-
Notifications
You must be signed in to change notification settings - Fork 0
/
zip_sim_modif.py
685 lines (564 loc) · 29.5 KB
/
zip_sim_modif.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
import argparse
import math
import os
import random
import sys
import subprocess
import struct
import packetmath as pm
from testingduplicates import go_where, dropnow, checklidar, remove_collision
# import packetcomms as pc
import numpy as np
# Suppress hello from pygame so that stdout is clean
os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "hide"
import pygame # noqa
# define DEBUG variable to output info to terminal
DEBUG = True
# The time step of the simulation. 60Hz is chosen to work well on most displays that are 60Hz.
DT_SEC = 1 / 60.0
# The visualizer may be sped up or slowed down (CPU cycles permitting)
VISUALIZER_RATES = [m / DT_SEC for m in (0.0625, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0)]
INITIAL_VISUALIZER_RATE_INDEX = 4
# How fast to poll the UI when paused, since it's no longer coupled to the sim rate.
PAUSED_RATE = 30
# The world size in meters. It's a bit weird because the world wraps around itself. The world's coordinate system is
# always considered to be in the positive quadrant (coordinates in the world frame are always >= 0).
WORLD_WIDTH = 50.0
WORLD_LENGTH = 2000.0
# Scale is the size of each graphical pixel, in meters. This number is hardcoded into the artwork, and can't be easily
# changed.
SCALE = 0.1
# Sreen width must match world width for things to render properly, since the world is narrow enough to visually wrap.
SCREEN_WIDTH = round(WORLD_WIDTH / SCALE)
# Screen height is fairly arbitrary. It's chosen to fit on most modern resolutions.
SCREEN_HEIGHT = 700
# How far ahead the camera follows the vehicle. If 0, the zip will be in the center of the screen.
CAMERA_AHEAD_M = 20.0
# Pre-computed to make calculations faster
WORLD_WIDTH_HALF = WORLD_WIDTH / 2.0
WORLD_LENGTH_HALF = WORLD_LENGTH / 2.0
SCREEN_WIDTH_HALF = SCREEN_WIDTH // 2
SCREEN_HEIGHT_HALF = SCREEN_HEIGHT // 2
# How long it takes for the package to "fall" and hit the ground after being released.
PACKAGE_FALL_SEC = 0.5
# The coordinates of the recovery system. The simulation ends after the vehicle crosses the X coordinate.
# The vehicle is considered "recovered" if it's within the Y bounds.
RECOVERY_X = WORLD_LENGTH - 5
RECOVERY_Y_MIN = 7.5
RECOVERY_Y_MAX = WORLD_WIDTH - 7.5
NUM_DELIVERY_SITES = 10
TYPICAL_NUM_TREES = 20
MAX_NUM_TREES = 100
# The vehicle always moves with constant forward airspeed. Its groundspeed varies based on the wind.
VEHICLE_AIRSPEED = 30.0
MAX_WINDSPEED_M_S = 20.0
# Coordinates to keep generated delivery sites within.
DELIVERY_SITE_X_BOUNDS = (100.0, WORLD_LENGTH - 100.0) # Avoid distribution center
DELIVERY_SITE_Y_BOUNDS = (-WORLD_WIDTH_HALF + 5.0, WORLD_WIDTH_HALF - 5.0) # Avoid wrap-around
# Minimum distance between delivery sites
MIN_DELIVERY_DISTANCE = 100.0
TREE_X_BOUNDS = (50.0, WORLD_LENGTH - 50.0) # Avoid distribution center
# Minimum distance from trees to delivery sites. Trees are allowed to overlap.
MIN_TREE_DISTANCE = 10.0
# The max distance the lidar works to. Any ray that travels farther will be reported as 0.
LIDAR_MAX_DISTANCE = 255
# The angles to sweep the lidar across.
LIDAR_ANGLES = [(i - 15.0) * math.pi / 180 for i in range(0, 31)] # -15 to +15 degrees, 1 degree steps.
