-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsde.py
516 lines (440 loc) · 17.8 KB
/
sde.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import abc
import torch
import numpy as np
from scipy.stats import ortho_group
class SDE(abc.ABC):
"""SDE abstract class. Functions are designed for a mini-batch of inputs."""
def __init__(self, N):
"""Construct an SDE.
Args:
N: number of discretization time steps.
"""
super().__init__()
self.N = N
@property
@abc.abstractmethod
def T(self):
"""End time of the SDE."""
pass
@abc.abstractmethod
def sde(self, x, t):
pass
@abc.abstractmethod
def marginal_prob(self, x, t):
"""Parameters to determine the marginal distribution of the SDE, $p_t(x)$."""
pass
@abc.abstractmethod
def prior_sampling(self, shape):
"""Generate one sample from the prior distribution, $p_T(x)$."""
pass
@abc.abstractmethod
def prior_logp(self, z):
"""Compute log-density of the prior distribution.
Useful for computing the log-likelihood via probability flow ODE.
Args:
z: latent code
Returns:
log probability density
"""
pass
def discretize(self, x, t):
"""Discretize the SDE in the form: x_{i+1} = x_i + f_i(x_i) + G_i z_i.
Useful for reverse diffusion sampling and probabiliy flow sampling.
Defaults to Euler-Maruyama discretization.
Args:
x: a torch tensor
t: a torch float representing the time step (from 0 to `self.T`)
Returns:
f, G
"""
dt = 1 / self.N
drift, diffusion = self.sde(x, t)
f = drift * dt
G = diffusion * torch.sqrt(torch.tensor(dt, device=t.device))
return f, G
def reverse(self, score_fn, probability_flow=False):
"""Create the reverse-time SDE/ODE.
Args:
score_fn: A time-dependent score-based model that takes x and t and returns the score.
probability_flow: If `True`, create the reverse-time ODE used for probability flow sampling.
"""
N = self.N
T = self.T
sde_fn = self.sde
discretize_fn = self.discretize
# -------- Build the class for reverse-time SDE --------
class RSDE(self.__class__):
def __init__(self):
self.N = N
self.probability_flow = probability_flow
@property
def T(self):
return T
def sde(self, feature, x, flags, t,u,la, is_adj=True, is_u = False):
"""Create the drift and diffusion functions for the reverse SDE/ODE."""
# drift, diffusion = sde_fn(x, t) if is_adj else sde_fn(feature, t)
#print("sde_fn:",sde_fn)
if is_u:
drift, diffusion = sde_fn(u, t, is_adj=False)
score = score_fn(feature, x, flags, t, u, la)
drift = drift - diffusion[:, None, None] ** 2 * score * (0.5 if self.probability_flow else 1.)
else:
drift, diffusion = sde_fn(la, t, is_adj=True) if is_adj else sde_fn(feature, t, is_adj=False)
if not is_adj:
# #print("is_adj:", False,"score_fn:",score_fn)
score = score_fn(feature, x, flags, t, u, la)
else:
# #print("is_adj:", True, "score_fn:",score_fn)
score = score_fn(feature, x, flags, t, u, la)
# #print("score_fn:",score_fn)
#print("drift:",drift.shape, "is_adj:",is_adj, " diffusion:", diffusion.shape, " score:",score.shape)
if is_adj:
drift = drift - diffusion[:, None] ** 2 * score * (0.5 if self.probability_flow else 1.)
else:
drift = drift - diffusion[:, None, None] ** 2 * score * (0.5 if self.probability_flow else 1.)
# -------- Set the diffusion function to zero for ODEs. --------
diffusion = 0. if self.probability_flow else diffusion
return drift, diffusion
def discretize(self, feature, x, flags, t, is_adj=True):
"""Create discretized iteration rules for the reverse diffusion sampler."""
f, G = discretize_fn(x, t) if is_adj else discretize_fn(feature, t)
#print('after discretize_fn, is_adj:', is_adj, " f:", f, "G:",G)
score = score_fn(feature, x, flags, t)
rev_f = f - G[:, None, None] ** 2 * score * (0.5 if self.probability_flow else 1.)
rev_G = torch.zeros_like(G) if self.probability_flow else G
return rev_f, rev_G
return RSDE()
class VPSDE(SDE):
def __init__(self, beta_min=0.1, beta_max=20, N=1000):
"""Construct a Variance Preserving SDE.
