-
Notifications
You must be signed in to change notification settings - Fork 0
/
thesis.tex
500 lines (333 loc) · 16.2 KB
/
thesis.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
%
% Hello! Here's how this works:
%
% You edit the source code here on the left, and the preview on the
% right shows you the result within a few seconds.
%
% Bookmark this page and share the URL with your co-authors. They can
% edit at the same time!
%
% You can upload figures, bibliographies, custom classes and
% styles using the files menu.gh
%
% If you're new to LaTeX, the wikibook at
% http://en.wikibooks.org/wiki/LaTeX
% is a great place to start, and there are some examples in this
% document, too.
%
% Enjoy!
%
\documentclass[10pt,fleqn]{article}
\usepackage[english]{babel}
\usepackage[utf8x]{inputenc}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{mathtools}
\usepackage{graphicx}
\usepackage{bm}
\usepackage[usenames,dvipsnames]{color}
\usepackage{todonotes}
\usepackage{dsfont}
\usepackage{hyperref}
\hypersetup{
colorlinks,
citecolor=black,
filecolor=black,
linkcolor=black,
urlcolor=black
}
\usepackage{algorithm}
\usepackage{algorithmic}
\usepackage{appendix}
\usepackage{subcaption}
%
% Macros
%
\newcommand \cashort[1] { {\todo[color=yello]{#1 -- Cedric}} }
\newcommand \calong[1] { { \todo[inline,color=yellow]{#1 -- Cedric} } }
\newcommand \gbshort[1] { {\todo[color=cyan!40]{#1 -- Guillaume}} }
\newcommand \gblong[1] { { \todo[inline, color=cyan!40]{#1 -- Guillaume} } }
\newcommand \mgshort[1] { {\todo{#1 -- Mark}} }
\newcommand \mglong[1] { { \todo[inline]{#1 -- Mark} } }
\newcommand \bfshort[1] { {\todo[color=green!40]{#1 -- Bryan}} }
\newcommand \bflong[1] { { \todo[inline,color=green!40]{#1 -- Bryan} } }
\newcommand \lse[0] { \mathrm{lse} }
\newcommand \vecf[1] {
\text{vec}\left(#1\right)
}
\newcommand \ent[1] {
\text{H} \left[ #1 \right]
}
\newcommand \ex[2] {
\bigl\langle #1 \bigr\rangle_{#2}
}
\newcommand \halve[1] {
\frac{#1}{2}
}
\newcommand \half {
\halve{1}
}
\newcommand \tr { \text{tr} }
\newcommand \T { ^\top }
\newcommand \fixme[1] {
{\color{red} FIXME: #1}
}
\newcommand \vv[1] { \bm #1 }
\newcommand{\mbeq}{\overset{!}{=}}
\newcommand \diag[1] { \text{diag} \left( {#1} \right) }
\newcommand \diagonal[1] { \text{diagonal} \left( {#1} \right) }
\newcommand \Ed {{ \vv{\xi}_d}}
\newcommand \Edj {{\xi_{dj}}}
\newcommand \Edk {{\xi_{dk}}}
\newcommand \AEdj {{\Lambda(\xi_{dj})}}
\newcommand \AEdk {{\Lambda(\xi_{dk})}}
\newcommand \AEd {{ \bm{\Lambda}(\bm{\xi}_d) }}
\newcommand \Axi { { \Lambda_{\xi} } }
\newcommand \bxi { { \vv{b}_{\xi} } }
\newcommand \cxi { { c_{\xi} } }
\newcommand \one {{ \mathds{1} }}
\newcommand \wdoc { { \vv{w}_d } }
\newcommand \wdt[0] { { w_{dt} } }
\newcommand \wdn[0] { { \vv{w}_{dn} } }
\newcommand \wdnt[0] { { w_{dnt} } }
\newcommand \wdd[0] { { \vv w_{d} } }
\newcommand \zd[0] { { \vv z_{d} } }
\newcommand \zdn[0] { { \vv{z}_{dn} } }
