-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ict.py
240 lines (199 loc) · 9.17 KB
/
train_ict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import torch
from torch.optim import AdamW
from torch.utils.data import TensorDataset, DataLoader
import torch.nn as nn
from transformers import AutoModel, AutoTokenizer
import logging
import json
import argparse
from tqdm import tqdm
import numpy as np
import nltk
import random
'''
This code implements the ICT pre-training task from https://arxiv.org/abs/1906.00300
Our implementation is modified from https://github.com/donggyukimc/Inverse-cloze-task to fit the processed wikipedia article dumps from ./utils/create_ict_corpus.py
'''
device = 'cuda:0' if torch.cuda.is_available() else 'mps' #use Mac M1 chip for local fun.
#torch.backends.cuda.matmul.allow_tf32 = True #(RTX3090 and A100 GPU only)
def parse_args():
parser = argparse.ArgumentParser(
description="Warmup the retriever with the ICT task over wikipedia articles")
parser.add_argument(
"--data_path",
type=str,
default="./data/ict_warmup.json",
help="Path to the processed wiki dump"
)
parser.add_argument(
"--output_path",
type=str,
default="./models/ict_model_chkpnt.pt",
help="Output path of the warmed up model"
)
parser.add_argument(
"--model_name_or_path",
type=str,
default="ltgoslo/norbert2"
)
parser.add_argument(
"--lr",
type=float,
default=0.0001 #Hyperparameter from o.g paper
)
parser.add_argument(
"--epochs",
type=int,
default=3
)
parser.add_argument(
"--batch_size",
type=int,
default=16
)
args = parser.parse_args()
return args
class Embedder(nn.Module):
def __init__(self, model_name_or_path) :
super(Embedder, self).__init__()
self.encoder = AutoModel.from_pretrained(model_name_or_path)
def forward(self, x, x_mask) :
return self.encoder(input_ids=x, attention_mask=x_mask).pooler_output
def load_data(path):
'''
Returns a json object of the ict warmup corpus
'''
with open(path, 'r', encoding='utf8') as f:
data = list(json.load(f))
return data
def pad_sequence(x, max_seq=64, pad_idx=0, get_mask=True, decode=False, pad_max=False, device=device): # copied from https://github.com/donggyukimc/Inverse-cloze-task
"""
padding given sequence with maximum length
generate padded sequence and mask
"""
seq_len = np.array([min(len(seq), max_seq) for seq in x])
if not pad_max :
max_seq = max(seq_len)
pad_seq = np.zeros((len(x), max_seq), dtype=np.int64)
pad_seq.fill(pad_idx)
for i, seq in enumerate(x):
pad_seq[i, :seq_len[i]] = seq[:seq_len[i]]
if get_mask :
mask = make_mask(pad_seq, pad_idx, decode)
mask = torch.from_numpy(mask).to(device)
else :
mask = None
return torch.from_numpy(pad_seq).to(device), mask
def make_mask(x, pad_idx, decode=False): # copied from https://github.com/donggyukimc/Inverse-cloze-task
"Create a mask to hide padding and future words."
mask = (x!=pad_idx)
if decode:
size = x.shape[-1]
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1)
mask = np.expand_dims(mask, axis=1) & (subsequent_mask == 0)
return mask.astype('uint8')
def create_contexts(data, tokenizer):
'''
Creates a list of lists with the sentences included in each document, tokenized.
'''
contexts = []
for document in tqdm(data):
sentences = nltk.sent_tokenize(document)
s = {}
a = []
for sen in sentences:
a.append(tokenizer(sen, add_special_tokens=False)["input_ids"])
s["sentence"] = a
contexts.append(s)
return contexts
def create_data_loader(data, batch_size):
'''
Returns a DataLoader object that holds the indexes of which document is included in a batch. The batch size - 1 is thus equal to the number of neg. samples for a batch.