Args:
beta_min: value of beta(0)
beta_max: value of beta(1)
N: number of discretization steps
"""
super().__init__(N)
print("num of steps:", N)
self.beta_0 = beta_min
self.beta_1 = beta_max
self.N = N
self.discrete_betas = torch.linspace(beta_min / N, beta_max / N, N)
self.alphas = 1. - self.discrete_betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
self.sqrt_1m_alphas_cumprod = torch.sqrt(1. - self.alphas_cumprod)
@property
def T(self):
return 1
def sde(self, x, t, is_adj = True):
beta_t = self.beta_0 + t * (self.beta_1 - self.beta_0)
if is_adj:
drift = -0.5 * beta_t[:, None] * x
else:
drift = -0.5 * beta_t[:, None, None] * x
diffusion = torch.sqrt(beta_t)
return drift, diffusion
def select_type(self, type):
print("in select type, type:", type)
if type=="linear":
self.marginal_prob = self.marginal_prob_ori
self.marginal_prob_adj = self.marginal_prob_adj_ori
self.discrete_betas = torch.linspace(self.beta_0 / self.N, self.beta_1 / self.N, self.N)
elif type=="exp":
self.marginal_prob = self.marginal_prob_exp
self.marginal_prob_adj = self.marginal_prob_adj_exp
t = torch.linspace(self.beta_0 / self.N, self.beta_1 / self.N, self.N)
self.discrete_betas = self.beta_t_exp(t)
print("discrete_betas:", self.discrete_betas.shape)
elif type=="cosine":
self.marginal_prob = self.marginal_prob_cosine
self.marginal_prob_adj = self.marginal_prob_adj_cosine
t = torch.linspace(self.beta_0 / self.N, self.beta_1 / self.N, self.N)
self.discrete_betas = self.beta_t_cosine(t)
elif type=="tanh":
self.marginal_prob = self.marginal_prob_tanh
self.marginal_prob_adj = self.marginal_prob_adj_tanh
self.alphas = 1. - self.discrete_betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
self.sqrt_1m_alphas_cumprod = torch.sqrt(1. - self.alphas_cumprod)
# def sde_adj(self, la, t):
# beta_t = self.beta_0 + t * (self.beta_1 - self.beta_0)
# drift = -0.5 * beta_t[:, None] * la
# diffusion = torch.sqrt(beta_t)
# return drift, diffusion
def beta_t_exp(self, t):
beta = torch.exp(t*torch.log(torch.tensor(self.beta_1 - self.beta_0 +1))) -1 + self.beta_0
return beta
def beta_t_cosine(self, t):
beta = torch.cos(torch.tensor(3.14 + t/(3.14/2)))* (self.beta_1 - self.beta_0) + self.beta_0 + 1
return beta
# def beta_t_tanh(self, t):
# beta = (self.beta_1 - self.beta_0)/(0-torch.tanh(torch.tensor(-3)))* torch.tanh()
# return beta
def marginal_prob(self, x, t):
# def marginal_prob(self, x, t):
# #print("VPSDE marginal_prob")
# log_mean_coeff = -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
#
# # print("log_mean_coeff:", log_mean_coeff)
# mean = torch.exp(log_mean_coeff[:, None, None]) * x
# std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return None
# -------- mean, std of the perturbation kernel --------
def marginal_prob_ori(self, x, t):
# def marginal_prob(self, x, t):
# #print("VPSDE marginal_prob")
log_mean_coeff = -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
# print("log_mean_coeff:", log_mean_coeff)
mean = torch.exp(log_mean_coeff[:, None, None]) * x
std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return mean, std
# -------- marginal_prob_exp --------
def marginal_prob_exp(self, x, t):
temp = torch.tensor(self.beta_1 - self.beta_0+1).float()
log_part = torch.log(temp)
log_mean_coeff = -0.5 * (1/log_part)* torch.exp(t * log_part) - 0.5 * t * (self.beta_0-1)
mean = torch.exp(log_mean_coeff[:, None, None]) * x
std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return mean, std
# -------- marginal_prob_cosine --------
def marginal_prob_cosine(self, x, t):
# def marginal_prob(self, x, t):
# #print("VPSDE marginal_prob")
# log_mean_coeff = -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
# log_mean_coeff = -0.5*(3.14/2 * (self.beta_1 - self.beta_0) * (torch.sin(t/(3.14/2) + 3.14) - torch.sin(torch.tensor(3.14))) + t*self.beta_0)
# log_mean_coeff = -0.5 * (3.14 / 2 * (self.beta_1 - self.beta_0) * (
# torch.sin(t / (3.14 / 2) + 3.14)) + t * self.beta_0)
log_mean_coeff = -0.5 * (3.14 / 2 * (self.beta_1 - self.beta_0) * (
