-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
486 lines (397 loc) · 18.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import argparse
import time
from typing import Optional
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from distribution import StandardGaussian, GeneralGaussian, LinftyGaussian, LinftyGeneralGaussian, L1GeneralGaussian
from architectures import ARCHITECTURES
from datasets import DATASETS
from third_party.smoothadv import Attacker
from train_utils import AverageMeter, accuracy, log, requires_grad_
from train_utils import prologue
def init_distribution(k, d, noise_sd, infty=False, L1=False):
if not infty and not L1:
if k == 0:
return StandardGaussian(d, noise_sd)
else:
return GeneralGaussian(d, k, noise_sd)
elif infty:
if k == 0:
return LinftyGaussian(d, noise_sd)
else:
return LinftyGeneralGaussian(d, k, noise_sd)
else:
return L1GeneralGaussian(d, k, noise_sd)
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('dataset', type=str, choices=DATASETS)
parser.add_argument('arch', type=str, choices=ARCHITECTURES)
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=150, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch', default=256, type=int, metavar='N',
help='batchsize (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
help='initial learning rate', dest='lr')
parser.add_argument('--lr_step_size', type=int, default=50,
help='How often to decrease learning by gamma.')
parser.add_argument('--gamma', type=float, default=0.1,
help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--noise_sd', default=0.0, type=float,
help="standard deviation of Gaussian noise for data augmentation")
parser.add_argument('--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
# somehow doesn't work...
# parser.add_argument('--gpu', default=None, type=str,
# help='id(s) for CUDA_VISIBLE_DEVICES')
#####################
# Options added by Salman et al. (2019)
parser.add_argument('--resume', action='store_true',
help='if true, tries to resume training from existing checkpoint')
parser.add_argument('--pretrained-model', type=str, default='',
help='Path to a pretrained model')
#####################
parser.add_argument('--num-noise-vec', default=1, type=int,
help="number of noise vectors. `m` in the paper.")
parser.add_argument('--lbd', default=20., type=float)
# Options when SmoothAdv is used (Salman et al., 2019)
parser.add_argument('--adv-training', action='store_true')
parser.add_argument('--epsilon', default=512, type=float)
parser.add_argument('--num-steps', default=4, type=int)
parser.add_argument('--warmup', default=10, type=int, help="Number of epochs over which "
"the maximum allowed perturbation increases linearly "
"from zero to args.epsilon.")
parser.add_argument('--k', default=0, type=int, help="Final general Gaussian parameter")
parser.add_argument('--k-warmup', default=100, type=int, help="Number of epochs over which the general Gaussian "
"parameter increases from zero to desired k")
parser.add_argument('--infty', default=0, type=int, help="whether to use pure infty radial distribution")
parser.add_argument('--mix-infty', default=0, type=int, help="How many batches mix the infty norm noises")
parser.add_argument('--mix-infty-multipler', default=1, type=float, help="The variance ratio between infty and l2")
parser.add_argument('--l1', default=0, type=int, help="whether to use pure L1 radial distribution")
args = parser.parse_args()
if args.adv_training:
mode = f"salman_{args.epsilon}_{args.num_steps}_{args.warmup}"
elif args.num_noise_vec == 1 or args.lbd < 1e-6:
mode = f"cohen"
else:
mode = f"consistency"
if args.infty > 0:
mode += "/infty"
elif args.l1 > 0:
mode += '/L1'
elif args.mix_infty > 0:
mode += f"/mix_infty_{args.mix_infty}"
if not (1. - 1e-6 < args.mix_infty_multipler < 1. + 1e-6):
mode += "x" + str(args.mix_infty_multipler)
args.outdir = f"trained_models/{args.dataset}/k_{args.k}_warmup_{args.k_warmup}/{mode}/num_{args.num_noise_vec}/lbd_{args.lbd}/noise_{args.noise_sd}"
args.epsilon /= 256.0
# if args.gpu:
# os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def kl_div(input, targets, reduction='batchmean'):
return F.kl_div(F.log_softmax(input, dim=1), targets,
reduction=reduction)
def _cross_entropy(input, targets, reduction='mean'):
targets_prob = F.softmax(targets, dim=1)
xent = (-targets_prob * F.log_softmax(input, dim=1)).sum(1)
if reduction == 'sum':
return xent.sum()
elif reduction == 'mean':
return xent.mean()
elif reduction == 'none':
return xent
else:
raise NotImplementedError()
def _entropy(input, reduction='mean'):
return _cross_entropy(input, input, reduction)
def main():
train_loader, test_loader, criterion, model, optimizer, scheduler, \
