-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
47 lines (38 loc) · 1.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import argparse
from utils.data import get_dataloaders
from utils.training import train
from utils.models import get_model
import os
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default="resnet20", help="model architecture")
args = parser.parse_args()
model_name=args.model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch_size=64
if model_name=='resnet18' or model_name=='vit':
dataset='imagenette'
else:
dataset='cifar10'
dataloaders=get_dataloaders(dataset, batch_size, batch_size, shuffle_train=True, shuffle_test=False)
model=get_model(model_name)
if model_name=='resnet20':
epochs=200
optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[100, 150])
else:
epochs=20
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=0)
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
0.01,
epochs=epochs,
steps_per_epoch=len(dataloaders['train']),
pct_start=0.1
)
if not os.path.exists('trained_models/'+model_name):
os.makedirs('trained_models/'+model_name)
print(f'Training {model_name} model')
model = model.to(device)
train(model, dataloaders, epochs, optimizer, scheduler)
torch.save(model.state_dict(), "trained_models/"+ model_name +"/clean.pt")