forked from SWivid/F5-TTS
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfinetune_gradio.py
1843 lines (1511 loc) · 64.2 KB
/
finetune_gradio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import threading
import queue
import re
import gc
import json
import os
import platform
import psutil
import random
import signal
import shutil
import subprocess
import sys
import tempfile
import time
from glob import glob
import click
import gradio as gr
import librosa
import numpy as np
import torch
import torchaudio
from datasets import Dataset as Dataset_
from datasets.arrow_writer import ArrowWriter
from safetensors.torch import save_file
from scipy.io import wavfile
from cached_path import cached_path
from f5_tts.api import F5TTS
from f5_tts.model.utils import convert_char_to_pinyin
from f5_tts.infer.utils_infer import transcribe
from importlib.resources import files
training_process = None
system = platform.system()
python_executable = sys.executable or "python"
tts_api = None
last_checkpoint = ""
last_device = ""
last_ema = None
path_data = str(files("f5_tts").joinpath("../../data"))
path_project_ckpts = str(files("f5_tts").joinpath("../../ckpts"))
file_train = "src/f5_tts/train/finetune_cli.py"
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# Save settings from a JSON file
def save_settings(
project_name,
exp_name,
learning_rate,
batch_size_per_gpu,
batch_size_type,
max_samples,
grad_accumulation_steps,
max_grad_norm,
epochs,
num_warmup_updates,
save_per_updates,
last_per_steps,
finetune,
file_checkpoint_train,
tokenizer_type,
tokenizer_file,
mixed_precision,
logger,
ch_8bit_adam,
):
path_project = os.path.join(path_project_ckpts, project_name)
os.makedirs(path_project, exist_ok=True)
file_setting = os.path.join(path_project, "setting.json")
settings = {
"exp_name": exp_name,
"learning_rate": learning_rate,
"batch_size_per_gpu": batch_size_per_gpu,
"batch_size_type": batch_size_type,
"max_samples": max_samples,
"grad_accumulation_steps": grad_accumulation_steps,
"max_grad_norm": max_grad_norm,
"epochs": epochs,
"num_warmup_updates": num_warmup_updates,
"save_per_updates": save_per_updates,
"last_per_steps": last_per_steps,
"finetune": finetune,
"file_checkpoint_train": file_checkpoint_train,
"tokenizer_type": tokenizer_type,
"tokenizer_file": tokenizer_file,
"mixed_precision": mixed_precision,
"logger": logger,
"bnb_optimizer": ch_8bit_adam,
}
with open(file_setting, "w") as f:
json.dump(settings, f, indent=4)
return "Settings saved!"
# Load settings from a JSON file
def load_settings(project_name):
project_name = project_name.replace("_pinyin", "").replace("_char", "")
path_project = os.path.join(path_project_ckpts, project_name)
file_setting = os.path.join(path_project, "setting.json")
if not os.path.isfile(file_setting):
settings = {
"exp_name": "F5TTS_Base",
"learning_rate": 1e-05,
"batch_size_per_gpu": 1000,
"batch_size_type": "frame",
"max_samples": 64,
"grad_accumulation_steps": 1,
"max_grad_norm": 1,
"epochs": 100,
"num_warmup_updates": 2,
"save_per_updates": 300,
"last_per_steps": 100,
"finetune": True,
"file_checkpoint_train": "",
"tokenizer_type": "pinyin",
"tokenizer_file": "",
"mixed_precision": "none",
"logger": "wandb",
"bnb_optimizer": False,
}
return (
settings["exp_name"],
settings["learning_rate"],
settings["batch_size_per_gpu"],
settings["batch_size_type"],
settings["max_samples"],
settings["grad_accumulation_steps"],
settings["max_grad_norm"],
settings["epochs"],
settings["num_warmup_updates"],
settings["save_per_updates"],
settings["last_per_steps"],
settings["finetune"],
settings["file_checkpoint_train"],
settings["tokenizer_type"],
settings["tokenizer_file"],
settings["mixed_precision"],
settings["logger"],
settings["bnb_optimizer"],
)
with open(file_setting, "r") as f:
settings = json.load(f)
if "logger" not in settings:
settings["logger"] = "wandb"
if "bnb_optimizer" not in settings:
settings["bnb_optimizer"] = False
return (
settings["exp_name"],
settings["learning_rate"],
settings["batch_size_per_gpu"],
settings["batch_size_type"],
settings["max_samples"],
settings["grad_accumulation_steps"],
settings["max_grad_norm"],
settings["epochs"],
settings["num_warmup_updates"],
settings["save_per_updates"],
settings["last_per_steps"],
settings["finetune"],
settings["file_checkpoint_train"],
settings["tokenizer_type"],
settings["tokenizer_file"],
settings["mixed_precision"],
settings["logger"],
settings["bnb_optimizer"],
)
# Load metadata
def get_audio_duration(audio_path):
"""Calculate the duration mono of an audio file."""
