forked from ehsanasgari/MicroPheno
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmicropheno.py
296 lines (240 loc) · 13.7 KB
/
micropheno.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#! /usr/bin/python
# -*- coding: utf-8 -*-
__author__ = "Ehsaneddin Asgari"
__license__ = "Apache 2"
__version__ = "2.0.0"
__maintainer__ = "Ehsaneddin Asgari"
__email__ = "[email protected] or [email protected]"
__project__ = "LLP - MicroPheno"
__website__ = "https://llp.berkeley.edu/micropheno/"
import argparse
import os
import os.path
import sys
from bootstrapping.bootstrapping import BootStrapping
from make_representations.representation_maker import Metagenomic16SRepresentation
from utility.file_utility import FileUtility
from classifier.classical_classifiers import RFClassifier,SVM
from classifier.DNN import DNNMutliclass16S
class MicroPheno:
def __init__(self):
'''
MicroPheno commandline use
For interactive interface please see the ipython notebooks
in the notebook directory
'''
print('MicroPheno 1.0.0 == HTTP://LLP.BERKELEY.EDU/MICROPHENO')
@staticmethod
def bootstrapping(inp_dir, out_dir, dataset_name, filetype='fastq', k_values=[3, 4, 5, 6, 7, 8],
sampling_sizes=[10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000]):
'''
:param inp_dir:
:param out_dir:
:param filetype:
:param k_values:
:param sampling_sizes:
:return:
'''
fasta_files, mapping = FileUtility.read_fasta_directory(inp_dir, filetype)
BS = BootStrapping(fasta_files, out_dir, seqtype=filetype, sampling_sizes=sampling_sizes,
n_resamples=10, M=10)
for k in k_values:
print(k, '-mer bootstrapping started')
BS.add_kmer_sampling(k)
print(k, '-mer bootstrapping completed')
BS.plotting('results_bootstrapping' + '_' + dataset_name, dataset_name)
@staticmethod
def representation_creation_dir(inp_dir, out_dir, dataset_name, num_p, filetype='fastq',
sampling_dict={3: [20], 4: [100], 5: [500], 6: [100, 1000, 2000, 5000, 10000, -1],
7: [5000], 8: [8000]}):
fasta_files, mapping = FileUtility.read_fasta_directory(inp_dir, filetype)
for k in sampling_dict.keys():
for N in sampling_dict[k]:
print(k, '-mers with sampling size ', N)
RS = Metagenomic16SRepresentation(fasta_files, mapping, N, num_p)
# path to save the generated files
RS.generate_kmers_all(k, save=out_dir + '_'.join([dataset_name, str(k) + '-mers', str(N)]))
@staticmethod
def classical_classifier(X_file, Y_file, model, out_dir, dataset_name, cores):
#
X=FileUtility.load_sparse_csr(X_file)
# labels
Y=FileUtility.load_list(Y_file)
if model=='RF':
#### Random Forest classifier
MRF = RFClassifier(X, Y)
# results containing the best parameter, confusion metrix, best estimator, results on fold will be stored in this address
MRF.tune_and_eval(out_dir+'/classification_results_'+dataset_name, n_jobs=cores)
else:
#### Support Vector Machine classifier
MSVM = SVM(X, Y)
# results containing the best parameter, confusion metrix, best estimator, results on fold will be stored in this address
MSVM.tune_and_eval(out_dir+'/classification_results_'+dataset_name, n_jobs=cores)
@staticmethod
def DNN_classifier(X_file, Y_file, arch, out_dir, dataset_name, gpu_id, epochs, batch_size):
# k-mer data
X=FileUtility.load_sparse_csr(X_file).toarray()
# labels
Y=FileUtility.load_list(Y_file)
DNN=DNNMutliclass16S(X,Y,model_arch=arch)
DNN.cross_validation(out_dir+'nn_classification_results_'+dataset_name, gpu_dev=gpu_id, n_fold=10, epochs=epochs, batch_size=batch_size, model_strct='mlp')
def checkArgs(args):
'''
This function checks the input arguments and returns the errors (if exist) otherwise reads the parameters
'''
# keep all errors
err = "";
# Using the argument parser in case of -h or wrong usage the correct argument usage
# will be prompted
parser = argparse.ArgumentParser()
# top level ######################################################################################################
parser.add_argument('--bootstrapping', action='store_true', help='To enable classification and parameter tuning')
parser.add_argument('--genkmer', action='store_true',
