-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbe_demo.R
41 lines (31 loc) · 1.05 KB
/
be_demo.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
library(BatchExperiments)
library(mlr)
library(mlbench)
data(Sonar)
# demo: run some machine learning algos on some data
# create experiment registry
unlink("be_demo-files", recursive = TRUE)
reg = makeExperimentRegistry("be_demo", packages = "mlr")
# problems = data sets
addProblem(reg, id = "iris", static = list(task =
makeClassifTask(data = iris, target = "Species")))
addProblem(reg, id = "sonar", static = list(task =
makeClassifTask(data = Sonar, target = "Class")))
# algo code = crossval a learner.
# learner is a arg, so we can formulate a design of options to try
addAlgorithm(reg, "cv_learner",
fun = function(static, learner) {
r = crossval(learner = learner, task = static$task, iters = 3)
r$aggr["mmce.test.mean"]
})
learners = c("classif.rpart", "classif.lda")
# add the experiments
addExperiments(reg,
algo.designs = makeDesign("cv_learner",
exhaustive = list(learner = learners)),
repls = 2
)
submitJobs(reg)
waitForJobs(reg)
res = reduceResultsExperiments(reg)
print(res)