audio, sample_rate = torchaudio.load(audio_path)
return audio.shape[1] / sample_rate
def clear_text(text):
"""Clean and prepare text by lowering the case and stripping whitespace."""
return text.lower().strip()
def get_rms(
y,
frame_length=2048,
hop_length=512,
pad_mode="constant",
): # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
padding = (int(frame_length // 2), int(frame_length // 2))
y = np.pad(y, padding, mode=pad_mode)
axis = -1
# put our new within-frame axis at the end for now
out_strides = y.strides + tuple([y.strides[axis]])
# Reduce the shape on the framing axis
x_shape_trimmed = list(y.shape)
x_shape_trimmed[axis] -= frame_length - 1
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
if axis < 0:
target_axis = axis - 1
else:
target_axis = axis + 1
xw = np.moveaxis(xw, -1, target_axis)
# Downsample along the target axis
slices = [slice(None)] * xw.ndim
slices[axis] = slice(0, None, hop_length)
x = xw[tuple(slices)]
# Calculate power
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
return np.sqrt(power)
class Slicer: # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
def __init__(
self,
sr: int,
threshold: float = -40.0,
min_length: int = 2000,
min_interval: int = 300,
hop_size: int = 20,
max_sil_kept: int = 2000,
):
if not min_length >= min_interval >= hop_size:
raise ValueError("The following condition must be satisfied: min_length >= min_interval >= hop_size")
if not max_sil_kept >= hop_size:
raise ValueError("The following condition must be satisfied: max_sil_kept >= hop_size")
min_interval = sr * min_interval / 1000
self.threshold = 10 ** (threshold / 20.0)
self.hop_size = round(sr * hop_size / 1000)
self.win_size = min(round(min_interval), 4 * self.hop_size)
self.min_length = round(sr * min_length / 1000 / self.hop_size)
self.min_interval = round(min_interval / self.hop_size)
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
def _apply_slice(self, waveform, begin, end):
if len(waveform.shape) > 1:
return waveform[:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)]
else:
return waveform[begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)]
# @timeit
def slice(self, waveform):
if len(waveform.shape) > 1:
samples = waveform.mean(axis=0)
else:
samples = waveform
if samples.shape[0] <= self.min_length:
return [waveform]
rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
sil_tags = []
silence_start = None
clip_start = 0
for i, rms in enumerate(rms_list):
# Keep looping while frame is silent.
if rms < self.threshold:
# Record start of silent frames.
if silence_start is None:
silence_start = i
continue
# Keep looping while frame is not silent and silence start has not been recorded.
if silence_start is None:
continue
# Clear recorded silence start if interval is not enough or clip is too short
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
if not is_leading_silence and not need_slice_middle:
