOgGZ2ZmcnZ2dtCXSdKaFhHbMnOm13r9jqmfDLwJeCQz3wu8BthzCfVJkkag31D/SWY+\nA/w0IvYBHgU2jK4sSdIw+h1Tn42IfYHPA9uAHwG3jKwqSdJQ+gr1+dsDABdFxLXAPt5PXZJWnl5f\nZ7dxsWWZ+a3lL0mSNKxeR+qfXmRZAkctYy2SpCXq9XV2vz6uQiRJS9fvXRr/oJ0onZ/fLyJOX+w1\nkqTx6/eSxvdn5mPzM5n538D7R1OSJGlY/Yb68yIi5mciYjdgj9GUJEkaVr/XqV8HfDUiLqJzgvT3\ngWtHVpUkaSj9hvpHgM3AaUAA3wC+MKqiJEnD6fefj54BLqLzz0f7Awdm5tMjrUySNLB+r365sX1H\n6f7AbcDFEXH+aEuTJA2q3xOlL2rfUXoicHFmHg4cPbqyJEnD6DfU10XEeuDtwDUjrEeStAT9hvon\n6FwBsz0zb42IDcB9oytLkjSMfk+UXg5c3jV/P3DSqIqSJA2n110aP5yZ50bEn9C5Pv1ZMvOMkVUm\nSRpYryP1u9uzXyoqSatAr7s0Xt2evzSeciRJS9Fr+OWqxZZn5gnLW44kaSl6Db9sAh4ELgNupnOL\nAEnSCtUr1F8KvBk4BfhN4GvAZZl516gLkyQNbtHr1DPz6cy8NjNPBY4AtgM3RsQfjaU6SdJAel6n\nHhF7Am+lc7Q+DVwIXDnasiRJw+h1ovRLwK8AXwc+npl3jqUqSdJQeh2p/zbwY+CVwBndX34EZGbu\nM8LaJEkD6nWder/3hpEkrQCGtiQVYqhLUiGGuiQVYqhLUiGGuiQVYqhLUiGGuiQVYqhLUiGGuiQV\nYqhLUiFjCfWI2BwRsxExOzc3N45NStKaNJZQz8wtmTmTmTNTU1Pj2KQkrUkOv0hSIYa6JBViqEtS\nIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6\nJBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBVi\nqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtS\nIWMJ9YjYHBGzETE7Nzc3jk1K0po0llDPzC2ZOZOZM1NTU+PYpCStSQ6/SFIhhrokFWKoS1Ihhrok\nFWKoS1IhhrokFWKoS1IhhrokFWKoS1IhhrokFWKoS1IhhrokFWKoS1IhhrokFWKoS1IhhrokFWKo\nS1IhhrokFWKoS1IhhrokFRKZOd4NRswB3xvy5QcAO5axnNXAfV4b3Oe1YSn7fHBmTvVaaeyhvhQR\nMZuZM5OuY5zc57XBfV4bxrHPDr9IUiGGuiQVstpCfcukC5gA93ltcJ/XhpHv86oaU5ckLW61HalL\nkhaxakI9In4jIu6NiO0Rcfak6xlERBwUETdExN0RcVdEnNna94+I6yPivva8X2uPiLiw7esdEbGx\n671ObevfFxGndrUfHhHfbq+5MCJi/Hv6XBGxW0T8S0Rc0+YPiYibW/1fiYg9WvuebX57Wz7d9R7n\ntPZ7I+ItXe0r7jMREftGxBURcU/r703V+zkiPtg+13dGxGURsVe1fo6IL0bEoxFxZ1fbyPt1oW0s\nKjNX/APYDfgOsAHYA7gdOGzSdQ1Q/3pgY5v+OeDfgMOAc4GzW/vZwKfa9HHA14EAjgBubu37A/e3\n5/3a9H5t2S3ApvaarwPHTnq/W10fAv4CuKbNfxV4Z5u+CDitTZ8OXNSm3wl8pU0f1vp7T+CQ9jnY\nbaV+JoAvAb/bpvcA9q3cz8DLgO8Ce3f173uq9TPwBmAjcGdX28j7daFtLFrrpH8J+vyBbgKu65o/\nBzhn0nUtYX/+FngzcC+wvrWtB+