'''
return DataLoader(TensorDataset(torch.from_numpy(data)), batch_size=batch_size, shuffle=True, drop_last=True)
def get_batch(index, contexts, start_token, tokenizer, debug=False): #modified https://github.com/donggyukimc/Inverse-cloze-task
'''
Creates padded and masked sequences of a batch of documents to retrieve from, with a target sentenced removed from the batch with probability p
'''
sentence = [contexts[i]["sentence"] for i in index] # get sentences of paragraphs from the documents in the batch
target_sentence = [random.randint(0, len(sen)-1) for sen in sentence] # set target sentence for ICT training
remove_target = [random.random()<(1-0.1) for _ in range(len(target_sentence))] # determine removal of original sentence as mentioned in og. paper
target_context = [sen[:i]+sen[i+remove:] for i, sen, remove in zip(target_sentence, sentence, remove_target)] # set sentences of target context
target_context = [[y for x in context for y in x] for context in target_context] # concat sentences of context
target_context = [[start_token]+context for context in target_context]
target_sentence = [sen[i] for i, sen in zip(target_sentence, sentence)]
target_sentence = [[start_token]+sen for sen in target_sentence]
s, s_mask = pad_sequence(target_sentence, max_seq=128)
c, c_mask = pad_sequence(target_context, max_seq=128)
if debug:
target_sent = tokenizer.decode(s[0], skip_special_tokens=True)
target_cont = [tokenizer.decode(t, skip_special_tokens=True) for t in c]
print(target_sent) # A LOT of UNKs from the norwegian wiki???
print(target_cont)
return s, s_mask, c, c_mask
if __name__ == "__main__":
args = parse_args()
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
raw_data = load_data(args.data_path)
contexts = create_contexts(raw_data, tokenizer)
indexed_docs = np.array([i for i in range(len(contexts))])
loader = create_data_loader(indexed_docs, args.batch_size)
n = len(loader)
epochs = args.epochs #According to the ORCA paper, they do a batch size of 4096 for 100k steps... As we do not have that much data, nor memory, we need to adjust this.
softmax = nn.Softmax()
model = Embedder(args.model_name_or_path).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = AdamW(model.parameters(), lr=args.lr)
vocab = dict()
for k, v in tokenizer.vocab.items() :
vocab[k] = v
start_token = vocab["[CLS]"]
best_accuracy = 0.0
for epoch in range(epochs):
logging.info(f"Starting ICT training at epoch {epoch}/{epochs}")
model.train()
train_loss = 0.0
targets_b = torch.Tensor([]).to(device)
preds_b = torch.Tensor([]).to(device)
for i, batch in enumerate(tqdm(loader)):
'''
s = [batch_size, max sentence length in batch]
c = [batch_size, max_seq_length]
why? We have n target sentences (n=batch_size) in s, and in c we have n contexts, where each context are as many sentences fit within the max_seq_length and where the o.g sent have been removed with a proabability of 0.9
'''
optimizer.zero_grad()
batch = batch[0] #ids of the documents
s, s_mask, c, c_mask = get_batch(batch, contexts, start_token, tokenizer, debug=False)
s_encode = model(x=s, x_mask=s_mask)
c_encode = model(x=c, x_mask=c_mask)
logit = torch.matmul(s_encode, c_encode.transpose(-2, -1)) #This finds the inner product between the n sentences and the n contexts
target = torch.from_numpy(np.array([i for i in range(batch.size(0))])).long().to(device) #give each of the n documents an index
#optimize for highest similarity for all ten sentences. We dont only check one sentence against 9 distractors once, we do it for all 10 sentences where the rest are distractors each time.
loss_val = criterion(logit, target).mean()
train_loss += loss_val.item()
loss_val.backward()
optimizer.step()
optimizer.zero_grad()
#retrieval accuracy
preds = torch.argmax(softmax(logit), dim=1)
targets_b = torch.cat((targets_b, target), 0)
preds_b = torch.cat((preds_b, preds), 0)
accuracy = torch.sum(preds_b == targets_b)/len(preds_b)
logging.info(f"Batch acc: {accuracy}")
logging.info("{} Epoch, train loss : {}".format(epoch+1, round(train_loss/n, 4)))
if accuracy > best_accuracy:
best_accuracy = accuracy
logging.info(f"Saving model checkoint at {args.output_path}...")
torch.save({
'epoch': epoch,
'model_state_dict': model.encoder.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, args.output_path)
else:
break