silence_start = None
continue
# Need slicing. Record the range of silent frames to be removed.
if i - silence_start <= self.max_sil_kept:
pos = rms_list[silence_start : i + 1].argmin() + silence_start
if silence_start == 0:
sil_tags.append((0, pos))
else:
sil_tags.append((pos, pos))
clip_start = pos
elif i - silence_start <= self.max_sil_kept * 2:
pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin()
pos += i - self.max_sil_kept
pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start
pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept
if silence_start == 0:
sil_tags.append((0, pos_r))
clip_start = pos_r
else:
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
clip_start = max(pos_r, pos)
else:
pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start
pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept
if silence_start == 0:
sil_tags.append((0, pos_r))
else:
sil_tags.append((pos_l, pos_r))
clip_start = pos_r
silence_start = None
# Deal with trailing silence.
total_frames = rms_list.shape[0]
if silence_start is not None and total_frames - silence_start >= self.min_interval:
silence_end = min(total_frames, silence_start + self.max_sil_kept)
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
sil_tags.append((pos, total_frames + 1))
# Apply and return slices.
####音频+起始时间+终止时间
if len(sil_tags) == 0:
return [[waveform, 0, int(total_frames * self.hop_size)]]
else:
chunks = []
if sil_tags[0][0] > 0:
chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]), 0, int(sil_tags[0][0] * self.hop_size)])
for i in range(len(sil_tags) - 1):
chunks.append(
[
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]),
int(sil_tags[i][1] * self.hop_size),
int(sil_tags[i + 1][0] * self.hop_size),
]
)
if sil_tags[-1][1] < total_frames:
chunks.append(
[
self._apply_slice(waveform, sil_tags[-1][1], total_frames),
int(sil_tags[-1][1] * self.hop_size),
int(total_frames * self.hop_size),
]
)
return chunks
# terminal
def terminate_process_tree(pid, including_parent=True):
try:
parent = psutil.Process(pid)
except psutil.NoSuchProcess:
# Process already terminated
return
children = parent.children(recursive=True)
for child in children:
try:
os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL
except OSError:
pass
if including_parent:
try:
os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL
except OSError:
pass
def terminate_process(pid):
if system == "Windows":
cmd = f"taskkill /t /f /pid {pid}"
os.system(cmd)
else:
terminate_process_tree(pid)
def start_training(
dataset_name="",
exp_name="F5TTS_Base",
learning_rate=1e-4,
batch_size_per_gpu=400,
batch_size_type="frame",
max_samples=64,
grad_accumulation_steps=1,
max_grad_norm=1.0,
epochs=11,
num_warmup_updates=200,
save_per_updates=400,
last_per_steps=800,
finetune=True,
file_checkpoint_train="",
tokenizer_type="pinyin",
tokenizer_file="",
mixed_precision="fp16",
stream=False,
logger="wandb",
ch_8bit_adam=False,
):
global training_process, tts_api, stop_signal
if tts_api is not None:
if tts_api is not None:
del tts_api
gc.collect()
torch.cuda.empty_cache()
tts_api = None
path_project = os.path.join(path_data, dataset_name)
if not os.path.isdir(path_project):
yield (
f"There is not project with name {dataset_name}",
gr.update(interactive=True),
gr.update(interactive=False),
)
return
file_raw = os.path.join(path_project, "raw.arrow")
if not os.path.isfile(file_raw):
yield f"There is no file {file_raw}", gr.update(interactive=True), gr.update(interactive=False)
return
# Check if a training process is already running
if training_process is not None:
return "Train run already!", gr.update(interactive=False), gr.update(interactive=True)
yield "start train", gr.update(interactive=False), gr.update(interactive=False)
# Command to run the training script with the specified arguments
if tokenizer_file == "":
if dataset_name.endswith("_pinyin"):
tokenizer_type = "pinyin"
elif dataset_name.endswith("_char"):
tokenizer_type = "char"
else:
tokenizer_type = "custom"
dataset_name = dataset_name.replace("_pinyin", "").replace("_char", "")
if mixed_precision != "none":
fp16 = f"--mixed_precision={mixed_precision}"