torch.sin(t / (3.14 / 2) + 3.14)) + t * (1+self.beta_0))
# print("log_mean_coeff:",log_mean_coeff)
mean = torch.exp(log_mean_coeff[:, None, None]) * x
std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return mean, std
# def marginal_prob_adj(self, x, t, u, la):
def marginal_prob_adj_ori(self, x, t, u, la):
# #print("VPSDE marginal_prob")
# print("in marginal_prob_adj_ori")
log_mean_coeff = -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
# print("x:",x.shape, 'log_mean_coeff:', log_mean_coeff.shape, "u:",u.shape, "la:", la.shape)
mean = torch.exp(log_mean_coeff[:, None]) * la
# mean = torch.exp(log_mean_coeff[:, None, None]) * x
# #print("mean:", mean.shape)
std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return mean, std
def marginal_prob_adj_exp(self, x, t, u, la):
temp = torch.tensor(self.beta_1 - self.beta_0+1).float()
log_part = torch.log(temp)
log_mean_coeff = -0.5 * (1/log_part)* torch.exp(t * log_part) - 0.5 * t * (self.beta_0-1)
mean = torch.exp(log_mean_coeff[:, None]) * la
std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return mean, std
# def marginal_prob_adj_cosine(self, x, t, u, la):
def marginal_prob_adj(self, x, t, u, la):
# #print("VPSDE marginal_prob")
log_mean_coeff = -0.5 * (3.14 / 2 * (self.beta_1 - self.beta_0) * (
torch.sin(t / (3.14 / 2) + 3.14)) + t * (1 + self.beta_0))
mean = torch.exp(log_mean_coeff[:, None]) * la
# mean = torch.exp(log_mean_coeff[:, None, None]) * x
# #print("mean:", mean.shape)
std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return mean, std
def marginal_prob_u(self, x, t, u, la):
# #print("VPSDE marginal_prob")
log_mean_coeff = -0.5 * (3.14 / 2 * (self.beta_1 - self.beta_0) * (
torch.sin(t / (3.14 / 2) + 3.14)) + t * (1 + self.beta_0))
mean = torch.exp(log_mean_coeff[:, None, None]) * u
# mean = torch.exp(log_mean_coeff[:, None, None]) * x
# #print("mean:", mean.shape)
std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return mean, std
def marginal_prob_std_fast(self, x, t):
log_mean_coeff = -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return std
def marginal_prob_std_fast2(self, x, t):
log_mean_coeff = -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return std
def prior_sampling(self, shape):
return torch.randn(*shape)
def prior_sampling_sym(self, shape):
x = torch.randn(*shape).triu(1)
return x + x.transpose(-1,-2)
def prior_sampling_sym2(self, shape):
# #print("shape:", shape)
for i in range(shape[0]):
m = torch.tensor(ortho_group.rvs(dim=shape[-1]))
m = m.unsqueeze(0)
if i==0:
vec = m
else:
vec = torch.concat((vec,m), dim=0)
vec = vec.float()
vec_T = torch.transpose(vec, -1,-2)
z = torch.randn(shape)
eye = torch.eye(shape[-1])
eye = eye.unsqueeze(0)
eye = eye.repeat(shape[0], 1, 1)
z = z * eye
z = torch.bmm(torch.bmm(vec, z), vec_T) * np.sqrt(z.shape[-1])
z = z.triu(1)
return z + z.transpose(-1,-2)
def prior_sampling_sym3(self, shape, u):
z = torch.randn(shape)
return z
def prior_logp(self, z):
shape = z.shape
N = np.prod(shape[1:])
logps = -N / 2. * np.log(2 * np.pi) - torch.sum(z ** 2, dim=(1, 2)) / 2.
return logps
def discretize(self, x, t):
"""DDPM discretization."""
timestep = (t * (self.N - 1) / self.T).long()
beta = self.discrete_betas.to(x.device)[timestep]
alpha = self.alphas.to(x.device)[timestep]
sqrt_beta = torch.sqrt(beta)
f = torch.sqrt(alpha)[:, None, None] * x - x
G = sqrt_beta
return f, G
def transition(self, x, t, dt):
# -------- negative timestep dt --------
log_mean_coeff = 0.25 * dt * (2*self.beta_0 + (2*t + dt)*(self.beta_1 - self.beta_0) )
mean = torch.exp(-log_mean_coeff[:, None, None]) * x
std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return mean, std
class VESDE(SDE):
def __init__(self, sigma_min=0.01, sigma_max=50, N=1000):
"""Construct a Variance Exploding SDE.
Args:
sigma_min: smallest sigma.
sigma_max: largest sigma.