\newcommand \zdnk[0] { { z_{dnk} } }
\newcommand \zdk[0] { { z_{dk} } }
\newcommand \thd[0] { { \vv \theta_d } }
\newcommand \thdk[0] { { \theta_{dk} } }
\newcommand \thdj[0] { { \theta_{dj} } }
\newcommand \epow[1] { { e^{#1} } }
\newcommand \pkt { { \phi_{kt} } }
\newcommand \pk { { \vv \phi_k } }
\newcommand \lmd { { \vv \lambda_d } }
\newcommand \lmdk { { \lambda_{dk} } }
\newcommand \xd { { \vv x_d } }
\newcommand \atxd { A ^\top \bm x_d}
\newcommand \axd { A\bm x_d}
\newcommand \tsq { { \tau^2 } }
\newcommand \ssq { { \sigma^2 } }
\newcommand \tmsq { { \tau^{-2} } }
\newcommand \asq { { \alpha^2 } }
\newcommand \amsq { { \alpha^{-2} } }
\newcommand \sgsq { { \sigma^2 } }
\newcommand \xvec { { \vv{x} } }
\newcommand \omk { { \bm \omega _k } }
\newcommand \omkt { { \omega_{kt} } }
\newcommand \oma { { \Omega_A } }
\newcommand \gdn { { \vv{\gamma}_{dn} } }
\newcommand \gdnk { { \gamma_{dnk} } }
\newcommand \gdk { { \gamma_{dk} } }
\newcommand \isigt { { \Sigma^{-1}_{\bm \theta} } }
\newcommand \isigma { { \inv{\Sigma} } }
\newcommand \sigv { { \Sigma_V } }
\newcommand \isigv { { \Sigma^{-1}_V } }
\newcommand \sigy { { \Sigma_Y } }
\newcommand \isigy { { \Sigma_{-1}_Y } }
\newcommand \omy { { \Omega_Y } }
\newcommand \iomy { { \inv{\Omega_Y} } }
\newcommand \siga { { \Sigma_A } }
\newcommand \isiga { { \Sigma^{-1}_A } }
\newcommand \diagv { { \diag{\nu_1,\ldots,\nu_P} } }
\newcommand \ma { \vv{m}_a }
\newcommand \my { \vv{m}_y }
\newcommand \VoU { V \otimes U }
\newcommand \halfSig { \frac{1}{2\sigma^2} }
\newcommand \nor[2] { \mathcal{N} \left( {#1}, {#2} \right) }
\newcommand \nord[3] { \mathcal{N}_{#1} \left( {#2}, {#3} \right) }
\newcommand \mnor[3] { \mathcal{N} \left(#1, #2, #3\right) }
\newcommand \norp[3] { \mathcal{N} \left(#1; #2, #3\right) }
\newcommand \mnorp[4] { \mathcal{N} \left(#1; #2, #3, #4\right) }
\newcommand \mul[1] { \mathcal{M} \left( {#1} \right) }
\newcommand \muln[2] { \mathcal{M} \left( {#1},{#2} \right) }
\newcommand \dir[1] { \mathcal{D} \left( {#1} \right) }
\newcommand \pois[1] { \mathcal{P} \left( {#1} \right) }
\newcommand \lne[1] { { \ln \left( 1 + e^{ #1 } \right) } }
\newcommand \Tr[1] { \tr \left( {#1} \right) }
\newcommand \roud { \vv{\rho}_{d} }
\newcommand \rodk { \rho_{dk} }
\newcommand \exA[1] { \ex{#1}{q(A)} }
\newcommand \exV[1] { \ex{#1}{q(V)} }
\newcommand \exT[1] { \ex{#1}{q(\Theta)} }
\newcommand \extd[1] { \ex{#1}{q(\thd)} }
\newcommand \exTV[1] { \ex{#1}{q(\Theta)q(V)} }
\newcommand \Real[0] { { \mathbb{R} } }
\newcommand \VReal[1] { { \mathbb{R}^{#1} } }
\newcommand \MReal[2] { { \mathbb{R}^{#1 \times #2} } }
\newcommand \Nat[0] { { \mathbb{N} } }
\newcommand \VNat[1] { { \mathbb{N}^{#1} } }
\newcommand \MNat[2] { { \mathbb{N}^{#1 \times #2} } }
\newcommand \inv[1] { {#1}^{-1} }
\newcommand \invb[1] { \inv{\left( #1 \right)} }
\newcommand \cn { \textsuperscript{\texttt{[{\color{blue}Citation Needed}]}} }