else:
fp16 = ""
cmd = (
f"accelerate launch {fp16} {file_train} --exp_name {exp_name} "
f"--learning_rate {learning_rate} "
f"--batch_size_per_gpu {batch_size_per_gpu} "
f"--batch_size_type {batch_size_type} "
f"--max_samples {max_samples} "
f"--grad_accumulation_steps {grad_accumulation_steps} "
f"--max_grad_norm {max_grad_norm} "
f"--epochs {epochs} "
f"--num_warmup_updates {num_warmup_updates} "
f"--save_per_updates {save_per_updates} "
f"--last_per_steps {last_per_steps} "
f"--dataset_name {dataset_name}"
)
cmd += f" --finetune {finetune}"
if file_checkpoint_train != "":
cmd += f" --pretrain {file_checkpoint_train}"
if tokenizer_file != "":
cmd += f" --tokenizer_path {tokenizer_file}"
cmd += f" --tokenizer {tokenizer_type} "
cmd += f" --log_samples True --logger {logger} "
if ch_8bit_adam:
cmd += " --bnb_optimizer True "
print("run command : \n" + cmd + "\n")
save_settings(
dataset_name,
exp_name,
learning_rate,
batch_size_per_gpu,
batch_size_type,
max_samples,
grad_accumulation_steps,
max_grad_norm,
epochs,
num_warmup_updates,
save_per_updates,
last_per_steps,
finetune,
file_checkpoint_train,
tokenizer_type,
tokenizer_file,
mixed_precision,
logger,
ch_8bit_adam,
)
try:
if not stream:
# Start the training process
training_process = subprocess.Popen(cmd, shell=True)
time.sleep(5)
yield "train start", gr.update(interactive=False), gr.update(interactive=True)
# Wait for the training process to finish
training_process.wait()
else:
def stream_output(pipe, output_queue):
try:
for line in iter(pipe.readline, ""):
output_queue.put(line)
except Exception as e:
output_queue.put(f"Error reading pipe: {str(e)}")
finally:
pipe.close()
env = os.environ.copy()
env["PYTHONUNBUFFERED"] = "1"
training_process = subprocess.Popen(
cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1, env=env
)
yield "Training started...", gr.update(interactive=False), gr.update(interactive=True)
stdout_queue = queue.Queue()
stderr_queue = queue.Queue()
stdout_thread = threading.Thread(target=stream_output, args=(training_process.stdout, stdout_queue))
stderr_thread = threading.Thread(target=stream_output, args=(training_process.stderr, stderr_queue))
stdout_thread.daemon = True
stderr_thread.daemon = True
stdout_thread.start()
stderr_thread.start()
stop_signal = False
while True:
if stop_signal:
training_process.terminate()
time.sleep(0.5)
if training_process.poll() is None:
training_process.kill()
yield "Training stopped by user.", gr.update(interactive=True), gr.update(interactive=False)
break
process_status = training_process.poll()
# Handle stdout
try:
while True:
output = stdout_queue.get_nowait()
print(output, end="")
match = re.search(
r"Epoch (\d+)/(\d+):\s+(\d+)%\|.*\[(\d+:\d+)<.*?loss=(\d+\.\d+), step=(\d+)", output
)
if match:
current_epoch = match.group(1)
total_epochs = match.group(2)
percent_complete = match.group(3)
elapsed_time = match.group(4)
loss = match.group(5)
current_step = match.group(6)
message = (
f"Epoch: {current_epoch}/{total_epochs}, "
f"Progress: {percent_complete}%, "
f"Elapsed Time: {elapsed_time}, "
f"Loss: {loss}, "
f"Step: {current_step}"
)
yield message, gr.update(interactive=False), gr.update(interactive=True)
elif output.strip():
yield output, gr.update(interactive=False), gr.update(interactive=True)
except queue.Empty:
pass
# Handle stderr
try:
while True:
error_output = stderr_queue.get_nowait()
print(error_output, end="")
if error_output.strip():
yield f"{error_output.strip()}", gr.update(interactive=False), gr.update(interactive=True)
except queue.Empty:
pass
if process_status is not None and stdout_queue.empty() and stderr_queue.empty():
if process_status != 0:
yield (
f"Process crashed with exit code {process_status}!",
gr.update(interactive=False),
gr.update(interactive=True),
)
else:
yield "Training complete!", gr.update(interactive=False), gr.update(interactive=True)
break
# Small sleep to prevent CPU thrashing
time.sleep(0.1)
# Clean up
training_process.stdout.close()
training_process.stderr.close()
training_process.wait()
time.sleep(1)
if training_process is None:
text_info = "train stop"
else:
text_info = "train complete !"
