-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestboard.Rmd
416 lines (295 loc) · 12.5 KB
/
testboard.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
---
title: "Santander Cycle Bikesharing in London"
output:
flexdashboard::flex_dashboard:
orientation: rows
vertical_layout: fill
---
```{r setup, include=FALSE}
library(flexdashboard)
library(tidyverse)
library(readxl)
library(janitor)
library(jsonlite)
library(httr)
library(lubridate)
library(rvg)
library(dplyr)
library(sf)
library(tmap)
library(plotly)
# Importing Bike Rental Station locations from API
r <- GET("https://api.tfl.gov.uk/BikePoint/")
data = fromJSON(rawToChar(r$content))
names(data)
data$id
bikeStations <- data %>%
separate(id, into=c("bptext","StationID"), convert = TRUE, sep = "_")
# Importing the whole bikerental dataset
#load("C:/Users/konra/tubCloud/Uni/20WiSe/DataScience/MidsemesterAssignment/final project/Rohdaten/BikeExport.RData")
#load("C:/Users/konra/tubCloud/Uni/20WiSe/DataScience/MidsemesterAssignment/final project/Rohdaten/allroutes.RData")
load("C:/Users/loren/tubCloud/Shared/MidsemesterAssignment/final project/Rohdaten/BikeExport.RData")
load("C:/Users/loren/tubCloud/Shared/MidsemesterAssignment/final project/Rohdaten/allroutes.RData")
# Getting only bike 15776
bikestops_clean <- data %>%
separate(col = id, sep = "_", into = c(NA, "id")) %>%
select(id, commonName, lat, lon) %>%
arrange(id) %>%
mutate(id = as.numeric(id))
bike_15776 <- bikerawdata %>%
filter(Bike.Id == 15776) %>%
mutate(EndDate = strptime(End.Date, "%d/%m/%Y %H:%M")) %>%
arrange(EndDate) %>%
inner_join(bikestops_clean, by = c("StartStation.Id" = "id")) %>%
rename(commonName_start = commonName, lat_start = lat, lon_start = lon) %>%
inner_join(bikestops_clean, by = c("EndStation.Id" = "id")) %>%
rename(commonName_end = commonName, lat_end = lat, lon_end = lon)
allroutes <- allroutes %>%
left_join(bike_15776, by = c("id" = "Rental.Id")) %>%
mutate(Starttime = lubridate::hour(strptime(Start.Date, "%d/%m/%Y %H:%M")) +
lubridate::minute(strptime(Start.Date, "%d/%m/%Y %H:%M")) / 60,
dayride = floor(Starttime) > 7 & floor(Starttime) < 20)
# Using a little bit of it to make it faster at first
bikerawdata <- bikerawdata %>%
mutate(EndDate = strptime(`End.Date`, "%d/%m/%Y %H:%M"), EndDate2 = format(EndDate, "%d/%m/%Y")) %>%
mutate(StartDate = strptime(`Start.Date`, "%d/%m/%Y %H:%M"), StartYear = format(StartDate, "%Y"), StartMonth = format(StartDate, "%m"))
bikes062019 <- bikerawdata %>%
filter(StartMonth == "06" & StartYear == "2019") %>%
mutate(convTravelTime = (as.numeric(EndDate) - as.numeric(StartDate)) / 60) %>%
mutate(StationID = StartStation.Id) %>%
inner_join(bikeStations) %>%
mutate(startLat = lat) %>%
mutate(startLon = lon)
bikes062020 <- bikerawdata %>%
filter(StartMonth == "06" & StartYear == "2020") %>%
mutate(convTravelTime = (as.numeric(EndDate) - as.numeric(StartDate)) / 60) %>%
mutate(StationID = StartStation.Id) %>%
inner_join(bikeStations) %>%
