-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
233 lines (195 loc) · 8.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import argparse
import os
import random
import numpy as np
import torch
import torch.nn as nn
from sklearn.metrics import accuracy_score
from sklearn.utils import shuffle
from text_utils import TextEncoder
from models import *
from datasets import stance
from utils import (encode_dataset, iter_data,
ResultLogger, make_path)
from loss import ClassificationLossCompute, MultipleChoiceLossCompute
from opt import OpenAIAdam
def transform_stance(X1, X2):
n_batch = len(X1)
xmb = np.zeros((n_batch, 1, n_ctx, 2), dtype=np.int32)
mmb = np.zeros((n_batch, 1, n_ctx), dtype=np.float32)
start = encoder['_start_']
delimiter = encoder['_delimiter_']
for i, (x1, x2), in enumerate(zip(X1, X2)):
x12 = [start] + x1[:max_len] + [delimiter] + x2[:max_len] + [clf_token]
l12 = len(x12)
xmb[i, 0, :l12, 0] = x12
mmb[i, 0, :l12] = 1
# Position information that is added to the input embeddings in the TransformerModel
xmb[:, :, :, 1] = np.arange(n_vocab + n_special, n_vocab + n_special + n_ctx)
return xmb, mmb
def iter_apply(Xs, Ms, Ys):
# fns = [lambda x: np.concatenate(x, 0), lambda x: float(np.sum(x))]
logits = []
cost = 0
with torch.no_grad():
dh_model.eval()
for xmb, mmb, ymb in iter_data(Xs, Ms, Ys, n_batch=n_batch_train, truncate=False, verbose=True):
n = len(xmb)
XMB = torch.tensor(xmb, dtype=torch.long).to(device)
YMB = torch.tensor(ymb, dtype=torch.long).to(device)
MMB = torch.tensor(mmb).to(device)
_, clf_logits = dh_model(XMB)
clf_logits *= n
clf_losses = compute_loss_fct(XMB, YMB, MMB, clf_logits, only_return_losses=True)
clf_losses *= n
logits.append(clf_logits.to("cpu").numpy())
cost += clf_losses.sum().item()
logits = np.concatenate(logits, 0)
return logits, cost
def iter_predict(Xs, Ms):
logits = []
with torch.no_grad():
dh_model.eval()
for xmb, mmb in iter_data(Xs, Ms, n_batch=n_batch_train, truncate=False, verbose=True):
n = len(xmb)
XMB = torch.tensor(xmb, dtype=torch.long).to(device)
MMB = torch.tensor(mmb).to(device)
_, clf_logits = dh_model(XMB)
logits.append(clf_logits.to("cpu").numpy())
logits = np.concatenate(logits, 0)
return logits
def run_epoch():
for xmb, mmb, ymb in iter_data(*shuffle(trX, trM, trY, random_state=np.random),
n_batch=n_batch_train, truncate=True, verbose=True):
global n_updates
dh_model.train()
XMB = torch.tensor(xmb, dtype=torch.long).to(device)
YMB = torch.tensor(ymb, dtype=torch.long).to(device)
MMB = torch.tensor(mmb).to(device)
lm_logits, clf_logits = dh_model(XMB)
compute_loss_fct(XMB, YMB, MMB, clf_logits, lm_logits)
n_updates += 1
if n_updates % n_train == 0:
log(save_dir, desc)
def log(save_dir, desc):
global best_score
print("Logging")
tr_logits, tr_cost = iter_apply(trX[:n_valid], trM[:n_valid], trY[:n_valid])
va_logits, va_cost = iter_apply(vaX, vaM, vaY)
te_logits = iter_predict(teX, teM)
te_acc = accuracy_score(teY, np.argmax(te_logits, 1)) * 100.
tr_cost = tr_cost / len(trY[:n_valid])
va_cost = va_cost / n_valid
tr_acc = accuracy_score(trY[:n_valid], np.argmax(tr_logits, 1)) * 100.
va_acc = accuracy_score(vaY, np.argmax(va_logits, 1)) * 100.