except Exception as e: # Catch all exceptions
# Ensure that we reset the training process variable in case of an error
text_info = f"An error occurred: {str(e)}"
training_process = None
yield text_info, gr.update(interactive=True), gr.update(interactive=False)
def stop_training():
global training_process, stop_signal
if training_process is None:
return "Train not run !", gr.update(interactive=True), gr.update(interactive=False)
terminate_process_tree(training_process.pid)
# training_process = None
stop_signal = True
return "train stop", gr.update(interactive=True), gr.update(interactive=False)
def get_list_projects():
project_list = []
for folder in os.listdir(path_data):
path_folder = os.path.join(path_data, folder)
if not os.path.isdir(path_folder):
continue
folder = folder.lower()
if folder == "emilia_zh_en_pinyin":
continue
project_list.append(folder)
projects_selelect = None if not project_list else project_list[-1]
return project_list, projects_selelect
def create_data_project(name, tokenizer_type):
name += "_" + tokenizer_type
os.makedirs(os.path.join(path_data, name), exist_ok=True)
os.makedirs(os.path.join(path_data, name, "dataset"), exist_ok=True)
project_list, projects_selelect = get_list_projects()
return gr.update(choices=project_list, value=name)
def transcribe_all(name_project, audio_files, language, user=False, progress=gr.Progress()):
path_project = os.path.join(path_data, name_project)
path_dataset = os.path.join(path_project, "dataset")
path_project_wavs = os.path.join(path_project, "wavs")
file_metadata = os.path.join(path_project, "metadata.csv")
if not user:
if audio_files is None:
return "You need to load an audio file."
if os.path.isdir(path_project_wavs):
shutil.rmtree(path_project_wavs)
if os.path.isfile(file_metadata):
os.remove(file_metadata)
os.makedirs(path_project_wavs, exist_ok=True)
if user:
file_audios = [
file
for format in ("*.wav", "*.ogg", "*.opus", "*.mp3", "*.flac")
for file in glob(os.path.join(path_dataset, format))
]
if file_audios == []:
return "No audio file was found in the dataset."
else:
file_audios = audio_files
alpha = 0.5
_max = 1.0
slicer = Slicer(24000)
num = 0
error_num = 0
data = ""
for file_audio in progress.tqdm(file_audios, desc="transcribe files", total=len((file_audios))):
audio, _ = librosa.load(file_audio, sr=24000, mono=True)
list_slicer = slicer.slice(audio)
for chunk, start, end in progress.tqdm(list_slicer, total=len(list_slicer), desc="slicer files"):
name_segment = os.path.join(f"segment_{num}")
file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav")
tmp_max = np.abs(chunk).max()
if tmp_max > 1:
chunk /= tmp_max
chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk
wavfile.write(file_segment, 24000, (chunk * 32767).astype(np.int16))
try:
text = transcribe(file_segment, language)
text = text.lower().strip().replace('"', "")
data += f"{name_segment}|{text}\n"
num += 1
except: # noqa: E722
error_num += 1
with open(file_metadata, "w", encoding="utf-8-sig") as f:
f.write(data)
if error_num != []:
error_text = f"\nerror files : {error_num}"
else:
error_text = ""
return f"transcribe complete samples : {num}\npath : {path_project_wavs}{error_text}"
def format_seconds_to_hms(seconds):
hours = int(seconds / 3600)
minutes = int((seconds % 3600) / 60)
seconds = seconds % 60
return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds))
def get_correct_audio_path(
audio_input,
base_path="wavs",
supported_formats=("wav", "mp3", "aac", "flac", "m4a", "alac", "ogg", "aiff", "wma", "amr"),
):
file_audio = None
# Helper function to check if file has a supported extension
def has_supported_extension(file_name):
