forked from yzxing87/Invertible-ISP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
98 lines (76 loc) · 4.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import os, time, random
import argparse
import json
import torch.nn.functional as F
import torch
from torch.utils.data import Dataset, DataLoader
from torch.optim import lr_scheduler
from model.model import InvISPNet
from dataset.FiveK_dataset import FiveKDatasetTrain
from config.config import get_arguments
from utils.JPEG import DiffJPEG
os.system('nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp')
os.environ['CUDA_VISIBLE_DEVICES'] = str(np.argmax([int(x.split()[2]) for x in open('tmp', 'r').readlines()]))
# os.environ['CUDA_VISIBLE_DEVICES'] = "1"
os.system('rm tmp')
DiffJPEG = DiffJPEG(differentiable=True, quality=90).cuda()
parser = get_arguments()
parser.add_argument("--out_path", type=str, default="./exps/", help="Path to save checkpoint. ")
parser.add_argument("--resume", dest='resume', action='store_true', help="Resume training. ")
parser.add_argument("--loss", type=str, default="L1", choices=["L1", "L2"], help="Choose which loss function to use. ")
parser.add_argument("--lr", type=float, default=0.0001, help="Learning rate")
parser.add_argument("--aug", dest='aug', action='store_true', help="Use data augmentation.")
args = parser.parse_args()
print("Parsed arguments: {}".format(args))
os.makedirs(args.out_path, exist_ok=True)
os.makedirs(args.out_path+"%s"%args.task, exist_ok=True)
os.makedirs(args.out_path+"%s/checkpoint"%args.task, exist_ok=True)
with open(args.out_path+"%s/commandline_args.yaml"%args.task , 'w') as f:
json.dump(args.__dict__, f, indent=2)
def main(args):
# ======================================define the model======================================
net = InvISPNet(channel_in=3, channel_out=3, block_num=8)
net.cuda()
# load the pretrained weight if there exists one
if args.resume:
net.load_state_dict(torch.load(args.out_path+"%s/checkpoint/latest.pth"%args.task))
print("[INFO] loaded " + args.out_path+"%s/checkpoint/latest.pth"%args.task)
optimizer = torch.optim.Adam(net.parameters(), lr=args.lr)
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[50, 80], gamma=0.5)
print("[INFO] Start data loading and preprocessing")
RAWDataset = FiveKDatasetTrain(opt=args)
dataloader = DataLoader(RAWDataset, batch_size=args.batch_size, shuffle=True, num_workers=0, drop_last=True)
print("[INFO] Start to train")
step = 0
for epoch in range(0, 300):
epoch_time = time.time()
for i_batch, sample_batched in enumerate(dataloader):
step_time = time.time()
input, target_rgb, target_raw = sample_batched['input_raw'].cuda(), sample_batched['target_rgb'].cuda(), \
sample_batched['target_raw'].cuda()
reconstruct_rgb = net(input)
reconstruct_rgb = torch.clamp(reconstruct_rgb, 0, 1)
rgb_loss = F.l1_loss(reconstruct_rgb, target_rgb)
reconstruct_rgb = DiffJPEG(reconstruct_rgb)
reconstruct_raw = net(reconstruct_rgb, rev=True)
raw_loss = F.l1_loss(reconstruct_raw, target_raw)
loss = args.rgb_weight * rgb_loss + raw_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("task: %s Epoch: %d Step: %d || loss: %.5f raw_loss: %.5f rgb_loss: %.5f || lr: %f time: %f"%(
args.task, epoch, step, loss.detach().cpu().numpy(), raw_loss.detach().cpu().numpy(),
rgb_loss.detach().cpu().numpy(), optimizer.param_groups[0]['lr'], time.time()-step_time
))
step += 1
torch.save(net.state_dict(), args.out_path+"%s/checkpoint/latest.pth"%args.task)
if (epoch+1) % 10 == 0:
# os.makedirs(args.out_path+"%s/checkpoint/%04d"%(args.task,epoch), exist_ok=True)
torch.save(net.state_dict(), args.out_path+"%s/checkpoint/%04d.pth"%(args.task,epoch))
print("[INFO] Successfully saved "+args.out_path+"%s/checkpoint/%04d.pth"%(args.task,epoch))
scheduler.step()
print("[INFO] Epoch time: ", time.time()-epoch_time, "task: ", args.task)
if __name__ == '__main__':
torch.set_num_threads(4)
main(args)