forked from chenjun2hao/SRN.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
399 lines (344 loc) · 19.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import os
import sys
import time
import random
import string
import argparse
import torch
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.utils.data
import numpy as np
from utils import CTCLabelConverter, AttnLabelConverter, Averager, TransformerConverter, SRNConverter
from dataset import hierarchical_dataset, AlignCollate, Batch_Balanced_Dataset
from model import Model
from test import validation
from src.baidudataset import BAIDUset, BaiduCollate
from modules.optimizer.ranger import Ranger
# from modules.SRN_modules import cal_performance
from modules.SRN_modules import cal_performance2 as cal_performance
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def train(opt):
""" dataset preparation """
if opt.select_data == 'baidu':
train_set = BAIDUset(opt, opt.train_csv)
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=opt.batch_size,
shuffle=True, num_workers=int(opt.workers),
collate_fn=BaiduCollate(opt.imgH, opt.imgW, keep_ratio=False)
)
val_set = BAIDUset(opt, opt.val_csv)
valid_loader = torch.utils.data.DataLoader(
val_set, batch_size=opt.batch_size,
shuffle=True,
num_workers=int(opt.workers),
collate_fn=BaiduCollate(opt.imgH, opt.imgW, keep_ratio=False), pin_memory=True)
else:
opt.select_data = opt.select_data.split('-')
opt.batch_ratio = opt.batch_ratio.split('-')
train_dataset = Batch_Balanced_Dataset(opt)
AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
valid_dataset = hierarchical_dataset(root=opt.valid_data, opt=opt)
valid_loader = torch.utils.data.DataLoader(
valid_dataset, batch_size=opt.batch_size,
shuffle=True, # 'True' to check training progress with validation function.
num_workers=int(opt.workers),
collate_fn=AlignCollate_valid, pin_memory=True)
print('-' * 80)
""" model configuration """
if 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
elif 'Bert' in opt.Prediction:
converter = TransformerConverter(opt.character, opt.max_seq)
elif 'SRN' in opt.Prediction:
converter = SRNConverter(opt.character, opt.SRN_PAD)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model = Model(opt)
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
# weight initialization
for name, param in model.named_parameters():
if 'localization_fc2' in name:
print(f'Skip {name} as it is already initialized')
continue
try:
if 'bias' in name:
init.constant_(param, 0.0)
elif 'weight' in name:
init.kaiming_normal_(param)
except Exception as e: # for batchnorm.
if 'weight' in name:
param.data.fill_(1)
continue
# data parallel for multi-GPU
model = torch.nn.DataParallel(model).cuda()
model.train()
if opt.continue_model != '':
print(f'loading pretrained model from {opt.continue_model}')
model.load_state_dict(torch.load(opt.continue_model))
print("Model:")
print(model)
""" setup loss """
if 'CTC' in opt.Prediction:
criterion = torch.nn.CTCLoss(zero_infinity=True).cuda()
elif 'Bert' in opt.Prediction:
criterion = torch.nn.CrossEntropyLoss(ignore_index=0).cuda()
elif 'SRN' in opt.Prediction:
criterion = cal_performance
else:
criterion = torch.nn.CrossEntropyLoss(ignore_index=0).cuda() # ignore [GO] token = ignore index 0
# loss averager
loss_avg = Averager()
# filter that only require gradient decent
filtered_parameters = []
params_num = []
for p in filter(lambda p: p.requires_grad, model.parameters()):
filtered_parameters.append(p)
params_num.append(np.prod(p.size()))
print('Trainable params num : ', sum(params_num))
# [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]
# setup optimizer
if opt.adam:
optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
elif opt.ranger:
optimizer = Ranger(filtered_parameters, lr=opt.lr)
else:
optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps)
print("Optimizer:")
print(optimizer)
lrScheduler = lr_scheduler.MultiStepLR(optimizer, [2, 4, 5], gamma=0.1) # 减小学习速率
""" final options """
# print(opt)
with open(f'./saved_models/{opt.experiment_name}/opt.txt', 'a') as opt_file:
opt_log = '------------ Options -------------\n'
