-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenesysmod_scenariodata_guadeloupe.gms
135 lines (103 loc) · 4.9 KB
/
genesysmod_scenariodata_guadeloupe.gms
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
* ############# genesysmod_scenariodata_middleearth.gms ##############
*
* GENeSYS-MOD v3.1 [Global Energy System Model] ~ March 2022
*
* Based on OSEMOSYS 2011.07.07 conversion to GAMS by Ken Noble, Noble-Soft Systems - August 2012
*
* Updated to newest OSeMOSYS-Version (2016.08) and further improved with additional equations 2016 - 2022
* by Konstantin L�ffler, Thorsten Burandt, Karlo Hainsch
*
* #############################################################
*
* Copyright 2020 Technische Universit�t Berlin and DIW Berlin
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* #############################################################
CapacityFactor(r,'RES_PV_Rooftop_Commercial',l,y) = CapacityFactor(r,'RES_PV_Utility_Avg',l,y) ;
CapacityFactor(r,'RES_PV_Rooftop_Residential',l,y) = CapacityFactor(r,'RES_PV_Utility_Avg',l,y) ;
CapacityFactor(r,'HLR_Solar_Thermal',l,y) = CapacityFactor(r,'RES_PV_Utility_Avg',l,y) ;
CapacityFactor(r,'HLI_Solar_Thermal',l,y) = CapacityFactor(r,'RES_PV_Utility_Avg',l,y) ;
AvailabilityFactor(r,'HLI_Geothermal',y) = 0;
TotalTechnologyAnnualActivityUpperLimit(r,'HHI_Scrap_EAF',y) = 0.7*SpecifiedAnnualDemand(r,'Heat_High_Industrial',y);
ReserveMargin(r,y) = 0;
AdditionalTradeCapacity(y,f,r,rr) = 0;
*
* ####### Dispatch and Curtailment #############
*
TagDispatchableTechnology(TECHNOLOGY) = 1;
TagDispatchableTechnology(Solar) = 0;
TagDispatchableTechnology(Wind) = 0;
AvailabilityFactor(REGION,Solar,y) = 1;
TagDispatchableTechnology(Passenger) = 0;
Curtailment.fx(y,l,TransportFuels,r) = 0;
parameter VariableRES(t);
VariableRES(Solar) = 1;
VariableRES(Wind) = 1;
VariableRES('Res_Hydro_Small') = 1;
AvailabilityFactor(r,'RES_Hydro_Small',y) = 1;
TradeCapacity(y,'gas_natural',r,rr) = Readin_PowerTradeCapacity('gas_natural',r,rr,y);
set GasFuels(f);
GasFuels(f) = no;
GasFuels('Gas_Natural') = yes;
GasFuels('Gas_Bio') = yes;
GasFuels('Gas_Synth') = yes;
GasFuels('H2') = yes;
TotalAnnualMaxCapacity(r,ImportTechnology,y) = 999999;
CapacityFactor(r,ImportTechnology,l,y) = 1 ;
OperationalLife(r,ImportTechnology) = 1 ;
TotalTechnologyModelPeriodActivityUpperLimit(r,ImportTechnology) = 999999;
AvailabilityFactor(r,'X_Liquifier',y)$(YearVal(y) > 2015) = 1;
AvailabilityFactor(r,'X_Gasifier',y)$(YearVal(y) > 2015) = 1;
TotalAnnualMaxCapacity(r,'X_Liquifier',y)$(YearVal(y) > 2015) = 9999;
TotalAnnualMaxCapacity(r,'X_Gasifier',y)$(YearVal(y) > 2015) = 9999;
*
* ##############* Pipeline Capacities & Investments #############
*
equation TrPl1a_TradeCapacityPipelinesLines(YEAR_FULL,TIMESLICE_FULL,REGION_FULL,rr_full);
TrPl1a_TradeCapacityPipelinesLines(y,l,r,rr).. sum(GasFuels$(TradeRoute(y,GasFuels,r,rr) > 0), Import(y,l,GasFuels,rr,r)) =l= TotalTradeCapacity(y,'Gas_Natural',r,rr);
*
* ############## Additions for NTNU Guadeloupe study
*
AvailabilityFactor(r,CHPs,y) = 0;
*NewCapacity.lo('2018','HLR_Solar_Thermal','MarieGalante') = 3;
*NewCapacity.lo('2018','D_Heat_HLR','MarieGalante') = 2;
*ProductionByTechnologyAnnual.lo('2018','HLR_Solar_Thermal','Heat_Low_Residential','MarieGalante') = 2;
*ProductionByTechnologyAnnual.lo('2018','D_Heat_HLR','Heat_Low_Residential','MarieGalante') = 2;
*NewCapacity.up('%year%','HLR_Gas_Boiler',r) = 0;
*CapitalCost(r,'D_Heat_HLR',y) = 0.01;
NewCapacity.up(y,'D_PHS',r) = 0;
$ifthen %EmissionPathway% == Independence2040
ProductionByTechnologyAnnual.fx(y,t,'Gas_Natural',r)$(YearVal(y)>=2040) = 0;
UseByTechnologyAnnual.up(y,t,FossilFuels,r)$(not sum(CCS,diag(t,CCS)) and YearVal(y)>=2040) = 0;
*AnnualEmissionLimit should be defined
scalar emission2018 /2.2/;
AnnualEmissionLimit('CO2','2025')=emission2018*0.67;
AnnualEmissionLimit('CO2','2030')=emission2018*0.35;
AnnualEmissionLimit('CO2','2035')=emission2018*0.08;
AnnualEmissionLimit('CO2','2040')=emission2018*0;
AnnualEmissionLimit('CO2','2045')=emission2018*0;
AnnualEmissionLimit('CO2','2050')=emission2018*0;
$endif
$ifthen %EmissionPathway% == Independence2050
ProductionByTechnologyAnnual.fx(y,t,'Gas_Natural',r)$(YearVal(y)>=2050) = 0;
UseByTechnologyAnnual.up(y,t,FossilFuels,r)$(not sum(CCS,diag(t,CCS)) and YearVal(y)>=2050) = 0;
*AnnualEmissionLimit should be defined
scalar emission2018 /2.2/;
AnnualEmissionLimit('CO2','2025')=emission2018*0.74;
AnnualEmissionLimit('CO2','2030')=emission2018*0.46;
AnnualEmissionLimit('CO2','2035')=emission2018*0.30;
AnnualEmissionLimit('CO2','2040')=emission2018*0.14;
AnnualEmissionLimit('CO2','2045')=emission2018*0.03;
AnnualEmissionLimit('CO2','2050')=emission2018*0;
$endif