DELIVERY_SITE_RADIUS = 5.0
DELIVERY_SITE_LIDAR_RADIUS = 0.5
# Make the tree a little bit smaller for collisions than it is visible. This gives the pilot some margin. It also
# makes a fair amount of intuitive sense since a real tree is rounded, and a zip's wing would probably survive a light
# scraping on some branches.
TREE_COLLISION_RADIUS = 2.0
TREE_LIDAR_RADIUS = 3.0
# Structs used to pack/unpack the API messages
# milliseconds [2 bytes]
# wind_x [4 bytes]
# wind_y [4 bytes]
# recovery_x error [2 bytes]
# recovery_y error [1 byte]
# 31 lidar samples [31 bytes]
TELEMETRY_STRUCT = struct.Struct(">Hhffb31B")
COMMAND_STRUCT = struct.Struct(">fB3s")
# Return codes for why the simulation ended
RECOVERED = 0
PARALANDED = 1
CRASHED = 2
SIM_QUIT = 3
prior_trees = []
def load_image(name):
return pygame.image.load(os.path.join(os.path.dirname(__file__), "art", name))
class Entity():
__slots__ = ["position"]
def __init__(self, position):
x, y = position
self.position = (x % WORLD_LENGTH, y % WORLD_WIDTH)
def move(self, delta):
v_x, v_y = delta
self.position = ((self.position[0] + v_x) % WORLD_LENGTH, (self.position[1] + v_y) % WORLD_WIDTH)
def distance_to(self, position):
delta_x = abs(self.position[0] - position[0])
delta_y = abs(self.position[1] - position[1])
if delta_x > WORLD_LENGTH_HALF:
delta_x = WORLD_LENGTH - delta_x
if delta_y > WORLD_WIDTH_HALF:
delta_y = WORLD_WIDTH - delta_y
return math.sqrt(delta_x * delta_x + delta_y * delta_y)
class Camera(Entity):
__slots__ = ["_scale_inv"]
def __init__(self, position, scale=SCALE):
super().__init__(position)
self._scale_inv = 1.0 / scale
def project(self, position):
""" Projects a point in world coordinates to points in camera pixel space. """
camera_x, camera_y = self.position
# world Y / screen X gets wrapped asymmetrically because it gets projected twice
projected_x = round(-((position[1] - camera_y) % WORLD_WIDTH) * self._scale_inv + SCREEN_WIDTH_HALF)
# World X / screen Y gets wrapped symmetrically since it's assumed no object will visually wrap
projected_y = round(-(((position[0] - camera_x) + WORLD_LENGTH_HALF) % WORLD_LENGTH - WORLD_LENGTH_HALF) *
self._scale_inv + SCREEN_HEIGHT_HALF)
# Things are expected to readily wrap in the world y axis / screen x axis, and be visible in
# multiple places at once.
return ((projected_x, projected_y), (projected_x + SCREEN_WIDTH, projected_y))
def scale(self, distance):
return distance * self._scale_inv
class Package(Entity):
__slots__ = ["_velocity", "_fall_duration"]
_parachute_image = load_image("package_parachute.png")
_package_image = load_image("package.png")
def __init__(self, position, velocity, fall_duration=PACKAGE_FALL_SEC):
super().__init__(position)
self._velocity = velocity
self._fall_duration = fall_duration
def update(self, dt):
dt = min(dt, self._fall_duration)
self._fall_duration -= dt
self.move((dt * self._velocity[0], dt * self._velocity[1]))
def draw(self, camera, surface):
for projected_pos in camera.project(self.position):
if self._fall_duration > 0:
surface.blit(self._parachute_image, (projected_pos[0] - 4, projected_pos[1] - 4))
else:
surface.blit(self._package_image, (projected_pos[0] - 4, projected_pos[1] - 4))
class Circle(Entity):
__slots__ = ["radius"]
def __init__(self, position, radius):
super().__init__(position)
self.radius = radius
def contains(self, position):
delta_x = abs(self.position[0] - position[0])
delta_y = abs(self.position[1] - position[1])
