-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_script.py
313 lines (254 loc) Β· 9.7 KB
/
train_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import torch
from torch.utils.data import Dataset, DataLoader
from transformers.image_utils import load_image
import os
from tqdm import tqdm
import logging
from datetime import datetime
import json
from PIL import Image
import numpy as np
#from BobVLM.model import BobVLMProcessor,BobVLMConfig,BobVLM
import functools
from IPython.display import Javascript
from threading import Thread
#from peft import get_peft_config,get_peft_model,LoraConfig,TaskType, PeftModel
def load_adapter_weights(model, checkpoint_path):
"""
Load adapter weights from a checkpoint file.
Args:
model: The model containing the adapter
checkpoint_path (str): Path to the checkpoint file
"""
try:
# Load checkpoint with CPU/GPU handling
if torch.cuda.is_available():
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
# Load adapter state dict
model.adapter.load_state_dict(checkpoint['adapter_state_dict'])
# Log information about the checkpoint
print(f"Successfully loaded checkpoint from step {checkpoint['step']}")
print(f"Checkpoint loss: {checkpoint['loss']:.4f}")
# Verify adapter parameters are loaded
trainable_params = sum(p.numel() for p in model.adapter.parameters())
total_params = sum(p.numel() for p in model.parameters())
print(f"Adapter parameters loaded: {trainable_params:,}")
print(f"Total parameters: {total_params:,}")
return model
except Exception as e:
logger.error(f"Error loading checkpoint: {str(e)}")
return False
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class VLMDataset(Dataset):
def __init__(self, data_dir, processor):
"""
Args:
data_dir (str): Directory containing the dataset
processor: BobVLMProcessor instance
"""
self.processor = processor
with open(data_dir, 'r') as f:
self.data = json.load(f)[5000*4:]
# Load your dataset here
# Example structure:
# self.data = [
# {"image_path": "path/to/image.jpg", "role": "description"}
# ]
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
image = load_image(item['image_path'])
inputs = self.processor(
text=item["conversations"],
images=image,
return_tensors="pt",
)
inputs = prepare_labels(inputs)
for k in inputs:
if isinstance(inputs[k], torch.Tensor):
inputs[k] = inputs[k].squeeze(0)
return inputs
def prepare_labels(inputs):
#Edit the labels such that the image token id is appended to the beginning of the original ids so they match for loss calc
special_image_token_id = 64780 # the id corresponds to
num_image_tokens = 257
# Clone the input_ids to avoid modifying tensors in-place
input_ids = inputs['input_ids'].clone()
special_tokens_column = torch.full(
(input_ids.size(0), num_image_tokens),
float(special_image_token_id),
device=input_ids.device,
dtype=input_ids.dtype
)
# Create new tensor for labels
inputs['labels'] = torch.cat([special_tokens_column, input_ids], dim=1).detach()
return inputs
class AdapterTrainer:
def __init__(
self,
model,
train_dataloader,
val_dataloader=None,
learning_rate=1e-4,
save_steps=100,
log_steps=10,
checkpoint_dir="/kaggle/working/",
device="cuda" if torch.cuda.is_available() else "cpu"
):
self.model = model
self.train_dataloader = train_dataloader
self.val_dataloader = val_dataloader
self.device = device
self.save_steps = save_steps
self.log_steps = log_steps
self.checkpoint_dir = checkpoint_dir
# Freeze vision and language models
for param in self.model.vit.parameters():
param.requires_grad = False
for param in self.model.language_model.parameters():
param.requires_grad = True
# Only optimize adapter parameters
self.optimizer = torch.optim.AdamW(
self.model.adapter.parameters(),
lr=learning_rate
)
