Skip to content

Latest commit

 

History

History
45 lines (31 loc) · 1.47 KB

README.md

File metadata and controls

45 lines (31 loc) · 1.47 KB

DataLoaders.jl

Documentation (latest)

A Julia package implementing performant data loading for deep learning on out-of-memory datasets that. Works like PyTorch's DataLoader.

What does it do?

  • Uses multi-threading to load data in parallel while keeping the primary thread free for the training loop
  • Handles batching and collating
  • Is simple to extend for custom datasets
  • Integrates well with other packages in the ecosystem
  • Allows for inplace loading to reduce memory load

When should you use it?

  • You have a dataset that does not fit into memory
  • You want to reduce the time your training loop is waiting for the next batch of data

How do you use it?

Install like any other Julia package using the package manager (see setup):

]add DataLoaders

After installation, import it, create a DataLoader from a dataset and batch size, and iterate over it:

using DataLoaders
# 10.000 observations of inputs with 128 features and one target feature
data = (rand(128, 10000), rand(1, 10000))
dataloader = DataLoader(data, 16)

for (xs, ys) in dataloader
    @assert size(xs) == (128, 16)
    @assert size(ys) == (1, 16)
end

Next, you may want to read