Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DV: Use FuseSoC instead of hardcoding file list in ibex_dv.f #893

Open
imphil opened this issue May 22, 2020 · 0 comments
Open

DV: Use FuseSoC instead of hardcoding file list in ibex_dv.f #893

imphil opened this issue May 22, 2020 · 0 comments
Assignees
Labels
Component:DV Design verification (DV) or testing issue Type:Task Tasks, to-do list.

Comments

@imphil
Copy link
Contributor

imphil commented May 22, 2020

Similar to what we do in OpenTitan, we must move away from a hard-coded file list to make full use of our primitives system and other functionality enabled by FuseSoC and its .core files.

imphil added a commit to imphil/ibex that referenced this issue May 22, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit to imphil/ibex that referenced this issue May 25, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit to imphil/ibex that referenced this issue May 25, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit to imphil/ibex that referenced this issue May 25, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit to imphil/ibex that referenced this issue May 25, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit to imphil/ibex that referenced this issue May 25, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit to imphil/ibex that referenced this issue May 25, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit to imphil/ibex that referenced this issue May 25, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit to imphil/ibex that referenced this issue May 25, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit to imphil/ibex that referenced this issue May 25, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit to imphil/ibex that referenced this issue May 25, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit to imphil/ibex that referenced this issue May 25, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit to imphil/ibex that referenced this issue May 25, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit to imphil/ibex that referenced this issue May 25, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit to imphil/ibex that referenced this issue May 26, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit to imphil/ibex that referenced this issue May 26, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit to imphil/ibex that referenced this issue May 27, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
imphil added a commit that referenced this issue May 27, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue #893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
@udinator udinator self-assigned this Jun 30, 2020
ganoam pushed a commit to ganoam/ibex that referenced this issue Dec 30, 2020
Instead of using copies of primitives from OpenTitan, vendor the files
in directly from OpenTitan, and use them.

Benefits:

- Less potential for diverging code between OpenTitan and Ibex, causing
  problems when importing Ibex into OT.

- Use of the abstract primitives instead of the generic ones. The
  abstract primitives are replaced during synthesis time with
  target-dependent implementations. For simulation, nothing changes. For
  synthesis for a given target technology (e.g. a specific ASIC or FPGA
  technology), the primitives system can be instructed to choose
  optimized versions (if available).

  This is most relevant for the icache, which hard-coded the generic
  SRAM primitive before. This primitive is always implemented as
  registers. By using the abstract primitive (prim_ram_1p) instead, the
  RAMs can be replaced with memory-compiler-generated ones if necessary.

There are no real draw-backs, but a couple points to be aware of:

- Our ram_1p and ram_2p implementations are kept as wrapper around the
  primitives, since their interface deviates slightly from the one in
  prim_ram*. This also includes a rather unfortunate naming confusion
  around rvalid, which means "read data valid" in the OpenTitan advanced
  RAM primitives (prim_ram_1p_adv for example), but means "ack" in
  PULP-derived IP and in our bus implementation.

- The core_ibex UVM DV doesn't use FuseSoC to generate its file list,
  but uses a hard-coded list in `ibex_files.f` instead. Since the
  dynamic primitives system requires the use of FuseSoC we need to
  provide a stop-gap until this file is removed. Issue lowRISC#893 tracks
  progress on that.

- Dynamic primitives depend no a not-yet-merged feature of FuseSoC
  (olofk/fusesoc#391). We depend on the same
  functionality in OpenTitan and have instructed users to use a patched
  branch of FuseSoC for a long time through `python-requirements.txt`,
  so no action is needed for users which are either successfully
  interacting with the OpenTitan source code, or have followed our
  instructions. All other users will see a reasonably descriptive error
  message during a FuseSoC run.

- This commit is massive, but there are no good ways to split it into
  bisectable, yet small, chunks. I'm sorry. Reviewers can safely ignore
  all code in `vendor/lowrisc_ip`, it's an import from OpenTitan.

- The check_tool_requirements tooling isn't easily vendor-able from
  OpenTitan at the moment. I've filed
  lowRISC/opentitan#2309 to get that sorted.

- The LFSR primitive doesn't have a own core file, forcing us to include
  the catch-all `lowrisc:prim:all` core. I've filed
  lowRISC/opentitan#2310 to get that sorted.
@rswarbrick rswarbrick added Component:DV Design verification (DV) or testing issue Type:Task Tasks, to-do list. labels Jan 27, 2021
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Component:DV Design verification (DV) or testing issue Type:Task Tasks, to-do list.
Projects
None yet
Development

No branches or pull requests

3 participants