5t058DTula/962/BTgc13tn2tt64F7utqftd4E9/NAYCtwFHBN\n+8DuANbt3K/AdcCmNr2urRc79/X8eivxMwHs0wIudmov2890Qv3BFlTrWj+/pWI/A9M8O9RH3q8L\nbWOxx2oZfpn/4Mx7qLWtOu3PzdcBNwMvycyHAdrzz7fVFtrfxdof2kX7pF0AfBh4ps2/GHgsM3/a\n5rvr/Nm+teU/bOsP+rOYpA3AHHBxG3L6QkS8gML9nJn/AZwH/DvwMJ1+20btfp43jn5daBsLWi2h\nvqtxw1V32U5EvBD4K+ADmfn4Yqvuoi2HaJ+YiDgeeDQzt3U372LV7LFs1ewznSPPjcCfZubrgB/T\n+ZN5Iat+n9sY79voDJn8AvAC4NhdrFqpn3uZ6D6ullB/CDioa/5A4PsTqmUoEbE7nUC/NDOvbM3/\nGRHr2/L1wKOtfaH9Xaz9wF20T9LrgRMi4gHgL+kMwVwA7BsR69o63XX+bN/a8hcBP2Dwn8UkPQQ8\nlJk3t/kr6IR85X4+GvhuZs5l5lPAlcCR1O7neePo14W2saDVEuq3Aoe2M+p70DnBctWEa+pbO5P9\nZ8DdmXl+16KrgPkz4KfSGWufb393O4t+BPDD9qfXdcAxEbFfO0I6hs5448PA/0TEEW1b7+56r4nI\nzHMy88DMnKbTX3+fme8CbgBObqvtvM/zP4uT2/rZ2t/Zrpo4BDiUzkmlFfeZyMxHgAcj4pda05uA\nf6VwP9MZdjkiIp7faprf57L93GUc/brQNhY2yZMsA56kOI7OVSPfAT466XoGrP3X6Pw5dQdwW3sc\nR2cscStwX3vev60fwGfbvn4bmOl6r98BtrfHe7vaZ4A722s+w04n6ya8/2/k/69+2UDnl3U7cDmw\nZ2vfq81vb8s3dL3+o22/7qXrao+V+JkAXgvMtr7+GzpXOZTuZ+DjwD2trkvoXMFSqp+By+icM3iK\nzpH1+8bRrwttY7GH/1EqSYWsluEXSVIfDHVJKsRQl6RCDHVJKsRQl6RCDHWVExFPR8RtXY9lu7Nf\nREx336lPWmnW9V5FWnV+kpmvnXQR0iR4pK41IyIeiIhPRcQt7fGLrf3giNja7n29NSJe3tpfEhF/\nHRG3t8eR7a12i4jPR+ce4t+IiL0ntlPSTgx1VbT3TsMv7+ha9nhm/iqd/9q7oLV9BvhyZr4auBS4\nsLVfCNyUma+hcw+Xu1r7ocBnM/OXgceAk0a8P1Lf/I9SlRMRP8rMF+6i/QHgqMy8v91g7ZHMfHFE\n7KBzz+qnWvvDmXlARMwBB2bmE13vMQ1cn5mHtvmPALtn5idHv2dSbx6pa63JBaYXWmdXnuiafhrP\nTWkFMdS11ryj6/mf2vQ/0rn7H8C7gG+26a3AafCz71rdZ1xFSsPyCEMV7R0Rt3XNX5uZ85c17hkR\nN9M5oDmltZ0BfDEizqLzzUXvbe1nAlsi4n10jshPo3OnPmnFckxda0YbU5/JzB2TrkUaFYdfJKkQ\nj9QlqRCP1CWpEENdkgox1CWpEENdkgox1CWpEENdkgr5P55wlHbsOt2EAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "w = svm_sgd_plot(X,y)\n", + "#they decrease over time! Our SVM is learning the optimal