forked from open-mmlab/mmpose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdefault_runtime.py
54 lines (47 loc) · 1.41 KB
/
default_runtime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
default_scope = 'mmpose'
# hooks
default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=50),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=1),
sampler_seed=dict(type='DistSamplerSeedHook'),
visualization=dict(type='PoseVisualizationHook', enable=True),
badcase=dict(
type='BadCaseAnalysisHook',
enable=False,
out_dir='badcase',
metric_type='loss',
badcase_thr=5))
# custom hooks
custom_hooks = [
# Synchronize model buffers such as running_mean and running_var in BN
# at the end of each epoch
dict(type='SyncBuffersHook')
]
# multi-processing backend
env_cfg = dict(
cudnn_benchmark=False,
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
dist_cfg=dict(backend='nccl'),
)
# visualizer
vis_backends = [
dict(type='LocalVisBackend'),
dict(type='TensorboardVisBackend'),
# dict(type='WandbVisBackend'),
]
visualizer = dict(
type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
# logger
log_processor = dict(
type='LogProcessor', window_size=50, by_epoch=True, num_digits=6)
log_level = 'INFO'
load_from = None
resume = False
# file I/O backend
backend_args = dict(backend='local')
# training/validation/testing progress
train_cfg = dict(by_epoch=True)
val_cfg = dict()
test_cfg = dict()