help='To enable generation of representations for input fasta file or directory of 16S rRNA samples')
parser.add_argument('--train_predictor', action='store_true', help='To enable classification and parameter tuning')
# boot strapping #################################################################################################
parser.add_argument('--indir', action='store', dest='input_dir_bootstrapping', default=False, type=str,
help='bootstrapping: directory of 16S rRNA samples', required='--bootstrapping' in sys.argv)
# generate k-mers ################################################################################################
parser.add_argument('--inaddr', action='store', dest='genrep_input_addr', default=False, type=str,
help='genkmer: Generate representations for input fasta file or directory of 16S rRNA samples',
required='--genkmer' in sys.argv)
# classification ################################################################################################
parser.add_argument('--x', action='store', dest='X', type=str, default=False,
help='train_predictor: The data in the npy format rows are instances and columns are features')
parser.add_argument('--y', action='store', dest='Y', type=str, default=False,
help='train_predictor: The labels associated with the rows of classifyX, each line is a associated with a row')
parser.add_argument('--model', action='store', dest='model', type=str, default=False,
choices=[False, 'RF', 'SVM', 'DNN'],
help='train_predictor: choice of classifier from RF, SVM, DNN')
parser.add_argument('--batchsize', action='store', dest='batch_size', type=int, default=10,
help='train_predictor-model/DNN: batch size for deep learning')
parser.add_argument('--gpu_id', action='store', dest='gpu_id', type=str, default='0',
help='train_predictor-model/DNN: GPU id for deep learning')
parser.add_argument('--epochs', action='store', dest='epochs', type=int, default=100,
help='train_predictor-model/DNN: number of epochs for deep learning')
parser.add_argument('--arch', action='store', dest='dnn_arch', type=str, default='1024,0.2,512',
help='train_predictor-model/DNN: The comma separated definition of neural network layers connected to eahc other, you do not need to specify the input and output layers, values between 0 and 1 will be considered as dropouts')
# general to bootstrap and rep ##################################################################################
parser.add_argument('--filetype', action='store', dest='filetype', type=str, default='fastq',
help='fasta fsa fastq etc')
# bootstrap ################################################################################
parser.add_argument('--kvals', action='store', dest='kvals', type=str, default='3,4,5,6,7,8',
help='Comma separated k-mer values 2,3,4,5,6')
parser.add_argument('--nvals', action='store', dest='nvals', type=str,
default='10,20,50,100,200,500,1000,2000,5000,10000', help='Comma separated sample sizes')
# rep / classifier ################################################################################
parser.add_argument('--cores', action='store', dest='cores', default=4, type=int,
help='Number of cores to be used')
# rep ##################################################################################
parser.add_argument('--KN', action='store', dest='K_N', default=None, type=str,
help='pair of comma separated Kmer:sub-sample-size ==> 2:100,6:-1 (N=-1 means using all sequences)')
parser.add_argument('--out', action='store', dest='output_addr', type=str, default='out', help='Out put directory')
parser.add_argument('--in', action='store', dest='input_addr', type=str, default=None,
help='Input fasta file or directory of samples')
parser.add_argument('--name', action='store', dest='data_name', type=str, default=None, help='name of the dataset')
parsedArgs = parser.parse_args()
if parsedArgs.bootstrapping:
'''
bootstrapping functionality
'''
print('Bootstrapping requested..\n')
if (not os.access(parsedArgs.input_dir_bootstrapping, os.F_OK)):
err = err + "\nError: Permission denied or could not find the directory!"