if delta_x > WORLD_LENGTH_HALF:
delta_x = WORLD_LENGTH - delta_x
if delta_y > WORLD_WIDTH_HALF:
delta_y = WORLD_WIDTH - delta_y
return delta_x * delta_x + delta_y * delta_y < self.radius * self.radius
class Zip(Circle):
__slots__ = []
_image = load_image("zip.png")
def __init__(self):
super().__init__(position=(0.0, 0.0), radius=1.6)
def get_velocity(self, lateral_airspeed, windspeed_vector):
return (VEHICLE_AIRSPEED + windspeed_vector[0], lateral_airspeed + windspeed_vector[1])
def update(self, dt, lateral_airspeed, windspeed_vector):
v_x, v_y = self.get_velocity(lateral_airspeed, windspeed_vector)
self.move((dt * v_x, dt * v_y))
def draw(self, camera, surface):
for projected_pos in camera.project(self.position):
surface.blit(self._image, (projected_pos[0] - 16, projected_pos[1] - 16))
class DeliverySite(Circle):
__slots__ = []
_image = load_image("delivery_site.png")
def __init__(self, position):
super().__init__(position, radius=DELIVERY_SITE_RADIUS)
def draw(self, camera, surface):
for projected_pos in camera.project(self.position):
surface.blit(self._image, (projected_pos[0] - 64, projected_pos[1] - 64))
def make_lidar_object(self):
return Circle(self.position, radius=DELIVERY_SITE_LIDAR_RADIUS)
class Tree(Circle):
__slots__ = []
_image = load_image("tree.png")
def __init__(self, position):
super().__init__(position, radius=TREE_COLLISION_RADIUS)
def draw(self, camera, surface):
for projected_pos in camera.project(self.position):
surface.blit(self._image, (projected_pos[0] - 32, projected_pos[1] - 32))
def make_lidar_object(self):
return Circle(self.position, radius=TREE_LIDAR_RADIUS)
class Wind():
__slots__ = ["_speed", "_direction"]
def __init__(self):
self._speed = random.uniform(0.0, MAX_WINDSPEED_M_S)
self._direction = random.uniform(0.0, 2 * math.pi)
def update(self, dt):
# TODO: Scale sigma?
self._speed = max(0.0, min(MAX_WINDSPEED_M_S, self._speed + random.gauss(0.0, dt * 10)))
self._direction = (self._direction + random.gauss(0.0, dt)) % (2 * math.pi)
@property
def vector(self):
return (self._speed * math.cos(self._direction), self._speed * math.sin(self._direction))
class Terrain():
__slots__ = []
_image = load_image("terrain.png")
def draw(self, camera, surface):
# There's probably a better way to do this, but as long as it works...
for x in range(0, int(WORLD_LENGTH), 100):
for projected_pos in camera.project((x, 0.0)):
surface.blit(self._image, (projected_pos[0] - 250, projected_pos[1] - 1000))
# functions from autopilot1 duplicated here for testing and printing purposes only
def avoid_tree(wind_vector_x, wind_vector_y,trees, my_velocity):
# avoid trees by choosing the widest path between them.
# this function only gets called when there are trees
# when there is no path, then head away from the 30 degree field of view
# [magnitude, angle] components of resultant velocity from wind and fwd movement
# only include trees 150 m or closer
tree_angles = [x[1] for x in trees if x[0]<150]
close_tree_dists = [x[0] for x in trees if x[0]<150]
# because I'm only worrying about nearby trees, the list of tree angles
# could be 1 or no elements
if(tree_angles == []):
desired_angle = 0
desired_y = target_velocity(wind_vector_x, wind_vector_y, desired_angle, my_velocity)
return desired_y
# want to find the largest gap within entire lidar range, not just
# tree_angles which is probably a subset of the lidar range, so impose boundaries
# at -16 and 16
tree_angles.insert(0,16)