\newcommand \const { { \text{c} } }
\providecommand \floor [1] { \left \lfloor #1 \right \rfloor }
\providecommand \ceil [1] { \left \lceil #1 \right \rceil }
\newcommand \vt[2] { { #1^{(#2)} } }
\newcommand \hashtag[1] { { \ttfamily \##1 } }
\newcommand \mvy { \vv{m}_{\vv{y}} }
\newcommand \sigvy { { S_Y } }
\newcommand \mmy { M_Y }
\newcommand \omy { \Omega_Y }
\newcommand \sigy { \Sigma_Y }
\newcommand \md { \vv{m}_d }
\newcommand \phin { \vv{\phi}_n }
\newcommand \one { \mathbb{1} }
\newcommand \lse { \text{lse} }
%
% Document Front-Matter
%
\title{Upgrade Report}
\author{Bryan Feeney}
\begin{document}
\maketitle
\begin{abstract}
\end{abstract}
\tableofcontents
\clearpage
\section{Introduction}
\subsection{Multi-Task Learning}
Caruana
Learning Multiple Tasks with a Sparse Matrix-Normal Penalty\cite{Zhang2010a}
Multi-task relationship learning\cite{Zhang2012mtrl}
\subsubsection{Kronecker Covariances}
MTL-GP : \cite{Bonilla2008}. Noise problem is in the book\cite{Wackernagel1998}
A Note on Noise-free Gaussian Process Prediction with Separable Covariance Functions and Grid Designs\cite{Williams2007}
Kro with GPS also \cite{Stegle2011}
General intro and discussion of ident \cite{Glanz2008}
Markov property \cite{Hagan1998}
Alfred O Hero has a paper on Kronecker PCA, but I only have the powerpoint
General proof of ML\cite{Srivastava2009}
ML Estimation of Kronecker /Persymm \cite{Jansson}
Maximum-likelihood estimation for multivariate spatial linear coregionalization models\cite{Zhang2007a}
Tshibsirhiani applied to matrix completion\cite{Allen2010}. Then extended to GPs\cite{Yu2009}. Note this includes leasning covariances across tasks
\begin{quote}
Those that learn $\Sigma$ across tasks (Lawrence \& Platt, 2004; Schwaighofer et al., 2005; Yu et al., 2005), and those that additionally consider the covariance $\Omega$ between tasks (Yu et al., 2007; Bonilla et al., 2008). The methods that only use $\Sigma$ have been applied to collaborative prediction (Schwaighofer et al., 2005; Yu et al., 2006).
\end{quote}
Properties of graphical lasso with kronecker via Arxiv\cite{Tsiligkaridis2012}. Or as a paper \cite{Tsiligkaridis2012b}.
Covariance Estimation in High Dimensions Via Kronecker Product Expansions\cite{Tsiligkaridis2013}
Extension to 3D \cite{Ohlson2011}
On Toeplitz and Kronecker Structured Covariance Matrix Estimation
\cite{Wirfalt2010}
\subsubsection{Gaussian Scale Mixtures}
Sparse Bayesian MTL \cite{Archambeau2011}
Robust PCA \cite{Archambeau2006a}
Robust Matrix factorization\cite{Balaji2011}
Sparsity overview, Laplace/Gaussian \cite{Figueiredo2003}
\subsection{Language Models of Text}
Summary \cite{Chen1996}. This is ancient and weak.
Better summary with mKN\cite{Goodman2001}. Book is \cite{Jurafsky2002}
HDLM\cite{MacKay1995}
Latent words language model \cite{Deschacht2012}
General reps of text follow:
Deciding when to fuse unigrams: \cite{Dunning1993}. Note topicality here.