mutate(startLat = lat) %>%
mutate(startLon = lon)
# London map
#LondonWard <- st_read("C:/Users/konra/tubCloud/Uni/20WiSe/DataScience/MidsemesterAssignment/Rohdaten/Boroughs_London/London_Borough_Excluding_MHW.shp") %>%
# st_transform(4326)
#LondonLSOA <- st_read("C:/Users/konra/tubCloud/Uni/20WiSe/DataScience/MidsemesterAssignment/Rohdaten/Boroughs_London/LSOA_2011_London_gen_MHW.shp") %>%
# st_transform(4326)
LondonWard <- st_read("C:/Users/loren/tubCloud/Shared/MidsemesterAssignment/Rohdaten/Boroughs_London/London_Borough_Excluding_MHW.shp") %>%
st_transform(4326)
LondonLSOA <- st_read("C:/Users/loren/tubCloud/Shared/MidsemesterAssignment/Rohdaten/Boroughs_London/LSOA_2011_London_gen_MHW.shp") %>%
st_transform(4326)
startpoints <- st_as_sf(bikes062019, coords = c("lon", "lat"), crs = 4326)
sum_startpoints <- startpoints %>%
group_by(StartStation.Id, StartStation.Name) %>%
summarise(stationcount = n()) %>%
relocate(StartStation.Name, .before = StartStation.Id)
startpoints2 <- st_as_sf(bikes062020, coords = c("lon", "lat"), crs = 4326)
sum_startpoints2 <- startpoints2 %>%
group_by(StartStation.Id, StartStation.Name) %>%
summarise(stationcount = n()) %>%
relocate(StartStation.Name, .before = StartStation.Id)
starts_joinedLSOA <- startpoints %>%
st_join(LondonLSOA, join = st_within)
starts_joinedLSOA2 <- startpoints2 %>%
st_join(LondonLSOA, join = st_within)
# Counting residents
LSOAcount <- starts_joinedLSOA %>%
st_drop_geometry() %>%
group_by(LSOA11CD) %>%
summarise(bikecount = n())
LSOAcount2 <- starts_joinedLSOA2 %>%
st_drop_geometry() %>%
group_by(LSOA11CD) %>%
summarise(bikecount = n())
LondonLSOA_withBikes <- LondonLSOA %>%
left_join(LSOAcount) %>%
filter(bikecount < 100000000) %>%
mutate("Bike rentals per resident (per month)" = bikecount / USUALRES) %>%
relocate(LSOA11NM, .before = LSOA11CD)
LondonLSOA_withBikes2 <- LondonLSOA %>%
left_join(LSOAcount2) %>%
filter(bikecount < 100000000) %>%
mutate("Bike rentals per resident (per month)" = bikecount / USUALRES) %>%
relocate(LSOA11NM, .before = LSOA11CD)
# Calculating average travel time
LSOAtraveltime <- starts_joinedLSOA %>%
st_drop_geometry() %>%
group_by(LSOA11CD) %>%
summarise(avg_rentaltime = median(convTravelTime))
LSOAtraveltime2 <- starts_joinedLSOA2 %>%
st_drop_geometry() %>%
group_by(LSOA11CD) %>%
summarise(avg_rentaltime = median(convTravelTime))
LondonLSOA_traveltime <- LondonLSOA %>%
left_join(LSOAtraveltime) %>%
filter(avg_rentaltime < 100001) %>%
mutate("Average rental time (minutes)" = avg_rentaltime) %>%
relocate(LSOA11NM, .before = LSOA11CD)
LondonLSOA_traveltime2 <- LondonLSOA %>%
left_join(LSOAtraveltime2) %>%
filter(avg_rentaltime < 100001) %>%
mutate("Average rental time (minutes)" = avg_rentaltime) %>%
relocate(LSOA11NM, .before = LSOA11CD)
```
Bike rentals per resident
===========================
Column {data-width=650}
-----------------------------------------------------------------------
### Total bike rentals June 2019
```{r}