tree_angles.append(-16)
print("tree angles: ", tree_angles)
#take differences of angles between tree elements. a gap is only useful
# for travel if it is 3 degrees or wider
# travel to the widest gap
angle_gaps = abs(np.diff(tree_angles))
print("angle_gaps: ", angle_gaps)
if(max(angle_gaps) <= 2 or sum(close_tree_dists)/len(close_tree_dists) < 8):
# need to avoid the whole lidar range
pos_angles = sum(x > 0 for x in tree_angles)
neg_angles = sum(x <= 0 for x in tree_angles)
if(pos_angles > neg_angles):
desired_angle = -60
else:
desired_angle = 60
desired_y = target_velocity(wind_vector_x, wind_vector_y, desired_angle, my_velocity)
print("desired angle: ", desired_angle)
print("desired_y: ", desired_y)
return desired_y
#assuming there are things to avoid, can get through, and not "oh shit trees here"
# index of the largest gap
angle_gap_ind = np.argmax(angle_gaps)
# angle endpoints of the largest gap
gap_max_angle = tree_angles[angle_gap_ind]
gap_min_angle = tree_angles[angle_gap_ind + 1]
desired_angle = math.ceil((gap_max_angle - gap_min_angle)/2) + gap_min_angle
print("desired angle: ", desired_angle)
desired_y = target_velocity(wind_vector_x, wind_vector_y, desired_angle, my_velocity)
print("desired_y: ", desired_y)
return desired_y
# TODO fix this
def target_velocity(wind_x,wind_y, desired_angle, my_velocity):
# given the current wind speed, the desired angle of travel,
# and the current velocity (global)
# compute the y component of the new desired velocity vector
# note: the x component never changes
# vel_y = proportionality constant * (magnitude to travel/size timestep)
# * sin(desired_angle) - (wind vector dot velocity)/(magnitude velocity)
# set magnitude to travel to 1m since with no wind and no lateral airspeed,
# would be traveling 0.5 m/timestep
'''
timestep = 1.0 # size of timestep in seconds
magnitude_v = pm.distance(my_velocity[0],my_velocity[1])
p = 0.3 # experimentally determined proportionality constant
vel_y = ((1 * p / timestep) * math.sin(math.radians(desired_angle))
+ ((wind_x * my_velocity[0] + wind_y * my_velocity[1])/magnitude_v))
'''
y_noadj = -30 * math.tan(math.radians(desired_angle))
vel_y = y_noadj - wind_y
return vel_y
def cast_lidar_ray(angle, circles):
# First, find all circles the ray collides with by seeing if the ray's minimum distance is within the circle radius.
# A line may be parameterized as ax + by + c = 0.
# The shortest distance between a point (x, y) and a line is equal to:
# |ax + by + c| / sqrt(a*a + b*b)
# Since the ray starts at the origin, c is zero. The values of a and b depend on the sin and cosine of the angle,
# which has the nice property of lying on the unit circle.
a = math.sin(angle)
b = -math.cos(angle)
distance = LIDAR_MAX_DISTANCE + 1
for o in circles:
if o[0] * o[0] + o[1] * o[1] <= o[2] * o[2]:
return 0 # We're inside the object. Pretend that the lidar is blind.
# Negating c seems to make the code produce the right result, but I don't really understand why.
signed_c = -(a * o[0] + b * o[1])
# Because of wraparound, we want the y position that minimizes distance. We need to know the number of
# wraps so that we can translate the circle appropriately
num_wraps = round(signed_c / (b * WORLD_WIDTH))
# Negating c seems to make the code produce the right result, but I don't really understand why.
signed_c -= num_wraps * b * WORLD_WIDTH
if abs(signed_c) < o[2]:
# The ray intersects with this circle. We need to find that point of intersection.
# We can now think of the circle being at the origin, and the line being offset by c.
gnarly_math = math.sqrt(o[2] * o[2] - signed_c * signed_c)
# Translate the final result back to the circle's position
x = a * signed_c + b * gnarly_math + o[0]
y = b * signed_c - a * gnarly_math + o[1] + num_wraps * WORLD_WIDTH
d = math.sqrt(x*x + y*y)
if d < distance:
distance = round(d)
return distance if distance <= LIDAR_MAX_DISTANCE else 0
def cast_lidar(start_pos, objects):
# Remove objects that are behind the vehicle, and shift the positions to be in the vehicle's frame
relative_objects = [(o.position[0] - start_pos[0],
(o.position[1] - start_pos[1] + WORLD_WIDTH_HALF) % WORLD_WIDTH - WORLD_WIDTH_HALF,
o.radius) for o in objects if o.position[0] > start_pos[0]]
return [cast_lidar_ray(angle, relative_objects) for angle in LIDAR_ANGLES]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='"8-bit" Zip Sim')
parser.add_argument('pilot', nargs=argparse.REMAINDER, help='A pilot process to run')
parser.add_argument('--headless', action="store_true", help='Run without visualization')
visualizer_group = parser.add_argument_group("Visualization options")
visualizer_group.add_argument('--chase-y', action="store_true", help='Have the camera follow the zip in the y axis')
visualizer_group.add_argument('--show-lidar', action="store_true", help='Shows lidar in the visualization')
visualizer_group.add_argument('--start-paused', action="store_true", help='Start the simulation paused')
parser.add_argument('--seed', type=int, help='Seed to use for random number generation')
args = parser.parse_args()
random.seed(args.seed)
headless = args.headless
api_mode = len(args.pilot) > 0
# this is the lateral and forward velocity that I am controlling
my_velocity = [30.0,0.0]
# velocity adjusted for wind speed. This will also change throughout the
# program as windspeed changes
if api_mode:
pilot = subprocess.Popen(args.pilot, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
loop_count = 0 # To count iterations to compute the telemetry timestamp
if not headless:
pygame.init()
pygame.display.set_caption("Zip Sim")
screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))
clock = pygame.time.Clock()
camera = Camera(position=(CAMERA_AHEAD_M, 0.0))
distribution_center_image = load_image("distribution_center.png")
terrain = Terrain()
reticle_image = load_image("reticle.png")
chase_y = args.chase_y
show_lidar = args.show_lidar
visualizer_paused = args.start_paused
visualizer_rate_index = INITIAL_VISUALIZER_RATE_INDEX
# Randomly generate delivery sites that aren't too close to each other.
delivery_sites = []
for _ in range(NUM_DELIVERY_SITES):
while True:
# Round the position to the nearest tenth of a meter. This keeps the sprites from jumping around while
# drawing due to floating point round-off to the nearest pixel.
site_pos = (round(random.uniform(*DELIVERY_SITE_X_BOUNDS) % WORLD_LENGTH, 1),
round(random.uniform(*DELIVERY_SITE_Y_BOUNDS) % WORLD_WIDTH, 1))
if min((s.distance_to(site_pos) for s in delivery_sites),
default=MIN_DELIVERY_DISTANCE) >= MIN_DELIVERY_DISTANCE:
delivery_sites.append(DeliverySite(site_pos))
break
# Randomly generate trees that aren't too close to delivery sites.
trees = []
tree_density = random.gauss(TYPICAL_NUM_TREES, MAX_NUM_TREES / 3)
'''
num_trees = round(min(MAX_NUM_TREES, tree_density) if tree_density >= TYPICAL_NUM_TREES
else random.triangular(0, TYPICAL_NUM_TREES, TYPICAL_NUM_TREES))
'''
num_trees = 99
for _ in range(num_trees):
while True:
# Round the position to the nearest tenth of a meter. This keeps the sprites from jumping around while
# drawing due to floating point round-off to the nearest pixel.
tree_pos = (round(random.uniform(*TREE_X_BOUNDS), 1),
round(random.uniform(0, WORLD_WIDTH), 1))
if min((s.distance_to(tree_pos) for s in delivery_sites), default=MIN_TREE_DISTANCE) >= MIN_TREE_DISTANCE:
trees.append(Tree(tree_pos))