args = vars(opt)
for k, v in args.items():
opt_log += f'{str(k)}: {str(v)}\n'
opt_log += '---------------------------------------\n'
print(opt_log)
opt_file.write(opt_log)
""" start training """
start_iter = 0
if opt.continue_model != '':
start_iter = int(opt.continue_model.split('_')[-1].split('.')[0])
print(f'continue to train, start_iter: {start_iter}')
start_time = time.time()
best_accuracy = -1
best_norm_ED = 1e+6
i = start_iter
if opt.select_data == 'baidu':
train_iter = iter(train_loader)
step_per_epoch = len(train_set) / opt.batch_size
print('一代有多少step:', step_per_epoch)
else:
step_per_epoch = train_dataset.nums_samples / opt.batch_size
print('一代有多少step:', step_per_epoch)
while(True):
# try:
# train part
for p in model.parameters():
p.requires_grad = True
if opt.select_data == 'baidu':
try:
image_tensors, labels = train_iter.next()
except:
train_iter = iter(train_loader)
image_tensors, labels = train_iter.next()
else:
image_tensors, labels = train_dataset.get_batch()
image = image_tensors.cuda()
if 'SRN' in opt.Prediction:
text, length = converter.encode(labels)
else:
text, length = converter.encode(labels)
batch_size = image.size(0)
if 'CTC' in opt.Prediction:
preds = model(image, text).log_softmax(2)
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
preds = preds.permute(1, 0, 2)
# (ctc_a) For PyTorch 1.2.0 and 1.3.0. To avoid ctc_loss issue, disabled cudnn for the computation of the ctc_loss
# https://github.com/jpuigcerver/PyLaia/issues/16
torch.backends.cudnn.enabled = False
cost = criterion(preds, text.to(device), preds_size.to(device), length.to(device))
torch.backends.cudnn.enabled = True
elif 'Bert' in opt.Prediction:
pad_mask = None
# print(image.shape)
preds = model(image, pad_mask)
cost = criterion(preds[0].view(-1, preds[0].shape[-1]), text.contiguous().view(-1)) + \
criterion(preds[1].view(-1, preds[1].shape[-1]), text.contiguous().view(-1))
elif 'SRN' in opt.Prediction:
preds = model(image, None)
cost, train_correct = criterion(preds, text, opt.SRN_PAD)
else:
preds = model(image, text[:, :-1]) # align with Attention.forward
target = text[:, 1:] # without [GO] Symbol
cost = criterion(preds.view(-1, preds.shape[-1]), target.contiguous().view(-1))
model.zero_grad()
cost.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip) # gradient clipping with 5 (Default)
optimizer.step()
loss_avg.add(cost)
if i % opt.disInterval == 0:
elapsed_time = time.time() - start_time
print(f'[{i}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}')
start_time = time.time()
# validation part
if i % opt.valInterval == 0 and i > start_iter:
elapsed_time = time.time() - start_time
print(f'[{i}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}')
# for log
with open(f'./saved_models/{opt.experiment_name}/log_train.txt', 'a') as log:
log.write(f'[{i}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}\n')
loss_avg.reset()
# model.eval()
# valid_loss, current_accuracy, current_norm_ED, preds, labels, infer_time, length_of_data = validation(
# # model, criterion, valid_loader, converter, opt)
valid_loss, current_accuracy, current_norm_ED, preds, labels, infer_time, length_of_data = validation(
model, criterion, valid_loader, converter, opt)
model.train()
for pred, gt in zip(preds[:5], labels[:5]):
if 'Attn' in opt.Prediction:
pred = pred[:pred.find('[s]')]
gt = gt[:gt.find('[s]')]
print(f'pred: {pred:20s}, gt: {gt:20s}, {str(pred == gt)}')
log.write(f'pred: {pred:20s}, gt: {gt:20s}, {str(pred == gt)}\n')
valid_log = f'[{i}/{opt.num_iter}] valid loss: {valid_loss:0.5f}'
valid_log += f' accuracy: {current_accuracy:0.3f}, norm_ED: {current_norm_ED:0.2f}'
print(valid_log)
log.write(valid_log + '\n')
# keep best accuracy model
if current_accuracy > best_accuracy:
best_accuracy = current_accuracy
torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_accuracy.pth')
if current_norm_ED < best_norm_ED:
best_norm_ED = current_norm_ED
torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_norm_ED.pth')
best_model_log = f'best_accuracy: {best_accuracy:0.3f}, best_norm_ED: {best_norm_ED:0.2f}'
print(best_model_log)
log.write(best_model_log + '\n')