return any(file_name.endswith(f".{ext}") for ext in supported_formats)
# Case 1: If it's a full path with a valid extension, use it directly
if os.path.isabs(audio_input) and has_supported_extension(audio_input):
file_audio = audio_input
# Case 2: If it has a supported extension but is not a full path
elif has_supported_extension(audio_input) and not os.path.isabs(audio_input):
file_audio = os.path.join(base_path, audio_input)
# Case 3: If only the name is given (no extension and not a full path)
elif not has_supported_extension(audio_input) and not os.path.isabs(audio_input):
for ext in supported_formats:
potential_file = os.path.join(base_path, f"{audio_input}.{ext}")
if os.path.exists(potential_file):
file_audio = potential_file
break
else:
file_audio = os.path.join(base_path, f"{audio_input}.{supported_formats[0]}")
return file_audio
def create_metadata(name_project, ch_tokenizer, progress=gr.Progress()):
path_project = os.path.join(path_data, name_project)
path_project_wavs = os.path.join(path_project, "wavs")
file_metadata = os.path.join(path_project, "metadata.csv")
file_raw = os.path.join(path_project, "raw.arrow")
file_duration = os.path.join(path_project, "duration.json")
file_vocab = os.path.join(path_project, "vocab.txt")
if not os.path.isfile(file_metadata):
return "The file was not found in " + file_metadata, ""
with open(file_metadata, "r", encoding="utf-8-sig") as f:
data = f.read()
audio_path_list = []
text_list = []
duration_list = []
count = data.split("\n")
lenght = 0
result = []
error_files = []
text_vocab_set = set()
for line in progress.tqdm(data.split("\n"), total=count):
sp_line = line.split("|")
if len(sp_line) != 2:
continue
name_audio, text = sp_line[:2]
file_audio = get_correct_audio_path(name_audio, path_project_wavs)
if not os.path.isfile(file_audio):
error_files.append([file_audio, "error path"])
continue
try:
duration = get_audio_duration(file_audio)
except Exception as e:
error_files.append([file_audio, "duration"])
print(f"Error processing {file_audio}: {e}")
continue
if duration < 1 or duration > 25:
if duration > 25:
error_files.append([file_audio, "duration > 25 sec"])
if duration < 1:
error_files.append([file_audio, "duration < 1 sec "])
continue
if len(text) < 3:
error_files.append([file_audio, "very small text len 3"])
continue
text = clear_text(text)
text = convert_char_to_pinyin([text], polyphone=True)[0]
audio_path_list.append(file_audio)
duration_list.append(duration)
text_list.append(text)
result.append({"audio_path": file_audio, "text": text, "duration": duration})
if ch_tokenizer:
text_vocab_set.update(list(text))
lenght += duration
if duration_list == []:
return f"Error: No audio files found in the specified path : {path_project_wavs}", ""
min_second = round(min(duration_list), 2)
max_second = round(max(duration_list), 2)
with ArrowWriter(path=file_raw, writer_batch_size=1) as writer:
for line in progress.tqdm(result, total=len(result), desc="prepare data"):
writer.write(line)
with open(file_duration, "w") as f:
json.dump({"duration": duration_list}, f, ensure_ascii=False)
new_vocal = ""
if not ch_tokenizer:
if not os.path.isfile(file_vocab):
file_vocab_finetune = os.path.join(path_data, "Emilia_ZH_EN_pinyin/vocab.txt")
if not os.path.isfile(file_vocab_finetune):
return "Error: Vocabulary file 'Emilia_ZH_EN_pinyin' not found!", ""
shutil.copy2(file_vocab_finetune, file_vocab)
with open(file_vocab, "r", encoding="utf-8-sig") as f:
vocab_char_map = {}
for i, char in enumerate(f):
vocab_char_map[char[:-1]] = i
vocab_size = len(vocab_char_map)
else:
with open(file_vocab, "w", encoding="utf-8-sig") as f:
for vocab in sorted(text_vocab_set):
f.write(vocab + "\n")
new_vocal += vocab + "\n"