break
# Trees can overlap, so sort them so they render over each other properly.
trees.sort(key=lambda x: x.position[0], reverse=True)
# A list of objects that reflect lidar points
lidar_objects = [t.make_lidar_object() for t in trees] + [d.make_lidar_object() for d in delivery_sites]
vehicle = Zip()
# Set to an exit code when it's time to leave the main loop
result = None
wind = Wind()
lateral_airspeed = 0.0
# Used to de-bounce commands to drop a package
was_package_dropped = False
# Number of packages still in the zip
num_packages = len(delivery_sites)
# List of package objects that have been dropped
dropped_packages = []
desired_y = 0
while result is None:
drop_package_commanded = False
if api_mode:
if api_mode:
lidar_samples = cast_lidar(vehicle.position, lidar_objects)
pilot.stdin.write(TELEMETRY_STRUCT.pack(int(loop_count * DT_SEC * 1e3) & 0xFFFF,
round(RECOVERY_X - vehicle.position[0]),
wind.vector[0],
wind.vector[1],
round((-vehicle.position[1] + WORLD_WIDTH_HALF) % WORLD_WIDTH -
WORLD_WIDTH_HALF),
*lidar_samples))
pilot.stdin.flush()
loop_count += 1
cmd = pilot.stdout.read(COMMAND_STRUCT.size)
if len(cmd) != COMMAND_STRUCT.size:
result = CRASHED # The pilot process must have exited
break
lateral_airspeed_input, drop_package_commanded_byte, _ = COMMAND_STRUCT.unpack(cmd)
lateral_airspeed = max(-30.0, min(30.0, lateral_airspeed_input))
drop_package_commanded = bool(drop_package_commanded_byte)
if DEBUG:
structure1 = TELEMETRY_STRUCT.pack(int(loop_count * DT_SEC * 1e3) & 0xFFFF,
round(RECOVERY_X - vehicle.position[0]),
wind.vector[0],
wind.vector[1],
round((-vehicle.position[1] + WORLD_WIDTH_HALF) % WORLD_WIDTH -
WORLD_WIDTH_HALF),
*lidar_samples)
print("telem struct to send: \n")
print(structure1)
print(struct.unpack(">Hhffb31B", structure1))
timestamp, recovery_x_error, wind_x, wind_y, recovery_y_error, lidar_samples = pm.parse_telem(structure1)
print("lidar samples: ", lidar_samples)
print("wind x: ", wind_x, " wind y: ", wind_y)
# this is the lateral and forward velocity that I am controlling
a_vel = pm.current_velocity(wind_x, wind_y, my_velocity)
a_vel_polar = pm.convert_to_polar(a_vel[0], a_vel[1])
print("my_velocity: ", my_velocity)
print("actual velocity: ", a_vel, " polar: ", a_vel_polar)
droplist, treelist = checklidar(lidar_samples, prior_trees)
print("droplist: ", droplist)
print("treelist: ", treelist)
prior_trees = treelist
if(treelist):
desired_y = avoid_tree(wind_x, wind_y,treelist, my_velocity)
my_velocity[1] = desired_y
if droplist:
drop_pt = min(droplist)
print("drop point: ", drop_pt)
# the returned drop point will be drop point without a tree in the way
# if the coast is clear to go to this point:
#desired_y = target_velocity(wind_vector_x, wind_vector_y, drop_x, drop_y)
# decide whether the drop point is close enough to command a drop
#dropnow(wind_vector_x, wind_vector_y, drop_x, drop_y, timestamp)
# desired_y = go_where(timestamp, recovery_x_error, wind_vector_x, wind_vector_y, recovery_y_error, lidar_samples)
# print("desired y: ", desired_y)
# recovery_dist = distance(recovery_x_error, recovery_y_error)
# sendpkt(timestamp, desired_y)
print("\n\n")
print("command struct received: \n")
print(COMMAND_STRUCT.unpack(cmd))
print("")
if(drop_package_commanded_byte == 1):
print("DROPPING PACKAGE NOW!!!!")
elif not headless:
keys = pygame.key.get_pressed()
lateral_airspeed -= lateral_airspeed / 0.5 * DT_SEC
if keys[pygame.K_LEFT]:
lateral_airspeed = min(30.0, lateral_airspeed + DT_SEC * 200.0)
if keys[pygame.K_RIGHT]:
lateral_airspeed = max(-30.0, lateral_airspeed - DT_SEC * 200.0)
if keys[pygame.K_SPACE]:
drop_package_commanded = True
vehicle.update(DT_SEC, lateral_airspeed, wind.vector)
# Check for collisions with trees
for t in trees:
if t.contains(vehicle.position):
result = CRASHED
break
for p in dropped_packages:
p.update(DT_SEC)