# save model per 1e+5 iter.
if (i + 1) % opt.saveInterval == 0:
torch.save(
model.state_dict(), f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')
if i == opt.num_iter:
print('end the training')
sys.exit()
if i > 0 and i % int(step_per_epoch) == 0: # 调整学习速率
print('down the learn rate 1/10')
lrScheduler.step()
i += 1
# except:
# import sys, traceback
# traceback.print_exc(file=sys.stdout)
# continue
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--experiment_name', help='Where to store logs and models')
parser.add_argument('--train_data', default='/home/deepblue/deepbluetwo/chenjun/1_OCR/data/data_lmdb_release/training', help='path to training dataset')
parser.add_argument('--valid_data', default='/home/deepblue/deepbluetwo/chenjun/1_OCR/data/data_lmdb_release/validation', help='path to validation dataset')
parser.add_argument('--manualSeed', type=int, default=666, help='for random seed setting')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=6)
parser.add_argument('--batch_size', type=int, default=256, help='input batch size')
parser.add_argument('--num_iter', type=int, default=300000, help='number of iterations to train for')
parser.add_argument('--valInterval', type=int, default=5000, help='Interval between each validation')
parser.add_argument('--saveInterval', type=int, default=5000, help='Interval between each save')
parser.add_argument('--disInterval', type=int, default=5, help='Interval betweet each show')
parser.add_argument('--continue_model', default = '', help="path to model to continue training")
# parser.add_argument('--continue_model', default='./saved_models/None-ResNet-SRN-SRN-Seed666/iter_150000.pth', help="path to model to continue training")
parser.add_argument('--adam', default=True, help='Whether to use adam (default is Adadelta)')
parser.add_argument('--ranger', default=False, help='use RAdam + Lookahead for optimizer')
parser.add_argument('--lr', type=float, default=0.0001, help='learning rate, default=1.0 for Adadelta')
parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for adam. default=0.9')
parser.add_argument('--rho', type=float, default=0.95, help='decay rate rho for Adadelta. default=0.95')
parser.add_argument('--eps', type=float, default=1e-8, help='eps for Adadelta. default=1e-8')
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping value. default=5')
""" all baidu images """
# parser.add_argument('--root', type=str, default='/root/shenlan/deepblue/1_OCR/data/train_images', help='the path of images')
# parser.add_argument('--train_csv', type=str, default='/root/shenlan/deepblue/1_OCR/text_reco/dataset/BAIDU/add_train_30w.txt', help='the train samples')
# parser.add_argument('--val_csv', type=str, default='/root/shenlan/deepblue/1_OCR/text_reco/dataset/BAIDU/add_val.txt', help='the val samples')
# parser.add_argument('--baidu_alphabet', type=str, default='/root/shenlan/deepblue/1_OCR/text_reco/dataset/BAIDU/baidu_alphabet_30w.txt')
'''a small baidu image'''
parser.add_argument('--root', type=str, default='./dataset/BAIDU/images/', help='the path of images')
parser.add_argument('--train_csv', type=str, default='./dataset/BAIDU/small_train.txt', help='the train samples')
parser.add_argument('--val_csv', type=str, default='./dataset/BAIDU/small_train.txt', help='the val samples')
parser.add_argument('--baidu_alphabet', type=str, default='./dataset/BAIDU/baidu_alphabet.txt')
'''bert_ocr setting'''
parser.add_argument('--max_seq', type=int, default=26, help='the maxium of the sequence length')
parser.add_argument('--position_dim', type=int, default=26, help='the length sequence out from cnn encoder,resnet:65,resnetfpn:256')
'''SRN setting'''
parser.add_argument('--SRN_PAD', type=int, default=37, help='refer to EOS')
parser.add_argument('--batch_max_character', type=int, default=25, help='the max character of one image')
parser.add_argument('--alphabet_size', type=int, default=None, help='the categry of the string')
parser.add_argument('--select_data', type=str, default='MJ-ST',
help='select training data MJ-ST | MJ-ST-ICDAR2019 | baidu')
parser.add_argument('--batch_ratio', type=str, default='1.0-1.0',
help='assign ratio for each selected data in the batch')
parser.add_argument('--total_data_usage_ratio', type=str, default='1.0',
help='total data usage ratio, this ratio is multiplied to total number of data.')
parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
parser.add_argument('--rgb', action='store_true', help='use rgb input')
parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz$#', help='character label')
parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
parser.add_argument('--PAD', action='store_true', help='whether tlabelo keep ratio then pad for image resize')
parser.add_argument('--data_filtering_off', action='store_true', help='for data_filtering_off mode')
""" Model Architecture """
parser.add_argument('--Transformation', type=str, default='None', help='Transformation stage. None|TPS')
parser.add_argument('--FeatureExtraction', type=str, default='ResNet', help='FeatureExtraction stage. VGG|RCNN|ResNet|AsterRes|ResnetFpn')
parser.add_argument('--SequenceModeling', type=str, default='SRN', help='SequenceModeling stage. None|BiLSTM|Bert|SRN')
parser.add_argument('--Prediction', type=str, default='SRN', help='Prediction stage. CTC|Attn|Bert_pred|SRN')
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor')
parser.add_argument('--output_channel', type=int, default=512,
help='the number of output channel of Feature extractor')
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
opt = parser.parse_args()
if not opt.experiment_name:
opt.experiment_name = f'{opt.Transformation}-{opt.FeatureExtraction}-{opt.SequenceModeling}-{opt.Prediction}'
opt.experiment_name += f'-Seed{opt.manualSeed}'
# print(opt.experiment_name)
os.makedirs(f'./saved_models/{opt.experiment_name}', exist_ok=True)
""" vocab / character number configuration """
if opt.sensitive:
# opt.character += 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
if opt.select_data == 'baidu':
with open(opt.baidu_alphabet) as f:
opt.character = f.readlines()[0]
# opt.character = opt.baidu_alphabet
opt.alphabet_size = len(opt.character) # +2 for [UNK]+[EOS]
'''SRN setting'''
opt.SRN_PAD = len(opt.character) - 1
""" Seed and GPU setting """
# print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
np.random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
torch.cuda.manual_seed(opt.manualSeed)
cudnn.benchmark = True
cudnn.deterministic = True
opt.num_gpu = torch.cuda.device_count()
# opt.num_gpu = 1
# print('device count', opt.num_gpu)
if opt.num_gpu > 1:
print('------ Use multi-GPU setting ------')
print('if you stuck too long time with multi-GPU setting, try to set --workers 0')
# check multi-GPU issue https://github.com/clovaai/deep-text-recognition-benchmark/issues/1
opt.workers = opt.workers * opt.num_gpu
""" previous version
print('To equlize batch stats to 1-GPU setting, the batch_size is multiplied with num_gpu and multiplied batch_size is ', opt.batch_size)
opt.batch_size = opt.batch_size * opt.num_gpu
print('To equalize the number of epochs to 1-GPU setting, num_iter is divided with num_gpu by default.')
If you dont care about it, just commnet out these line.)
opt.num_iter = int(opt.num_iter / opt.num_gpu)
"""
train(opt)