# Setup TensorBoard
# self.writer = SummaryWriter(
# log_dir=os.path.join("runs", datetime.now().strftime("%Y%m%d-%H%M%S"))
# )
# Create checkpoint directory
os.makedirs(checkpoint_dir, exist_ok=True)
# Learning rate scheduler
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer,
mode='min',
factor=0.5,
patience=5,
verbose=True
)
# In your trainer:
def save_checkpoint(self, step, loss):
file = f'LLM_checkpoint_step_{step}.pt'
adapter_file = f'adapter_checkpoint_step_{step}.pt'
path1 = os.path.join(self.checkpoint_dir, file)
path2 = os.path.join(self.checkpoint_dir, adapter_file)
checkpoint1 = {
'step': step,
'adapter_state_dict': self.model.language_model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'loss': loss,
}
checkpoint2 = {
'step': step,
'adapter_state_dict': self.model.adapter.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'loss': loss,
}
torch.save(checkpoint1, path1)
torch.save(checkpoint2, path2)
def train(self, num_epochs):
global_step = 0
best_val_loss = float('inf')
for epoch in range(num_epochs):
self.model.train()
epoch_loss = 0
progress_bar = tqdm(self.train_dataloader, desc=f'Epoch {epoch+1}/{num_epochs}')
for batch in progress_bar:
# Move batch to device
batch = {k: v.to(self.device) for k, v in batch.items()}
# Forward pass
outputs = self.model(**batch)
outputs['logits'].shape
loss = outputs['loss']
# Backward pass
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.adapter.parameters(), max_norm=1.0)
self.optimizer.step()
# Update metrics
epoch_loss += loss.item()
global_step += 1
# Log metrics
if global_step % self.log_steps == 0:
#self.writer.add_scalar('Loss/train', loss.item(), global_step)
progress_bar.set_postfix({'loss': loss.item()})
# Save checkpoint
if global_step % self.save_steps == 0:
self.save_checkpoint(global_step, loss.item())
avg_epoch_loss = epoch_loss / len(self.train_dataloader)
logger.info(f'Epoch {epoch+1} average loss: {avg_epoch_loss:.4f}')
# Validation
if self.val_dataloader is not None:
val_loss = self.validate()
#self.writer.add_scalar('Loss/val', val_loss, global_step)
self.scheduler.step(val_loss)
# Save best model
if val_loss < best_val_loss:
best_val_loss = val_loss
self.save_checkpoint(global_step, val_loss)
logger.info(f'New best validation loss: {val_loss:.4f}')
break
@torch.no_grad()
def validate(self):
self.model.eval()
total_loss = 0
for batch in tqdm(self.val_dataloader, desc='Validating'):
batch = {k: v.to(self.device) for k, v in batch.items()}
# print(batch.shape)
outputs = self.model(**batch)
total_loss += outputs.loss.item()
avg_loss = total_loss / len(self.val_dataloader)
logger.info(f'Validation loss: {avg_loss:.4f}')
return avg_loss
def main():
# Initialize model and processor
# initializing model for adapter training
config = BobVLMConfig()
model = BobVLM(config)
model = load_adapter_weights(model, "/kaggle/input/checkpoints/pytorch/default/21/CLS_checkpoint_step_4000 (5).pt")
# model = PeftModel.from_pretrained(
# model,
# "/kaggle/input/lora-checkpoints/pytorch/default/1/lora_checkpoint_step_6000",
# device_map={'': device},
# is_trainable=True
# )
print('\n\n MODEL DESIGN\n',model)
processor = BobVLMProcessor()
# Create datasets and dataloaders
train_dataset = VLMDataset("/kaggle/input/llava-instruct/llava_50k_1.json", processor)
val_dataset = VLMDataset("/kaggle/input/sample/sample_data.json", processor)
train_dataloader = DataLoader(
train_dataset,
batch_size=1,
shuffle=True,
num_workers=4,
pin_memory=True
)
val_dataloader = DataLoader(
val_dataset,
batch_size=1,
shuffle=False,
num_workers=4,
pin_memory=True
)
# Initialize trainer
trainer = AdapterTrainer(
model=model,
train_dataloader=train_dataloader,
val_dataloader=val_dataloader,
learning_rate=1e-4,
save_steps=1500, # Save every 1000 steps
log_steps=10, # Log every 10 steps
)
# Start training
trainer.train(num_epochs=1)
if __name__ == "__main__":
main()