# Drop a package if commanded to. The package is dropped after updating physics so that we can
# append it right on to the end of the dropped packages list. This adds some "realism" since a
# real mechanism would release the package some time after being commanded to.
if drop_package_commanded and not was_package_dropped and num_packages > 0:
num_packages -= 1
dropped_packages.append(Package(vehicle.position, vehicle.get_velocity(lateral_airspeed, wind.vector)))
was_package_dropped = drop_package_commanded
wind.update(DT_SEC)
vehicle_x, vehicle_y = vehicle.position
if vehicle_x >= RECOVERY_X:
result = RECOVERED if vehicle_y <= RECOVERY_Y_MIN or vehicle_y >= RECOVERY_Y_MAX else PARALANDED
break
if not headless:
# Update the camera to be fixed above the vehicle in the x axis.
camera.position = (vehicle.position[0] + CAMERA_AHEAD_M, vehicle.position[1] if chase_y else 0.0)
terrain.draw(camera, screen)
# Draw distribution center
for pos in camera.project((0, 0)):
screen.blit(distribution_center_image, (pos[0] - 250, pos[1] - 100))
for t in trees:
t.draw(camera, screen)
for s in delivery_sites:
s.draw(camera, screen)
for p in dropped_packages:
p.draw(camera, screen)
if show_lidar:
# We could try to be clever and avoid casting the lidar twice if in API mode, but there's no real need
# since we have plenty of CPU cycles when running in real-time.
lidar_samples = cast_lidar(vehicle.position, lidar_objects)
for angle, d in zip(LIDAR_ANGLES, lidar_samples):
x = d * math.cos(angle)
y = d * math.sin(angle)
for pos in camera.project(vehicle.position):
pygame.draw.line(screen, "red", pos, (round(pos[0] - camera.scale(y)),
round(pos[1] - camera.scale(x))))
vehicle.draw(camera, screen)
# Compute where a package would drop and draw a reticle there
reticle = Entity(vehicle.position)
reticle.move((v * PACKAGE_FALL_SEC for v in vehicle.get_velocity(lateral_airspeed, wind.vector)))
for pos in camera.project(reticle.position):
screen.blit(reticle_image, (pos[0] - 8, pos[1] - 8))
pygame.display.flip()
# This loop is a little gnarly since python lacks a do-while loop. We want to run at least once no
# matter what, and run repeatedly if the simulation is paused.
wait_for_step = True
while wait_for_step:
for e in pygame.event.get():
if e.type == pygame.QUIT or (e.type == pygame.KEYDOWN and e.key == pygame.K_ESCAPE):
result = SIM_QUIT
wait_for_step = False
break
if e.type in [pygame.KEYDOWN]:
if e.key == pygame.K_p:
visualizer_paused = not visualizer_paused
if e.key == pygame.K_s and visualizer_paused:
wait_for_step = False
break # Run another cycle before reading any more events
if e.key == pygame.K_COMMA:
visualizer_rate_index = max(0, visualizer_rate_index - 1)
if e.key == pygame.K_PERIOD:
visualizer_rate_index = min(len(VISUALIZER_RATES) - 1, visualizer_rate_index + 1)
if wait_for_step:
# There's two things going on here. First, if single-stepped, we don't want to delay the loop.
# Otherwise, we want to delay the loop a consistent amount if paused, or at the time-warped rate if
# unpaused. This keeps the UI snappy while single-stepping.
if visualizer_paused:
clock.tick(PAUSED_RATE)
else:
clock.tick(VISUALIZER_RATES[visualizer_rate_index])
wait_for_step = False
if not headless:
pygame.quit()
# Count delivered packages, looking for double deliveries
package_count_by_site = {}
for p in dropped_packages:
# Make sure the package is at rest
p.update(PACKAGE_FALL_SEC)
for s in delivery_sites:
if s.contains(p.position):
try:
package_count_by_site[s] += 1
except KeyError:
package_count_by_site[s] = 1
if api_mode:
pilot.stdin.close()
pilot.stdout.close()
pilot.wait()
print("Deliveries: {}".format(len(package_count_by_site)))
print("ZIPAA Violations: {}".format(sum((x - 1 for x in package_count_by_site.values() if x > 1))))
sys.exit(result)