logger.log(n_epochs=n_epochs, n_updates=n_updates, tr_cost=tr_cost, va_cost=va_cost, tr_acc=tr_acc, va_acc=va_acc, te_acc=te_acc)
print('%d %d %.3f %.3f %.2f %.2f %.2f' % (n_epochs, n_updates, tr_cost, va_cost, tr_acc, va_acc, te_acc))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--desc', type=str, help="Description")
parser.add_argument('--dataset', type=str)
parser.add_argument('--log_dir', type=str, default='log/')
parser.add_argument('--save_dir', type=str, default='save/')
parser.add_argument('--data_dir', type=str, default='data/')
parser.add_argument('--submission_dir', type=str, default='submission/')
parser.add_argument('--submit', action='store_true')
parser.add_argument('--analysis', action='store_true')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--n_iter', type=int, default=3)
parser.add_argument('--n_batch', type=int, default=1)
parser.add_argument('--max_grad_norm', type=int, default=1)
parser.add_argument('--lr', type=float, default=6.25e-5)
parser.add_argument('--lr_warmup', type=float, default=0.002)
parser.add_argument('--n_ctx', type=int, default=512)
parser.add_argument('--n_embd', type=int, default=768)
parser.add_argument('--n_head', type=int, default=12)
parser.add_argument('--n_layer', type=int, default=12)
parser.add_argument('--embd_pdrop', type=float, default=0.1)
parser.add_argument('--attn_pdrop', type=float, default=0.1)
parser.add_argument('--resid_pdrop', type=float, default=0.1)
parser.add_argument('--clf_pdrop', type=float, default=0.1)
parser.add_argument('--l2', type=float, default=0.01)
parser.add_argument('--vector_l2', action='store_true')
parser.add_argument('--opt', type=str, default='adam')
parser.add_argument('--afn', type=str, default='gelu')
parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
parser.add_argument('--encoder_path', type=str, default= 'data/dataset_tweet_encode/encoder_bpe_40000.json')
#'data/dataset_tweet_encode/bpe_vocab.json')
parser.add_argument('--bpe_path', type=str, default= 'data/dataset_tweet_encode/vocab_40000.bpe')
#'data/dataset_tweet_encode/bpe_10000.model')
parser.add_argument('--n_transfer', type=int, default=12)
parser.add_argument('--lm_coef', type=float, default=0.5)
parser.add_argument('--b1', type=float, default=0.9)
parser.add_argument('--b2', type=float, default=0.999)
parser.add_argument('--e', type=float, default=1e-8)
parser.add_argument('--n_valid', type=int, default=0.1)
args = parser.parse_args()
print(args)
# Constants
submit = args.submit
dataset = args.dataset
n_ctx = args.n_ctx
save_dir = args.save_dir
desc = args.desc
data_dir = args.data_dir
log_dir = args.log_dir
submission_dir = args.submission_dir
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
print("device", device, "n_gpu", n_gpu)
logger = ResultLogger(path=os.path.join(log_dir, '{}.jsonl'.format(desc)), **args.__dict__)
text_encoder = TextEncoder(args.encoder_path, args.bpe_path)
encoder = text_encoder.encoder
n_vocab = len(text_encoder.encoder)
print("Encoding dataset...")
((trX1, trX2, trY),
(vaX1, vaX2, vaY),
(teX1, teX2, teY)) = encode_dataset(*stance(data_dir, n_valid=args.n_valid),
encoder=text_encoder)
encoder['_start_'] = len(encoder)
encoder['_delimiter_'] = len(encoder)
encoder['_classify_'] = len(encoder)
clf_token = encoder['_classify_']
n_special = 3
max_len = n_ctx // 2 - 2
n_ctx = min(max(
[len(x1[:max_len]) + len(x2[:max_len]) for x1, x2 in zip(trX1, trX2)]
+ [len(x1[:max_len]) + len(x2[:max_len]) for x1, x2 in zip(vaX1, vaX2)]
+ [len(x1[:max_len]) + len(x2[:max_len]) for x1, x2 in zip(teX1, teX2)]
) + 3, n_ctx)
vocab = n_vocab + n_special + n_ctx
trX, trM = transform_stance(trX1, trX2)
vaX, vaM = transform_stance(vaX1, vaX2)
if submit:
teX, teM = transform_stance(teX1, teX2)
n_test = len(teY)
n_train = len(trY)
n_valid = len(vaY)
n_batch_train = args.n_batch * max(n_gpu, 1)
n_updates_total = (n_train // n_batch_train) * args.n_iter
dh_model = DoubleHeadModel(args, clf_token, 'inference', vocab, n_ctx)
print(dh_model)
dh_model.to(device)
criterion = nn.CrossEntropyLoss(reduce=False)
model_opt = OpenAIAdam(dh_model.parameters(),
lr=args.lr,
schedule=args.lr_schedule,
warmup=args.lr_warmup,
t_total=n_updates_total,
b1=args.b1,
b2=args.b2,
e=args.e,
l2=args.l2,
vector_l2=args.vector_l2,
max_grad_norm=args.max_grad_norm)
compute_loss_fct = MultipleChoiceLossCompute(criterion,
criterion,
args.lm_coef,
model_opt)
n_updates = 0
n_epochs = 0
best_score = 0
for i in range(args.n_iter):
print("running epoch", i)
run_epoch()
n_epochs += 1