hyperplane" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFPFJREFUeJzt3XeUXAXZx/HfT4pUD0cINUBEkJZAwCUkBAIECAFCU1C6\nYIkFERQFsbzgCwgWqgIWEFCaCoKaQEiAhNDDLCWkUCIJwkFk9T0eUVSUPO8fd8bdbHZ27m5m5t47\n8/2csyfZy83MQ/vmyZ27O44IAQCK4x1ZDwAAGBjCDQAFQ7gBoGAINwAUDOEGgIIh3ABQMIQbAAqG\ncANAwRBuACiYlRvxoOutt14MGzasEQ8NAC2ps7PzTxExJM25DQn3sGHDVCqVGvHQANCSbL+U9lwu\nlQBAwRBuACgYwg0ABUO4AaBgCDcAFAzhBoCCIdyoq5OmnaSTpp2U9RhASyPcAFAwqcJtex3bt9p+\n1vZC22MaPRgAoG9pv3LyMknTIuII26tKWqOBMwEA+lEz3LbfJWmcpBMlKSLekvRWY8dCUfS+nl36\nY6nP49dOvLZpMwGtLs2lki0kdUm61vaTtq+2vWbvk2xPtl2yXerq6qr7oACAhCOi/xPsDkmPShob\nEY/ZvkzSXyPi69V+TUdHR/BNptpTZdNmwwYGxnZnRHSkOTfNxv2KpFci4rHy57dK2nmwwwEAVkzN\ncEfEa5Jetr11+dA+khY0dCoAQFVp7yo5RdKN5TtKXpTEV1gAQEZShTsinpKU6toL2hvXtoHG4ysn\nAaBgCDcAFAzhBoCCIdwAUDCEGwAKhnADQMEQbgAoGMINAAVDuAGgYAg3ABQM4QaAgiHcAFAwhBsA\nCoZwA0DBEG4AKBjCDQAFQ7gBoGAINwAUDOEGgIIh3ABQMIQbAAqGcANAwRBuACgYwg0ABUO4AaBg\nCDcAFAzhBoCCIdwAUDANCffChdKUKVJEIx4dANpbQ8L95pvSwQdLu+xCwAGg3lKF2/YS28/Yfsp2\nqeaDlh+1s5OAA0C9DWTj3jsiRkZER60TR4yQvvY1ae21k88rAR81Spo6lYADwIpoyKWSlVeWzj1X\nWrJk2YCXStKkSQQcAFZE2nCHpOm2O21P7usE25Ntl2yXurq6JEnvfncS8MWLpa9+lYADQD04UlTT\n9sYR8art9SXNkHRKRMyudn5HR0eUSstfCv/zn6VLLpEuv1x6442e50vnnCMdeKBkD+LvAgAKznZn\nmkvRUsqNOyJeLf/4uqTbJY0azGDrriudd173Br7WWsnxyga+667SnXeygQNAf2qG2/aatteu/FzS\nBEnzVuRJKwFfsmTZgD/+uHTQQQQcAPqTZuPeQNKDtp+WNEfS1IiYVo8nJ+AAMHA1wx0RL0bEjuWP\n7SPi/HoP0TPgX/kKAQeA/uTqe5Wsu650/vnVAz56tHTXXQQcQHvLVbgrqgV8zpzkzhMCDqCd5TLc\nFQQcAJaX63BXVAK+eLF01lkEHEB7K0S4K9ZbT/rmNwk4gPZWqHBX1Ar4mDHStGkEHEBrKmS4K3oH\nfM01k+OPPSYdcAABB9CaCh3uikrAlyyRvvxlAg6gtbVEuCvWW0+64AICDqC1tVS4K2oFfLfdpLvv\nJuAAiqklw11RLeCPPipNnEjAARRTS4e7ohLwxYulM88k4ACKrS3CXTFkiHThhQQcQLG1VbgragV8\n7Fhp+nQCDiCf2jLcFdUC/sgj0v77E3AA+dTW4a4g4ACKhHD30DPgZ5whrbFGcpyAA8gTwt2HIUOk\nb30ruY2wr4Dvvrs0YwYBB5ANwt2PagF/+GFpwgQCDiAbhDsFAg4gTwj3AFQCvnix9KUvEXAA2SDc\ng7D++tK3v03AAWSDcK+AWgHfYw/pnnsIOID6Itx1UC3gDz0k7bcfAQdQX4S7jnoG/ItflFZfPTlO\nwAHUE+FugPXXl77zneQuFAIOoN4IdwNVAl5tAx83Trr3XgIOYGAIdxNssEHfAX/wQWnffQk4gIEh\n3E1EwLPx0vEn6KXjT8h6DKBuCHcGegb89NMJOICBSR1u2yvZftL2lEYO1E422ED67nerB3zPPaX7\n7iPgAJY1kI37