-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning_objectives.Rmd
123 lines (78 loc) · 5.15 KB
/
learning_objectives.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Learning Objectives {-}
Learning objectives for our course topics are listed below. Use these to guide your synthesis of video and reading material.
**Introduction to Statistical Machine Learning**
- Formulate research questions that align with regression, classification, or unsupervised learning tasks
<br>
**Evaluating Regression Models**
- Create and interpret residuals vs. fitted, residuals vs. predictor plots to identify improvements in modeling and address ethical concerns
- Interpret MSE, RMSE, MAE, and R-squared in a contextually meaningful way
<br>
**Overfitting and cross-validation**
- Explain why training/in-sample model evaluation metrics can provide a misleading view of true test/out-of-sample performance
- Accurately describe all steps of cross-validation to estimate the test/out-of-sample version of a model evaluation metric
- Explain what role CV has in a predictive modeling analysis and its connection to overfitting
- Explain the pros/cons of higher vs. lower k in k-fold CV in terms of sample size and computing time
<br>
**Subset selection**
- Clearly describe the forward and backward stepwise selection algorithm and why they are examples of greedy algorithms
- Compare best subset and stepwise algorithms in terms of optimality of output and computational time
<br>
**LASSO (shrinkage/regularization)**
- Explain how ordinary and penalized least squares are similar and different with regard to (1) the form of the objective function and (2) the goal of variable selection
- Explain how the lambda tuning parameter affects model performance and how this is related to overfitting
<br>
**KNN Regression and the Bias-Variance Tradeoff**
- Clearly describe / implement by hand the KNN algorithm for making a regression prediction
- Explain how the number of neighbors relates to the bias-variance tradeoff
- Explain the difference between parametric and nonparametric methods
- Explain how the curse of dimensionality relates to the performance of KNN (not in the video--will be discussed in class)
<br>
**Modeling Nonlinearity: Polynomial Regression and Splines**
- Explain the advantages of splines over global transformations and other types of piecewise polynomials
- Explain how splines are constructed by drawing connections to variable transformations and least squares
- Explain how the number of knots relates to the bias-variance tradeoff
<br>
**Local Regression and Generalized Additive Models**
- Clearly describe the local regression algorithm for making a prediction
- Explain how bandwidth (span) relate to the bias-variance tradeoff
- Describe some different formulations for a GAM (how the arbitrary functions are represented)
- Explain how to make a prediction from a GAM
- Interpret the output from a GAM
<br>
**Logistic regression**
- Use a logistic regression model to make hard (class) and soft (probability) predictions
- Interpret non-intercept coefficients from logistic regression models in the data context
<br>
**Evaluating classification models**
- Calculate (by hand from confusion matrices) and contextually interpret overall accuracy, sensitivity, and specificity
- Construct and interpret plots of predicted probabilities across classes
- Explain how a ROC curve is constructed and the rationale behind AUC as an evaluation metric
- Appropriately use and interpret the no-information rate to evaluate accuracy metrics
<br>
**Decision trees**
- Clearly describe the recursive binary splitting algorithm for tree building for both regression and classification
- Compute the weighted average Gini index to measure the quality of a classification tree split
- Compute the sum of squared residuals to measure the quality of a regression tree split
- Explain how recursive binary splitting is a greedy algorithm
- Explain how different tree parameters relate to the bias-variance tradeoff
<br>
**Bagging and random forests**
- Explain the rationale for bagging
- Explain the rationale for selecting a random subset of predictors at each split (random forests)
- Explain how the size of the random subset of predictors at each split relates to the bias-variance tradeoff
- Explain the rationale for and implement out-of-bag error estimation for both regression and classification
- Explain the rationale behind the random forest variable importance measure and why it is biased towards quantitative predictors (in class)
<br>
**K-means clustering**
- Clearly describe / implement by hand the k-means algorithm
- Describe the rationale for how clustering algorithms work in terms of within-cluster variation
- Describe the tradeoff of more vs. less clusters in terms of interpretability
- Implement strategies for interpreting / contextualizing the clusters
<br>
**Hierarchical clustering**
- Clearly describe / implement by hand the hierarchical clustering algorithm
- Compare and contrast k-means and hierarchical clustering in their outputs and algorithms
- Interpret cuts of the dendrogram for single and complete linkage
- Describe the rationale for how clustering algorithms work in terms of within-cluster variation
- Describe the tradeoff of more vs. less clusters in terms of interpretability
- Implement strategies for interpreting / contextualizing the clusters