Actual HAL\cite{Lund1996}
Probabilistic HAL: \cite{Azzopardi2005}
PYP/Bayesian Knesser Ney\cite{Teh2002}\cite{Teh}
Sequence Memoizer\cite{Wood2011}
\subsection{Admixture Models of Text}
Ancient Bayes mixture paper\cite{Nigam2000}
LDA : \cite{BleiNgJordan2003}\cite{Pritchard2000}
\subsubsection{Correlated Admixtures}
CTM \cite{Blei2006}
Message passing implementation\cite{Ahmed2006}
Independent Factor Model of topics\cite{Putthividhya2009}
\subsubsection{Evaluation Methodologies}
Is $p(w|hypers)$ ``intractable" for topic models? Do we \emph{have} to use the complete likelihood $p(w,z|hypers)$?
Connection between perplexity and recall \cite{Azzopardi2003}
Empirical Likelihood Li and MacCallum - Pachinko allocation: DAG-structured mixture models of topic correlations. This generates pseudo documents from a difficult model, a simpler algorithm (e.g. MoM) is then trained on it, and then the real held out data is tested against that simple model.
Reading tea-leaves: \cite{Chang2009}. Mechanical Turk also used in TNG\cite{Wang2007} and HPYP\cite{Lindsey2012}
Complexity, for Bayes non-pams\cite{Kim2011}
Variation of information\cite{Meila2003}
NVI Cluster Eval measure\cite{Reichart2009}
Comparing clusterings\cite{Wagner2007}
Wallach eval methods\cite{Wallach2009}
\subsubsection{Inference Strategies}
Long var\cite{BleiNgJordan2003}
Gibbs + hyper suggestion \cite{Griffiths2004} Gibbs the long way\cite{Pritchard2000}
Detailed explanation \cite{Heinrich2005}
Impact of priors\cite{Wallach2009a}
Roundup of Gibbs vs VM \cite{Asuncion2012}
% ----- CVB ------
CVB \cite{Teh2007}
Alternative collapsing \cite{Hensman2012} where parameters are marginalized \emph{after} applying the var-bound instead of before. Also does natural/Riemannian gradient
CVB0 Mystery: Sato and Nakagawa showed that the terms in the CVB0 update can be understood as optimizing the $\alpha$- divergence, with different values of $\alpha$ for each term. The $\alpha$-divergence is a generalization of the KL-divergence that variational Bayes minimizes, and optimizing it is known as power EP. A disadvantage of CVB0 is that the memory requirements are large as it needs to store a variational distribution $gamma$ for every token in the corpus. This can be improved slightly by ``clumping" every occurrence of a specific word in each document together and storing a single $\gamma$ for them. I. Sato and H. Nakagawa. Rethinking collapsed variational Bayes inference for LDA. Proceedings of the International Conference on Machine Learning, 2012.
% --- Variational Optimisations ----
Online VB - same as Blei's local/global, but with a natural gradient step \cite{Hoffman2010}. Sparse online VB using Gibbs steps\cite{Mimno2012a}
Sparse Online Topic Models\cite{Zhang2013}
Fast collapsed gibbs sampling for latent dirichlet allocation. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 569–577, 2008.
SGD+LDA-CVB \cite{Boyles2013} - in this case they don't store the y's, and so ignore the subtraction step. Show it's the same as MAP-EM in Ascuncion
Large-scale CTM\cite{Ahmed2006} using message passing.
CTM with different bounds\cite{Wang2013}
Memcache Inference\cite{Ahmed}
% ---- Gibbs optimisations ----
Smola's intro \cite{SmolaWeb2012}
Distributed Sampler (AD-LDA)\cite{Newman2009}
Architecture for Parallel Topic Models\cite{Smola2010}
Gibbs sampler for CTM \cite{Chen2013}
Efficient methods for topic model inference on streaming document collections\cite{Yao2009}
% ---- Other approaches ----
EP \cite{Minka2002}
Spectral decomposition \cite{Anandkumar}
GPU Implementations: http://papers.nips.cc/paper/3788-parallel-inference-for-latent-dirichlet-allocation-on-graphics-processing-units
Tutorial on SGD with examples for diff models \cite{Bottou2004}. Learning using large datasets \cite{Bottou2008}
Distributed NFM\cite{Liu2010}
\subsubsection{The Use of Covariates}
% --------- Ad hoc ------------
Author-Topic Model\cite{RosenZvi2004}
Author-Recipient Topic Model\cite{MacCallum2007}
Community Topic Model\cite{Sachan2012}
Group and Topic Discovery from Relations and Text\cite{Wang2005}
An LDA-based Community Structure Discovery Approach for Large-Scale Social Networks\cite{Zhang2007}
Topics over time\cite{Wang2006}
BITAM\cite{Zhao2001}
Region with Twitter \cite{Eisenstein2010}
Limited Attention LDA \cite{Kang2013}. Topic model items (i.e. links shared on digg). Use these to infer user interests. Assume linkage idir users based on shared interests. Friends may adopt an item (i.e. share it) based on interest x and topic z. So given a user's interest, a friend chosen based on those interests, an item chosen uniformly, a topic chosen according to that item's topics, a user will adopt that item with prob that's a function of their interest and the topic
% --------- Multi modal -------
"Correspondence LDA" - give images and captions the same topic \cite{Blei2003}
Same idea used for PNAS publications (words and references are the two outputs) \cite{Erosheva2004}. Both share a single topic.