VEkLGzVIO6sW8AcekPbZh4ADWJYjRQ1sD5V0vaTzJX0hIib1d35HR0eUSqWaj/vh\nHz6Sasiff3JMqvNaxR//mFxKufJK6R//6D6+xx7SOedIe+8t2ZmNl3u9r2e/+fjjkqQ1dtllmeOb\n/+ynTZsJqMV2Z0R0pDk37cZ9qaQzJC3t50kn2y7ZLnV1daV8WPSlsoG/+KL0hS+wgQNYVs2N2/Yk\nSQdGxGds7yXpi/XauJHOa68lG/hVV7GBD0ZlA2fDRp7Ve+MeK+kQ20sk3SJpvO0bVmA+DNCGG0oX\nXVR9A99rL2nmTDZwoF3UDHdEnBURQyNimKSjJN0XEcc1fDIsp3fAV1stOT57tjR+PAEH2gX3cRdQ\nJeCLF0uf/zwBB9pNqrtKBopr3M312mvJdyW86irpn//sPj5uXPc1cAD51oi7SpBjG24oXXxx/xv4\nrFlZTgigngh3C6kW8PvvT7ZuAg60BsLdgioBf/FF6bTTCDjQagh3C9toI+mSSwg40GoIdxuoFfC9\n9ybgQJEQ7jZSLeCzZnUH/P77Mx0RQAqEuw31F/C99iLgQN4R7jbWM+CnnkrAgaIg3NBGG0mXXtod\n8He+MzlOwIF8Itz4r1oBHz+egAN5QLixnI037jvgM2d2B3z27ExHBNoa4UZVPQP+uc8tG/A99yTg\nQFYIN2raeGPpsssIOJAXhBup1Qr4PvsQcKAZCDcGrFrA77uvO+APPJDtjEArI9wYtErAf/c76ZRT\nlg34uHEEHGgUwo0Vtskm0uWXE3CgWQg36qZWwPfdl4AD9UC4UXfVAn7vvd0Bf/DBbGcEioxwo2F6\nBvyzn5VWXTU5fu+90h57EHBgsAg3Gm6TTaTvfS+5C4WAAyuOcKNpagV8v/0IOJAG4UbTVQLe+xLK\nPfcQcCANwo3MDB1aO+APPZTtjEAeEW5krmfATz552YDvvjsBB3oj3MiNoUOl73+/esBPPJGAAxLh\nRg71FfDhw6Xrr08CPmECAUd7I9zIrZ4BP+yw7g18xozugD/8cLYzAlkg3Mi9oUOlc8+VFi2SPvOZ\nZQM+diwBr6e99ko+kG81w217NdtzbD9te77tbzRjMKC3TTeVrriCgANpNu5/SRofETtKGilpou3R\njR0LqK5WwPffn4CjtdUMdyT+Vv50lfJHNHQqIIVqAZ8+vTvgjzyS7YxAIziidoNtrySpU9KWkq6I\niDP7O7+joyNKpVJ9JgRSevll6YILpKuvlv797+7jEyZI55wjjRmT2Wi51ft69v33Jz/uueeyx2fN\nasY07c12Z0R0pDk31YuTEfF2RIyUNFTSKNvD+3jSybZLtktdXV0Dmxiog003la68MrkL5dOfllZZ\nJTk+fbq0225s4GgdqTbuZX6Bfbakv0fEd6udw8aNPPj976ULL1x+A99/f+nss9nA+1LZwNmwm6+u\nG7ftIbbXKf98dUn7Snp2xUYEGm+zzZINfNGiZTfwu+9ONvCJE9nAUUxpLpVsJGmm7bmSHpc0IyKm\nNHYsoH56BvxTnyLgKL40d5XMjYidImKHiBgeEf/bjMGAettsM+mqq/oP+KOPZjsjkAZfOYm201/A\nx4yRDjigfQM+axbXt4uAcKNtVQv4tGkEHPlGuNH2KgF/4QXpk58k4Mg/wg2Ubb659IMf9B/wxx7L\ndkZAItzAcvoL+OjR0oEHEnBki3ADVVQL+F13EXBki3ADNfQM+OTJ0sorJ8cJOLJCuIGUNt9c+uEP\nk7tQqgV8zpxsZ0R7INzAAFUC3tcGvuuu0kEHEXA0FuEGBmnYsL4DfuedBByNRbiBFUTA0WyEG6iT\nngH/xCcIOBqHcAN1NmyY9KMfVQ/4pEnS449nOiIKjnADDVIt4