starting_epoch, logfilename, model_path, device, writer = prologue(args)
if args.adv_training:
attacker = SmoothAdv_PGD(steps=args.num_steps, device=device, max_norm=args.epsilon)
else:
attacker = None
step_counter = {'step': 0}
for epoch in range(starting_epoch, args.epochs):
if args.adv_training:
attacker.max_norm = np.min([args.epsilon, (epoch + 1) * args.epsilon / args.warmup])
if args.dataset != 'imagenet':
if args.k == 0:
now_k = 0
else:
now_k = math.ceil(args.k - args.k * math.exp(- epoch * math.log(args.k) / args.k_warmup)) \
if epoch <= args.k_warmup else args.k
print(f'Epoch {epoch} with k = {now_k}')
before = time.time()
if args.dataset != 'imagenet':
train_loss, train_acc = train(train_loader, model, criterion, optimizer, epoch, now_k, args.mix_infty,
args.noise_sd, attacker, device, writer)
else:
train_loss, train_acc = train(train_loader, model, criterion, optimizer, epoch, args.k, args.mix_infty,
args.noise_sd, attacker, device, writer, args.k_warmup, step_counter)
if args.dataset != 'imagenet':
test_loss, test_acc = test(test_loader, model, criterion, epoch, now_k,
args.noise_sd, device, writer, args.print_freq)
else:
if args.k == 0:
now_k = 0
else:
now_k = math.ceil(args.k - args.k * math.exp(- step_counter['step'] * math.log(args.k) / args.k_warmup))\
if step_counter['step'] <= args.k_warmup else args.k
test_loss, test_acc = test(test_loader, model, criterion, epoch, now_k,
args.noise_sd, device, writer, args.print_freq)
after = time.time()
log(logfilename, "{}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}".format(
epoch, after - before,
scheduler.get_lr()[0], train_loss, train_acc, test_loss, test_acc))
# In PyTorch 1.1.0 and later, you should call `optimizer.step()` before `lr_scheduler.step()`.
# See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
scheduler.step(epoch)
torch.save({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, model_path)
def _chunk_minibatch(batch, num_batches):
X, y = batch
batch_size = len(X) // num_batches
for i in range(num_batches):
yield X[i*batch_size : (i+1)*batch_size], y[i*batch_size : (i+1)*batch_size]
def train(loader: DataLoader, model: torch.nn.Module, criterion, optimizer: Optimizer, epoch: int, k: int, mix_infty:int,
noise_sd: float,
attacker: Attacker, device: torch.device, writer=None, k_warmup=None, step_counter=None):
"""
If step_counter is not None, the step_counter saves the real step and k stores the k limit.
Otherwise, k stores the real k
:param loader:
:param model:
:param criterion:
:param optimizer:
:param epoch:
:param k:
:param mix_infty:
:param noise_sd:
:param attacker:
:param device:
:param writer:
:param stepwise_k:
:param step_counter:
:return:
"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
losses_reg = AverageMeter()
confidence = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
# switch to train mode
model.train()
requires_grad_(model, True)
step_c = step_counter['step'] if step_counter is not None else None
k_lim = k if step_counter is not None else None
for i, batch in enumerate(loader):
# measure data loading time
data_time.update(time.time() - end)
distribution = None
distribution_infty = None
if step_c is not None:
# init real k then
if k_lim == 0:
k = 0
else:
k = math.ceil(k_lim - k_lim * math.exp(- step_c * math.log(k_lim) / k_warmup)) if step_c <= k_warmup else k_lim
step_c += 1
step_counter['step'] += 1
mini_batches = _chunk_minibatch(batch, args.num_noise_vec)
for inputs, targets in mini_batches:
inputs, targets = inputs.to(device), targets.to(device)
batch_size = inputs.size(0)
if distribution is None:
d = inputs.reshape(batch_size, -1).size(1)
distribution = init_distribution(k, d, noise_sd, infty=(args.infty > 0), L1=(args.l1 > 0))
if mix_infty > 0:
distribution_infty = init_distribution(k, d, noise_sd * args.mix_infty_multipler, infty=True)
noises = [torch.tensor(distribution.sample(batch_size).astype(np.float32), device=device).reshape_as(inputs)
for _ in range(args.num_noise_vec - mix_infty)] + \
[torch.tensor(distribution_infty.sample(batch_size).astype(np.float32), device=device).reshape_as(inputs)
for _ in range(mix_infty)]
if args.adv_training:
requires_grad_(model, False)
model.eval()
inputs = attacker.attack(model, inputs, targets, noises=noises)
model.train()
requires_grad_(model, True)
# augment inputs with noise
inputs_c = torch.cat([inputs + noise for noise in noises], dim=0)
targets_c = targets.repeat(args.num_noise_vec)
logits = model(inputs_c)
loss_xent = criterion(logits, targets_c)
logits_chunk = torch.chunk(logits, args.num_noise_vec, dim=0)
softmax = [F.softmax(logit, dim=1) for logit in logits_chunk]
avg_softmax = sum(softmax) / args.num_noise_vec
consistency = [kl_div(logit, avg_softmax, reduction='none').sum(1)