Same for CTM (multiple field) \cite{Salomatin2009}
Factorized multi modal \cite{Virtanen2012a}
Multimodal HDP with images \cite{Yakhnenko2009}
% ---------- DMR --------------
DMR \cite{Mimno2008}
GP CTM \cite{Hennig2012}
matrix-variate DP mixtures\cite{Zhang2010}
conditional topic random fields\cite{Zhu2010}
% ---------- Supervised -------
LabelledLda\cite{Ramage2009}
SupervisedLda\cite{Rubin2011}
\subsubsection{Non-Multinomial Admixtures of Text}
See biterm topic model for short texts \cite{Yan2013}
LDA-PYP\cite{Lindsey2012}.
Recall that the LDA-HDLM\cite{Wallach2006} makes use of Minka's\cite{Minka2000} updates.
Topical keyphrase extraction on twitter\cite{Zhao2011a}
\subsubsection{Determining Appropriate Numbers of Mixture Components}
HDPS\cite{Teh2006b} - there's a 2004 Blei paper though
Data-dependent CRP relaxes exchangeability assumption\cite{Kim2011}
Gibbs for DPs by Radford Neal\cite{Neal2000}
CTM\cite{Paisley2012}
The nHDP is a generalization of the nested Chinese restaurant process (nCRP) that allows each word to follow its own path to a topic node according to a document-specific distribution on a shared tree. This alleviates the rigid, single-path formulation of the nCRP \cite{Paisley2012a}
\subsubsection{Links to Other Models}
Multinomial PCA: \cite{Buntine2002} With reference to \cite{Rubin2011}
Sparse NMF\cite{Hoyer2004}. NMF needs priming (e.g. with SVD) \cite{Boutsidis2008}
Multi-modal NMF: \cite{Bouchard2012}. Gradient methods for NMF (note also multiplicative update)\cite{Lin2007}. Distributed NMF\cite{Liu2010}
With PLSI \cite{GiKa2003}, where PLSI is\cite{Hofmann1999}
A multivariate probit paper \cite{Talhouk2011}
\subsection{Non-Conjugate Variational Inference}
Fast Bayesian Inference for Non-Conjugate Gaussian Process Regression\cite{Khan2012fastbayes}. And sticks are \cite{Khan2012stick}.
The factor analysis paper (what have I been citing in probit for the unified bound?)\cite{Khan}. The piecewise paper\cite{Marlin2011}.
\section{Multitask Prediction of Admixture Components for Microtexts}
Comparing twitter and traditional media using topic models\cite{Zhao2011}
Matrix variate theory \cite{Dawid1981}
Bursty Topics: Dirichlet Compound Multinomial fused with LDA \cite{Doyle2009}
Bursty topics / global vs personal interest \cite{Diao2010}
Predicting hashtags the clumsy way\cite{Preot2012}
LabelledLDA + Tweets (e.g. Smileys)\cite{Ramage2010}
TwitterRank - Topic sensitive Twitters\cite{Weng2010}
Author Topic Model of Twitter\cite{Xu2011}
\bibliographystyle{plain}
\bibliography{/Users/bryanfeeney/Documents/library.bib}
\end{document}