FOnSqNGEXAMHuEGGoyAo94IN9Ak\nlYA//7z08Y8TcAwe4Qaa7D3vkX784+oBP/hgibdsRX8IN5CRagGfMkXaZRcCjuoIN5AxAo6BItxA\nTlQC/txz0sc+RsBRHeEGcmaLLaSrr+4O+EorJccrAT/kEKmzM9sZkS3CDeRUJeDPP79swH/7W6mj\ng4C3M8IN5BwBR2+EGyiIngH/6EcJeDsj3EDBbLGFdM011QN+6KHSE09kOyMai3ADBVUt4L/5jfT+\n9xPwVka4gYIj4O2HcAMtohLw556TTjqJgLcywg20mPe+V/rJTwh4KyPcQIuqFfDDDpOefDLbGYvs\n9oue0O0XZfM7YM1w297U9kzbC23Pt31qMwYDUB/VAv7rX0s770zAiyjNxv0fSadHxLaSRks62fZ2\njR0LQL1VAv7ss9KJJxLwIqsZ7oj4Q0Q8Uf75G5IWStqk0YMBaIwtt5SuvZaAF5kjIv3J9jBJsyUN\nj4i/Vjuvo6MjSnwbM2Rmr5TnzWrgDMWxaJF0/vnSz34mvf129/HDDpP+53+knXbKbrY86X09+9UX\n/iJJ2nirdZY5fvjpOw/q8W13RkRHmnNTvzhpey1Jt0k6ra9o255su2S71NXVlX5aAJmqtoHfcUey\ngR9+uPTUU5mOiF5Sbdy2V5E0RdLdEXFxrfPZuIHiWrRIOu886YYblt/Azz5bGjkyu9nypLKBD3bD\n7q2uG7dtS7pG0sI00QZQbFtuKV13XbKBf+Qj0jvKlbjjjuSyCRt49tJcKhkr6XhJ420/Vf44sMFz\nAchYrYB/4AMEPCtp7ip5MCIcETtExMjyx53NGA5A9rbaqu+A3347Ac/KgO4qSYtr3EDreuGF7mvg\nS5d2Hz/88OQuFK6BD05D7ioBACnZwK+/PtnATzih7w386aeznbHVEW4Ag9JfwEeOlD74QQLeKIQb\nwAqpFvBf/YqANwrhBlAXlYAvXCgdfzwBbyTCDaCu3vc+6ac/7T/gc+dmO2PREW4ADdFfwHfcUTri\nCAI+WIQbQENVC/httxHwwSLcAJqiEvAFC6TjjiPgK4JwA2iqrbdOvoUsAR88wg0gE7UCfuSR0jPP\nZDtjXhFuAJmqFvBbb5V22IGA94VwA8gFAp4e4QaQK5WAz58vHXssAe8L4QaQS9tsk3wHwmoB/9CH\npHnzsp0xK4QbQK5VC/gvfymNGNGeASfcAAqhd8Dt5Hg7BpxwAyiUSsAXLJCOOaY9A064ARTSNttI\nN97Yd8B32EH68IdbN+CEG0ChVQI+f353wCOkX/yiO+Dz52c9ZX0RbgAtYdttqwd8xIjWCjjhBtBS\negb86KNbM+CEG0BL2nZb6aabqgf8qKOKG3DCDaClVQv4z39e3IATbgBtoZUCTrgBtJVKwOfNS2Ld\nV8AXLMh6yv4RbgBtabvtpJtv7jvgw4cnW3leA064AbS1agG/5Zb8BpxwA4CKFXDCDQA9VAL+zDPJ\nPd95DHjNcNv+ie3XbbfoV/0DwPK23z6JdbWAH3OMtHBhNrOl2bivkzSxwXMAQC5VC/jNNyd/LYuA\n1wx3RMyW9H9NmAUAcitPAXdE1D7JHiZpSkQMT/OgHR0dUSqVVmwyAI137UHpzjtpamPnKKB586Rz\nz02+jWwlo3bywubXv57cLz4QtjsjoiPNuXV7cdL2ZNsl26Wurq56PSwA5NLw4ck933PnJm/e0HsD\nP/ZY6dlnG/PcbNwAUAfVNvCjj0428G226f/XZ7JxA0A7672BS0nAb7opucWwnht4mtsBb5b0iKSt\nbb9i+2P1eWoAaD2VgD/zjHTkkcmxegc8zV0lR0fERhGxSkQMjYhrVuwpAaD1DR+efO/vRgScSyUA\n0ECVgM+