-
Notifications
You must be signed in to change notification settings - Fork 5
/
Kruskal’sMinimumSpanningTree.java
164 lines (141 loc) · 5.37 KB
/
Kruskal’sMinimumSpanningTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import java.util.Arrays;
import java.util.Scanner;
public class KruskalsMinimumSpanningTree {
int V;
int E; //Number of vertices and edges in the graph
Edge[] edge;
Edge[] mst; //Array of Edge holds the entire graph and mst array holds the Edges that are in the mst
int[] parent; //Disjoint-set
int[] size; //Size array for size of set
public static class Edge implements Comparable<Edge> {
//beginning vertex, ending vertex, weight of edge
int bv;
int ev;
int cost;
//Empty constructor
public Edge() {
//to initialize arrays later
}
//Full constructor
public Edge(int bv, int ev, int cost) {
this.bv = bv;
this.ev = ev;
this.cost = cost;
}
@Override
public int compareTo(Edge other) {
return this.cost - other.cost;
}
}
public KruskalsMinimumSpanningTree(int v, int e) {
V = v;
E = e;
edge = new Edge[e];
for (int i = 0; i < e; i++) {
edge[i] = new Edge();
}
mst = new Edge[v - 1];
for (int i = 0; i < v - 1; i++) {
mst[i] = new Edge();
}
parent = new int[v];
for (int i = 0; i < v; i++) {
parent[i] = -1;
}
size = new int[v];
for (int i = 0; i < v; i++) {
size[i] = 1;
}
}
public int find(int v) {
if (parent[v] == -1) { // if -1 it is the root/parent
return v; //the vertex is already the parent
} else {
return find(parent[v]); //if it's not the parent, keep using find to find the parent
}
}
public void union(int bv, int ev) {
int pb = find(bv); //parent of beginning vertex
int pe = find(ev); //parent of beginning vertex
if (size[pb] < size[pe]) { //if the size of one set is greater than the other
/*
* set the parent of the smaller set to the parent of the larger set,
* we're attaching the ENTIRE smaller set from its parent vertex to
* the parent vertex of the larger set.
*/
parent[pb] = pe;
/*
* add the size of the smaller set to the size of the
* larger set (since they're 1 set now)
*/
size[pe] += size[pb];
} else {
//same procedure as above
parent[pe] = pb;
size[pb] += size[pe];
}
}
public static void main(String[] args) {
//Create a Scanner so we can input the information about edges
Scanner sc = new Scanner(System.in);
//Let's input how many vertices and edges we're given
int v = sc.nextInt();
int e = sc.nextInt();
//Create a new object of your Main class, let's call it "graph"
//and pass in the parameters v (vertices) and e (edges)
//The constructor of the Main class will initialize all our
//arrays for us.
KruskalsMinimumSpanningTree graph = new KruskalsMinimumSpanningTree(v, e);
//Using a for-loop, input the information about each edge
for (int i = 0; i < e; i++) {
int bv = sc.nextInt(); //beginning vertex
int ev = sc.nextInt(); //ending vertex
int cost = sc.nextInt();
//Now let's use the 2nd constructor of the Edge class
//and put the above information into our Edge array
graph.edge[i] = new Edge(bv, ev, cost);
}
//Using Arrays.sort(), we make use of the Comparable interface
//we implemented in the Edge class
Arrays.sort(graph.edge);
//Create a count variable to keep track of the edges we've added
int count = 0;
//Create a for-loop to loop through all the given edges
//we sorted earlier
for (int i = 0; i < e; i++) {
//Grab the details of the ith edge
//it should be the edge with the least cost
int bv = graph.edge[i].bv;
int ev = graph.edge[i].ev;
int cost = graph.edge[i].cost;
//Using the find function we created earlier
//for our disjoint-set, use it to find bv's root/parent
//and ev's root/parent. Store in respective variables
int pb = graph.find(bv); //parent of beginning vertex
int pe = graph.find(ev); //parent of ending vertex
//If the parent of bv and ev are not the same,
//then the edge won't form a cycle
if (pb != pe) {
//Using the union function
graph.union(bv, ev);
//Add the edge to the MST array
//Using count because not every given edge (i)
//can be added to the MST
graph.mst[count].bv = bv;
graph.mst[count].ev = ev;
graph.mst[count].cost = cost;
//If the MST has V - 1 edges in it
//then we have found the MST of the graph
//WE'VE COMPLETED THE ALGORITHM!
if (count == v - 1) {
break;
}
}
}
for (int i = 0; i < v - 1; i++) {
System.out.print(graph.mst[i].bv + " ");
System.out.print(graph.mst[i].ev + " ");
System.out.println(graph.mst[i].cost);
}
}
}