valueBox(nrow(bikes062019), icon = "fa-bicycle")
```
### Total bike rentals June 2020
```{r}
valueBox(nrow(bikes062020), icon = "fa-bicycle")
```
### Increase in bike rentals
```{r}
valueBox(round(((nrow(bikes062020) / nrow(bikes062019)) - 1) * 100, 2), icon = "fa-percent")
```
Column {data-width=1000}
-----------------------------------------------------------------------
### Bike rentals per resident (June 2019)
```{r}
# Plotting bike rentals per resident 2019 vs 2020
tmap_mode("view")
# 06/2019 Data
#Bbox inner: -0.5,51.27,0.35,51.7
tm_shape(LondonWard, bbox = c(-0.24,51.45,0,51.55)) +
tm_fill(col = "white", palette = c("lightgrey", "white")) +
tm_borders() +
tm_shape(LondonLSOA_withBikes) +
tm_polygons(col = "Bike rentals per resident (per month)", style = "fixed", breaks = c(0, 0.3, 0.6, 1, 2, 3, 4, 7, 10, 30, 60))
```
> Source data from: <https://tfl.gov.uk/info-for/open-data-users/our-open-data?intcmp=3671>
### Bike rentals per resident (June 2020)
```{r}
#06/2020 Data
#Bbox inner: -0.5,51.27,0.35,51.7
tm_shape(LondonWard, bbox = c(-0.24,51.45,0,51.55)) +
tm_fill(col = "white", palette = c("lightgrey", "white")) +
tm_borders() +
tm_shape(LondonLSOA_withBikes2) +
tm_polygons(col = "Bike rentals per resident (per month)", style = "fixed", breaks = c(0, 0.3, 0.6, 1, 2, 3, 4, 7, 10, 30, 60))
```
> Source data from: <https://tfl.gov.uk/info-for/open-data-users/our-open-data?intcmp=3671>
Column {data-width=200}
-----------------------------------------------------------------------
### Usage of bikesharing in London 08/2018 - 09/2020
```{r}
bikerawdata_grouped <- bikerawdata %>%
mutate(Start_onlyDate = as.Date(Start.Date, "%d/%m/%Y"),isLongRent = (Duration > 1200)) %>%
group_by(Start_onlyDate, isLongRent) %>%
summarise(rentcount = n())
bikerawdata_grouped <- bikerawdata_grouped %>% mutate("Rent is longer than 20 minutes:" = isLongRent)
q <- ggplot(data = bikerawdata_grouped, aes(x = Start_onlyDate ,y = rentcount)) +
geom_point(size = 1) +
geom_smooth(method = "gam", se = FALSE) +
labs(x = "date",
y = "number of rents") +
theme(legend.position = "bottom")
ggplotly(q)
```
Average rental time
=============================
Column {data-width=650}
-----------------------------------------------------------------------
### Average rental time June 2019 (minutes)
```{r}
x <- round(sum(LondonLSOA_traveltime$avg_rentaltime) / nrow(LondonLSOA_traveltime),2)
valueBox(x ,icon = "fa-clock")
```
### Average rental time June 2020 (minutes)
```{r}
y <- round(sum(LondonLSOA_traveltime2$avg_rentaltime) / nrow(LondonLSOA_traveltime2),2)
valueBox(as.difftime(y, units = "mins", format = "%M:%S"), icon = "fa-clock")
```
### Increase in average rental time (minutes)
```{r}
z <- round((sum(LondonLSOA_traveltime2$avg_rentaltime) / nrow(LondonLSOA_traveltime2)) - (sum(LondonLSOA_traveltime$avg_rentaltime) / nrow(LondonLSOA_traveltime)), 2)
valueBox(as.difftime(z, units = "mins", format = "%M:%S"), icon = "fa-arrow-up")