du3zAt99eOu64gQeccANAE4wYsXzAly5N3mZt++0H9liEGwCaqGfAjzgiObZ06cAeg3AD\nQAZGjEhuHewZ8LQINwBkqBLwgUj1BTgDZbtL0kuD/OXrSfpTHceplzzOlceZpHzOlceZpHzOlceZ\npHzOVc+ZNo+IIWlObEi4V4TtUtqvHmqmPM6Vx5mkfM6Vx5mkfM6Vx5mkfM6V1UxcKgGAgiHcAFAw\neQz3j7IeoIo8zpXHmaR8zpXHmaR8zpXHmaR8zpXJTLm7xg0A6F8eN24AQD9yGW7b37H9rO25tm+3\nvU7WM0mS7SNtz7e91Hamr27bnmj7OduLbH85y1kq8vjG0rY3tT3T9sLyv7tTczDTarbn2H66PNM3\nsp6pwvZKtp+0PSXrWSpsL7H9jO2nbOfmG/3bXsf2reVWLbQ9plnPnctwS5ohaXhE7CDpeUlnZTxP\nxTxJH5A0O8shbK8k6QpJB0jaTtLRtrfLcqay65S/N5b+j6TTI2JbSaMlnZyDf1b/kjQ+InaUNFLS\nRNujM56p4lRJGb13eb/2joiRObsd8DJJ0yJiG0k7qon/3HIZ7oiYHhH/KX/6qKShWc5TERELI+K5\nrOeQNErSooh4MSLeknSLpEMznimXbywdEX+IiCfKP39Dyf9cm2Q8U0TE38qfrlL+yPzFJttDJR0k\n6eqsZ8k72++SNE7SNZIUEW9FxF+a9fy5DHcvH5V0V9ZD5Mwmkl7u8fkryjhGRVB+C76dJD2W7ST/\nvSTxlKTXJc2IiMxnknSppDMkDfBbHjVcSJpuu9P25KyHKdtCUpeka8uXlq62vWaznjyzcNu+x/a8\nPj4O7XHOV5X8UffGPM2VA+7jWOYbW57ZXkvSbZJOi4i/Zj1PRLwdESOV/GlylO1U7+faKLYnSXo9\nIjqznKOKsRGxs5JLgyfbHpf1QJJWlrSzpKsiYidJf5fUtNeaVm7WE/UWEfv299dtf0TSJEn7RBPv\nWaw1V068ImnTHp8PlfRqRrPknu1VlET7xoj4Vdbz9BQRf7E9S8lrA1m+qDtW0iG2D5S0mqR32b4h\nIo7LcCZJUkS8Wv7xddu3K7lUmOnrTEr+H3ylx5+UblUTw53LSyW2J0o6U9IhEfFm1vPk0OOStrL9\nHturSjpK0m8ynimXbFvJdciFEXFx1vNIku0hlTulbK8uaV9JdXob2cGJiLPKb004TMl/T/flIdq2\n17S9duXnkiYo29/gJEkR8Zqkl21vXT60j6QFzXr+XIZb0vclrS1pRvkWoB9kPZAk2T7c9iuSxkia\navvuLOYov3D7WUl3K3mx7RcRMT+LWXrK6RtLj5V0vKTx5f+WnipvlVnaSNJM23OV/CY8IyJyc/td\nzmwg6UHbT0uaI2lqREzLeKaKUyTdWP73OFLSN5v1xHzlJAAUTF43bgBAFYQbAAqGcANAwRBuACgY\nwg0ABUO4AaBgCDcAFAzhBoCC+X8gZzsMWajoHgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "for d, sample in enumerate(X):\n", " # Plot the negative samples\n", @@ -267,18 +311,6 @@ "ax.quiver(X,Y,U,V,scale=1, color='blue')" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "w = svm_sgd_plot(X,y)\n", - "#they decrease over time! Our SVM is learning the optimal hyperplane" - ] - }, { "cell_type": "code", "execution_count": null,