N: number of discretization steps
"""
super().__init__(N)
self.sigma_min = sigma_min
self.sigma_max = sigma_max
self.discrete_sigmas = torch.exp(torch.linspace(np.log(self.sigma_min), np.log(self.sigma_max), N))
self.N = N
@property
def T(self):
return 1
def sde(self, x, t, is_adj = True):
sigma = self.sigma_min * (self.sigma_max / self.sigma_min) ** t
drift = torch.zeros_like(x)
diffusion = sigma * torch.sqrt(torch.tensor(2 * (np.log(self.sigma_max) - np.log(self.sigma_min)),
device=t.device))
return drift, diffusion
def marginal_prob(self, x, t):
std = self.sigma_min * (self.sigma_max / self.sigma_min) ** t
mean = x
return mean, std
def marginal_prob_adj(self, x, t, u, la):
std = self.sigma_min * (self.sigma_max / self.sigma_min) ** t
# mean = x
mean = la
return mean, std
# def marginal_prob_adj(self, x, t, u, la):
# # #print("VPSDE marginal_prob")
#
# log_mean_coeff = -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
# # #print("adj:", x.shape)
# # #print("log_mean_coeff:",log_mean_coeff.shape)
# la = torch.exp(log_mean_coeff[:, None, None]) * la
# u_T = torch.transpose(u, -1, -2)
# mean = torch.bmm(torch.bmm(u, la), u_T) * np.sqrt(la.shape[-1])
#
#
# # mean = torch.exp(log_mean_coeff[:, None, None]) * x
# # #print("mean:", mean.shape)
# std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
# return mean, std
def prior_sampling(self, shape):
return torch.randn(*shape)
def prior_sampling_sym(self, shape):
x = torch.randn(*shape).triu(1)
x = x + x.transpose(-1,-2)
return x
def prior_sampling_sym2(self, shape):
#print("shape:", shape)
for i in range(shape[0]):
m = torch.tensor(ortho_group.rvs(dim=shape[-1]))
m = m.unsqueeze(0)
if i==0:
vec = m
else:
vec = torch.concat((vec,m), dim=0)
vec = vec.float()
vec_T = torch.transpose(vec, -1,-2)
z = torch.randn(shape)
eye = torch.eye(shape[-1])
eye = eye.unsqueeze(0)
eye = eye.repeat(shape[0], 1, 1)
z = z * eye
# #print("z:", z.shape)
# #print("vec:", vec.shape, "vec_T:",vec_T.shape)
# temp = np.sqrt(z.shape[-1])
# #print("temp:",temp)
z = torch.bmm(torch.bmm(vec, z), vec_T) * np.sqrt(z.shape[-1])
z = z.triu(1)
return z + z.transpose(-1,-2)
# x = torch.randn(*shape).triu(1)
# #print("x:", x.shape)
# return x + x.transpose(-1,-2)
def prior_logp(self, z):
shape = z.shape
N = np.prod(shape[1:])
return -N / 2. * np.log(2 * np.pi * self.sigma_max ** 2) - torch.sum(z ** 2, dim=(1, 2, 3)) / (2 * self.sigma_max ** 2)
def discretize(self, x, t):
"""SMLD(NCSN) discretization."""
timestep = (t * (self.N - 1) / self.T).long()
sigma = self.discrete_sigmas.to(t.device)[timestep]
adjacent_sigma = torch.where(timestep == 0, torch.zeros_like(t),
self.discrete_sigmas[timestep - 1].to(t.device))
f = torch.zeros_like(x)
G = torch.sqrt(sigma ** 2 - adjacent_sigma ** 2)
return f, G
def transition(self, x, t, dt):
# -------- negative timestep dt --------
std = torch.square(self.sigma_min * (self.sigma_max / self.sigma_min) ** t) - \
torch.square(self.sigma_min * (self.sigma_max / self.sigma_min) ** (t + dt))
std = torch.sqrt(std)
mean = x
return mean, std
class subVPSDE(SDE):
def __init__(self, beta_min=0.1, beta_max=20, N=1000):
"""Construct the sub-VP SDE that excels at likelihoods.
Args:
beta_min: value of beta(0)
beta_max: value of beta(1)
N: number of discretization steps
"""
super().__init__(N)
self.beta_0 = beta_min
self.beta_1 = beta_max
self.N = N
self.discrete_betas = torch.linspace(beta_min / N, beta_max / N, N)
self.alphas = 1. - self.discrete_betas
@property
def T(self):
return 1
def sde(self, x, t):
beta_t = self.beta_0 + t * (self.beta_1 - self.beta_0)
drift = -0.5 * beta_t[:, None, None] * x
discount = 1. - torch.exp(-2 * self.beta_0 * t - (self.beta_1 - self.beta_0) * t ** 2)
diffusion = torch.sqrt(beta_t * discount)
return drift, diffusion
def marginal_prob(self, x, t):
log_mean_coeff = -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
mean = torch.exp(log_mean_coeff)[:, None, None] * x
std = 1 - torch.exp(2. * log_mean_coeff)
return mean, std
def prior_sampling(self, shape):
return torch.randn(*shape)
def prior_sampling_sym(self, shape):
x = torch.randn(*shape).triu(1)
return x + x.transpose(-1,-2)
def prior_logp(self, z):
shape = z.shape
N = np.prod(shape[1:])
return -N / 2. * np.log(2 * np.pi) - torch.sum(z ** 2, dim=(1, 2, 3)) / 2.