```
Column {data-width=1000}
-----------------------------------------------------------------------
### Average rental time (June 2019)
```{r}
# Plotting average rental time 2019 vs 2020
# STYLE ABÄNDERN!
#06/2019 Data
tm_shape(LondonWard, bbox = c(-0.24,51.45,0,51.55)) +
tm_fill(col = "white", palette = c("lightgrey", "white")) +
tm_borders() +
tm_shape(LondonLSOA_traveltime) +
tm_polygons(col = "Average rental time (minutes)", style = "fixed", breaks = c(5, 7.5, 10, 12.5, 15, 17.5, 20, 25, 30, 40))
```
> Source data from: <https://tfl.gov.uk/info-for/open-data-users/our-open-data?intcmp=3671>
### Average rental time (June 2020)
```{r}
#06/2020 Data
tm_shape(LondonWard, bbox = c(-0.24,51.45,0,51.55)) +
tm_fill(col = "white", palette = c("lightgrey", "white")) +
tm_borders() +
tm_shape(LondonLSOA_traveltime2) +
tm_polygons(col = "Average rental time (minutes)", style = "fixed", breaks = c(5, 7.5, 10, 12.5, 15, 17.5, 20, 25, 30, 40))
```
> Source data from: <https://tfl.gov.uk/info-for/open-data-users/our-open-data?intcmp=3671>
Column {data-width=200}
-----------------------------------------------------------------------
### Usage and rent duration of bikesharing in London 08/2018 - 09/2020
```{r}
p <- ggplot(data = bikerawdata_grouped, aes(x = Start_onlyDate ,y = rentcount)) +
geom_point(size = 1, alpha = 0.3, aes(color = `Rent is longer than 20 minutes:`)) +
geom_smooth(method = "gam", se = FALSE, aes(color = `Rent is longer than 20 minutes:`)) +
labs(x = "date",
y = "number of rents") +
theme(legend.position = "bottom")
ggplotly(p)
```
Bike rental stations
=========================
Column {data-width=650}
-----------------------------------------------------------------------
### Average bike rentals per station (June 2020)
```{r}
valueBox(round(sum(sum_startpoints2$stationcount) / nrow(sum_startpoints2),2), icon = "fa-bicycle")
```
### Highest amount of rentals at one rental station (Hyde Park Corner, June 2020)
```{r}
valueBox(9520, icon = "fas fa-landmark")
```
Column {data-width=1000}
-----------------------------------------------------------------------
### Bikes rentals per station (June 2020)
```{r}
sum_startpoints2 <- sum_startpoints2 %>%
mutate("Total bike rentals" = stationcount) %>%
st_as_sf()
tm_shape(sum_startpoints2, size = 0.15) +
tm_dots(size = "Total bike rentals", col = "Total bike rentals", style = "fixed", breaks = c(0, 1000, 2000, 3000, 4000, 6000, 8000, 10000))
```
> Source data from: <https://tfl.gov.uk/info-for/open-data-users/our-open-data?intcmp=3671>
Exemplary journey of bike 15776
=========================
Column {data-width=650}
-----------------------------------------------------------------------
### Number of Bike 15776's rentals from 08/2018 to 09/2020
```{r}
valueBox(dim(bike_15776)[1], icon = "fa-bicycle")
```
### Bike 15776's average rental duration
```{r}
valueBox(sprintf("%02dh %02dm", seconds_to_period(mean(bike_15776$Duration))@hour, minute(seconds_to_period(mean(bike_15776$Duration)))), icon = "fa-clock")
```
### `r paste("Bike 15776's longest rental duration on", format(as.POSIXct("29/07/2019 18:09", format = "%d/%m/%Y %H:%M"), "%B %d, %Y"))`
```{r}
valueBox(sprintf("%02dh %02dm", seconds_to_period(max(bike_15776$Duration))@hour, minute(seconds_to_period(max(bike_15776$Duration)))), icon = "fa-clock")
```
Column {data-width=1000}
-----------------------------------------------------------------------
### Map of all rentals of Bike 15776
```{r}
tm_shape(allroutes) +
tm_lines(alpha = 0.1,
col = "darkblue",
palette = c("darkblue", "orange"),
lwd = 2)
```
> Source data from: <https://tfl.gov.uk/info-for/open-data-users/our-open-data?intcmp=3671>