+ _entropy(avg_softmax, reduction='none')
for logit in logits_chunk]
consistency = sum(consistency) / args.num_noise_vec
consistency = consistency.mean()
loss = loss_xent + args.lbd * consistency
avg_confidence = -F.nll_loss(avg_softmax, targets)
acc1, acc5 = accuracy(logits, targets_c, topk=(1, 5))
losses.update(loss_xent.item(), batch_size)
losses_reg.update(consistency.item(), batch_size)
confidence.update(avg_confidence.item(), batch_size)
top1.update(acc1.item(), batch_size)
top5.update(acc5.item(), batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'k {k}\t'
'Time {batch_time.avg:.3f}\t'
'Data {data_time.avg:.3f}\t'
'Loss {loss.avg:.4f}\t'
'Acc@1 {top1.avg:.3f}\t'
'Acc@5 {top5.avg:.3f}'.format(
epoch, i, len(loader), k=k, batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
writer.add_scalar('loss/train', losses.avg, epoch)
writer.add_scalar('loss/consistency', losses_reg.avg, epoch)
writer.add_scalar('loss/avg_confidence', confidence.avg, epoch)
writer.add_scalar('batch_time', batch_time.avg, epoch)
writer.add_scalar('accuracy/train@1', top1.avg, epoch)
writer.add_scalar('accuracy/train@5', top5.avg, epoch)
writer.add_scalar('train/k', k, epoch)
# store back new k
if step_counter is not None:
step_counter['step'] = step_c
return (losses.avg, top1.avg)
def test(loader, model, criterion, epoch, k, noise_sd, device, writer=None, print_freq=10):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
# switch to eval mode
model.eval()
with torch.no_grad():
distribution = None
for i, (inputs, targets) in enumerate(loader):
if distribution is None:
batch_size = inputs.size(0)
d = inputs.reshape(batch_size, -1).size(1)
distribution = init_distribution(k, d, noise_sd, infty=(args.infty > 0), L1=(args.l1 > 0))
# measure data loading time
data_time.update(time.time() - end)
inputs, targets = inputs.to(device), targets.to(device)
# augment inputs with noise
noise = distribution.sample(inputs.size(0)).astype(np.float32)
noise = torch.tensor(noise, device=device).reshape_as(inputs)
inputs = inputs + noise
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
acc1, acc5 = accuracy(outputs, targets, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(acc1.item(), inputs.size(0))
top5.update(acc5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.avg:.3f}\t'
'Data {data_time.avg:.3f}\t'
'Loss {loss.avg:.4f}\t'
'Acc@1 {top1.avg:.3f}\t'
'Acc@5 {top5.avg:.3f}'.format(
i, len(loader), batch_time=batch_time, data_time=data_time,
loss=losses, top1=top1, top5=top5))
if writer:
writer.add_scalar('loss/test', losses.avg, epoch)
writer.add_scalar('accuracy/test@1', top1.avg, epoch)
writer.add_scalar('accuracy/test@5', top5.avg, epoch)
return (losses.avg, top1.avg)
class SmoothAdv_PGD(Attacker):
"""
SmoothAdv PGD L2 attack
Parameters
----------
steps : int
Number of steps for the optimization.
max_norm : float or None, optional
If specified, the norms of the perturbations will not be greater than this value which might lower success rate.
device : torch.device, optional
Device on which to perform the attack.
"""
def __init__(self,
steps: int,
random_start: bool = True,
max_norm: Optional[float] = None,
device: torch.device = torch.device('cpu')) -> None:
super(SmoothAdv_PGD, self).__init__()
self.steps = steps
self.random_start = random_start
self.max_norm = max_norm
self.device = device
def attack(self, model, inputs, labels, noises=None):
"""
Performs SmoothAdv PGD L2 attack of the model for the inputs and labels.
Parameters
----------
model : nn.Module
Model to attack.
inputs : torch.Tensor
Batch of samples to attack. Values should be in the [0, 1] range.
labels : torch.Tensor
Labels of the samples to attack.
noises : List[torch.Tensor]
Lists of noise samples to attack.
Returns
-------
torch.Tensor
Batch of samples modified to be adversarial to the model.
"""
if inputs.min() < 0 or inputs.max() > 1: raise ValueError('Input values should be in the [0, 1] range.')
def _batch_l2norm(x):
x_flat = x.reshape(x.size(0), -1)
return torch.norm(x_flat, dim=1)
adv = inputs.detach()
alpha = self.max_norm / self.steps * 2
for i in range(self.steps):
adv.requires_grad_()
logits = [model(adv + noise) for noise in noises]
softmax = [F.softmax(logit, dim=1) for logit in logits]
avg_softmax = sum(softmax) / len(noises)
logsoftmax = torch.log(avg_softmax.clamp(min=1e-20))
loss = F.nll_loss(logsoftmax, labels)
grad = torch.autograd.grad(loss, [adv])[0]
grad_norm = _batch_l2norm(grad).view(-1, 1, 1, 1)
grad = grad / (grad_norm + 1e-8)
adv = adv + alpha * grad
eta_x_adv = adv - inputs
eta_x_adv = eta_x_adv.renorm(p=2, dim=0, maxnorm=self.max_norm)
adv = inputs + eta_x_adv
adv = torch.clamp(adv, 0, 1)
adv = adv.detach()
return adv
if __name__ == "__main__":
main()