return err
else:
try:
os.stat(parsedArgs.output_addr)
except:
os.mkdir(parsedArgs.output_addr)
if len(FileUtility.recursive_glob(parsedArgs.input_dir_bootstrapping, '*' + parsedArgs.filetype)) == 0:
err = err + "\nThe filetype " + parsedArgs.filetype + " could not find the directory!"
return err
if not parsedArgs.data_name:
parsedArgs.data_name = parsedArgs.input_dir_bootstrapping.split('/')[-1]
try:
k_values = [int(x) for x in parsedArgs.kvals.split(',')]
n_values = [int(x) for x in parsedArgs.nvals.split(',')]
except:
err = err + "\n k-mers or sampling sizes are not fed correctly; see the help with -h!"
return err
MicroPheno.bootstrapping(parsedArgs.input_dir_bootstrapping, parsedArgs.output_addr, parsedArgs.data_name,
filetype=parsedArgs.filetype, k_values=k_values, sampling_sizes=n_values)
return False
if parsedArgs.genkmer:
'''
Representation creation functionality
'''
if (not os.access(parsedArgs.genrep_input_addr, os.F_OK)):
err = err + "\nError: Permission denied or could not find the directory!"
return err
elif os.path.isdir(parsedArgs.genrep_input_addr):
print('Representation creation requested for directory ' + parsedArgs.genrep_input_addr + '\n')
try:
os.stat(parsedArgs.output_addr)
except:
os.mkdir(parsedArgs.output_addr)
if len(FileUtility.recursive_glob(parsedArgs.genrep_input_addr, '*' + parsedArgs.filetype)) == 0:
err = err + "\nThe filetype " + parsedArgs.filetype + " could not find the directory!"
return err
if not parsedArgs.data_name:
parsedArgs.data_name = parsedArgs.genrep_input_addr.split('/')[-1]
try:
sampling_dict = dict()
for x in parsedArgs.K_N.split(','):
k, n = x.split(':')
k = int(k)
n = int(n)
if k in sampling_dict:
sampling_dict[k].append(n)
else:
sampling_dict[k] = [n]
except:
err = err + "\nWrong format for KN (k-mer sample sizes)!"
return err
MicroPheno.representation_creation_dir(parsedArgs.genrep_input_addr, parsedArgs.output_addr,
parsedArgs.data_name, parsedArgs.cores, filetype=parsedArgs.filetype,
sampling_dict=sampling_dict)
else:
print('Representation creation requested for file ' + parsedArgs.genrep_input_addr + '\n')
if parsedArgs.train_predictor:
print('Classification and parameter tuning requested..\n')
if not parsedArgs.model:
err = err + "\nNo classification model is specified"
if (not os.access(parsedArgs.X, os.F_OK)):
err = err + "\nError: Permission denied or could not find the X!"
return err
if (not os.access(parsedArgs.Y, os.F_OK)):
err = err + "\nError: Permission denied or could not find the Y!"
return err
else:
try:
os.stat(parsedArgs.output_addr)
except:
os.mkdir(parsedArgs.output_addr)
print (parsedArgs.output_addr ,' directory created')
if not parsedArgs.data_name:
parsedArgs.data_name = parsedArgs.X.split('/')[-1].split('.')[0]
if parsedArgs.model=='DNN':
'''
Deep learning
'''
arch=[int(layer) if float(layer)>1 else float(layer) for layer in parsedArgs.dnn_arch.split(',')]
MicroPheno.DNN_classifier(parsedArgs.X, parsedArgs.Y, arch, parsedArgs.output_addr, parsedArgs.data_name, parsedArgs.gpu_id,parsedArgs.epochs, parsedArgs.batch_size)
else:
'''
SVM and Random Forest
'''
if parsedArgs.model in ['SVM','RF']:
MicroPheno.classical_classifier( parsedArgs.X, parsedArgs.Y, parsedArgs.model, parsedArgs.output_addr, parsedArgs.data_name, parsedArgs.cores)
else:
return "\nNot able to recognize the model!"
else:
err = err + "\nError: You need to specify an input corpus file!"
print('others')
return False
if __name__ == '__main__':
err = checkArgs(sys.argv)
if err:
print(err)
exit()