vocab_size = len(text_vocab_set)
if error_files != []:
error_text = "\n".join([" = ".join(item) for item in error_files])
else:
error_text = ""
return (
f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\nvocab : {vocab_size}\n{error_text}",
new_vocal,
)
def check_user(value):
return gr.update(visible=not value), gr.update(visible=value)
def calculate_train(
name_project,
batch_size_type,
max_samples,
learning_rate,
num_warmup_updates,
save_per_updates,
last_per_steps,
finetune,
):
path_project = os.path.join(path_data, name_project)
file_duraction = os.path.join(path_project, "duration.json")
if not os.path.isfile(file_duraction):
return (
1000,
max_samples,
num_warmup_updates,
save_per_updates,
last_per_steps,
"project not found !",
learning_rate,
)
with open(file_duraction, "r") as file:
data = json.load(file)
duration_list = data["duration"]
samples = len(duration_list)
hours = sum(duration_list) / 3600
# if torch.cuda.is_available():
# gpu_properties = torch.cuda.get_device_properties(0)
# total_memory = gpu_properties.total_memory / (1024**3)
# elif torch.backends.mps.is_available():
# total_memory = psutil.virtual_memory().available / (1024**3)
if torch.cuda.is_available():
gpu_count = torch.cuda.device_count()
total_memory = 0
for i in range(gpu_count):
gpu_properties = torch.cuda.get_device_properties(i)
total_memory += gpu_properties.total_memory / (1024**3) # in GB
elif torch.backends.mps.is_available():
gpu_count = 1
total_memory = psutil.virtual_memory().available / (1024**3)
if batch_size_type == "frame":
batch = int(total_memory * 0.5)
batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch)
batch_size_per_gpu = int(38400 / batch)
else:
batch_size_per_gpu = int(total_memory / 8)
batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu)
batch = batch_size_per_gpu
if batch_size_per_gpu <= 0:
batch_size_per_gpu = 1
if samples < 64:
max_samples = int(samples * 0.25)
else:
max_samples = 64
num_warmup_updates = int(samples * 0.05)
save_per_updates = int(samples * 0.10)
last_per_steps = int(save_per_updates * 0.25)
max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples)
num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates)
save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates)
last_per_steps = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_steps)
if last_per_steps <= 0:
last_per_steps = 2
total_hours = hours
mel_hop_length = 256
mel_sampling_rate = 24000
# target
wanted_max_updates = 1000000
# train params
gpus = gpu_count
frames_per_gpu = batch_size_per_gpu # 8 * 38400 = 307200
grad_accum = 1
# intermediate
mini_batch_frames = frames_per_gpu * grad_accum * gpus
mini_batch_hours = mini_batch_frames * mel_hop_length / mel_sampling_rate / 3600
updates_per_epoch = total_hours / mini_batch_hours
# steps_per_epoch = updates_per_epoch * grad_accum
epochs = wanted_max_updates / updates_per_epoch
if finetune:
learning_rate = 1e-5
else:
learning_rate = 7.5e-5
return (
batch_size_per_gpu,
max_samples,
num_warmup_updates,
save_per_updates,
last_per_steps,
samples,
learning_rate,
int(epochs),
)
def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str, safetensors: bool) -> str:
try:
checkpoint = torch.load(checkpoint_path)
print("Original Checkpoint Keys:", checkpoint.keys())
ema_model_state_dict = checkpoint.get("ema_model_state_dict", None)
if ema_model_state_dict is None:
return "No 'ema_model_state_dict' found in the checkpoint."
if safetensors:
new_checkpoint_path = new_checkpoint_path.replace(".pt", ".safetensors")
save_file(ema_model_state_dict, new_checkpoint_path)
else:
new_checkpoint_path = new_checkpoint_path.replace(".safetensors", ".pt")