Skip to content

Latest commit

 

History

History
171 lines (142 loc) · 5.37 KB

trendmd.md

File metadata and controls

171 lines (142 loc) · 5.37 KB

Trends

LMLS 2020-05-13

DB

library(tidyverse)
## ── Attaching packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──

## ✓ ggplot2 3.3.0     ✓ purrr   0.3.4
## ✓ tibble  3.0.1     ✓ dplyr   0.8.5
## ✓ tidyr   1.0.3     ✓ stringr 1.4.0
## ✓ readr   1.3.1     ✓ forcats 0.5.0

## ── Conflicts ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
stroke <- read.csv("stroke.csv")
stroke_sexo <- subset(stroke, select = c(year,sexo)) 
stroke_s1 <- stroke_sexo %>%
  group_by(year) %>%
  summarise(total = n())

Base

stroke_sexo[1:16,]
##    year  sexo
## 1  2012   Men
## 2  2012   Men
## 3  2017 Women
## 4  2017   Men
## 5  2017   Men
## 6  2017 Women
## 7  2017 Women
## 8  2017   Men
## 9  2017   Men
## 10 2017   Men
## 11 2017 Women
## 12 2017 Women
## 13 2017 Women
## 14 2017 Women
## 15 2017   Men
## 16 2017   Men
stroke_s1[1:16,]
## # A tibble: 16 x 2
##     year total
##    <int> <int>
##  1  2002  1424
##  2  2003  1503
##  3  2004  1625
##  4  2005  2192
##  5  2006  2285
##  6  2007  2269
##  7  2008  2425
##  8  2009  2518
##  9  2010  2988
## 10  2011  2834
## 11  2012  2836
## 12  2013  3154
## 13  2014  3250
## 14  2015  2953
## 15  2016  2599
## 16  2017  2955

Datset

strokefemale <- subset(stroke, stroke$sexo=="Women", select = c(year))
strokefemale <- strokefemale%>%group_by(year)%>%dplyr::summarise(women = n())
strokemale <- subset(stroke, stroke$sexo=="Men", select = c(year))
strokemale <- strokemale%>%group_by(year)%>%dplyr::summarise(men = n())

stroketrendsex <- full_join(stroke_s1,strokefemale)
## Joining, by = "year"
stroketrendsex <- full_join(stroketrendsex, strokemale)
## Joining, by = "year"
stroketrendsex <- stroketrendsex %>% 
  mutate(percent1=women/total) %>% 
  mutate(percent2=men/total)

stroke14 <- stroketrendsex %>% filter(year %in% c("2002","2003","2004","2005","2006","2007","2008","2009","2010","2011","2012","2013","2014"))
stroke14$percent1 <- as.ts(stroke14$percent1)
stroke14$percent2 <- as.ts(stroke14$percent2)

stroke15 <- stroketrendsex %>% filter(year %in% c("2015","2016","2017"))
stroke15$percent1 <- as.ts(stroke15$percent1)
stroke15$percent2 <- as.ts(stroke15$percent2)

stroke14
## # A tibble: 13 x 6
##     year total women   men percent1  percent2 
##    <int> <int> <int> <int> <ts>      <ts>     
##  1  2002  1424   740   684 0.5196629 0.4803371
##  2  2003  1503   746   757 0.4963407 0.5036593
##  3  2004  1625   826   799 0.5083077 0.4916923
##  4  2005  2192  1171  1021 0.5342153 0.4657847
##  5  2006  2285  1219  1066 0.5334792 0.4665208
##  6  2007  2269  1200  1069 0.5288673 0.4711327
##  7  2008  2425  1272  1153 0.5245361 0.4754639
##  8  2009  2518  1254  1264 0.4980143 0.5019857
##  9  2010  2988  1497  1491 0.5010040 0.4989960
## 10  2011  2834  1413  1421 0.4985886 0.5014114
## 11  2012  2836  1395  1441 0.4918900 0.5081100
## 12  2013  3154  1579  1575 0.5006341 0.4993659
## 13  2014  3250  1531  1719 0.4710769 0.5289231
stroke15
## # A tibble: 3 x 6
##    year total women   men percent1  percent2 
##   <int> <int> <int> <int> <ts>      <ts>     
## 1  2015  2953  1472  1481 0.4984761 0.5015239
## 2  2016  2599  1265  1334 0.4867257 0.5132743
## 3  2017  2955  1434  1521 0.4852792 0.5147208

Trend test

library(trend)
partial.cor.trend.test(stroke14$percent1,stroke14$percent2, method = "spearman")
## 
##  Spearman's Partial Correlation Trend Test
## 
## data:  t AND  stroke14$percent1  .  stroke14$percent2
## t = 0, df = 11, p-value = 1
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## r(tstroke14$percent1.stroke14$percent2) 
##                                       0
partial.cor.trend.test(stroke15$percent1,stroke15$percent2, method = "spearman")
## 
##  Spearman's Partial Correlation Trend Test
## 
## data:  t AND  stroke15$percent1  .  stroke15$percent2
## t = 0, df = 1, p-value = 1
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## r(tstroke15$percent1.stroke15$percent2) 
##                                       0