🔔 ALL models are available for non-commercial research purposes only.
To check the detail of insightface python package, please see here.
To install: pip install -U insightface
To use the specific model pack:
model_pack_name = 'buffalo_l'
app = FaceAnalysis(name=model_pack_name)
Name in bold is the default model pack in latest version.
Name | Detection Model | Recognition Model | Alignment | Attributes | Model-Size |
---|---|---|---|---|---|
antelopev2 | RetinaFace-10GF | ResNet100@Glint360K | 2d106 & 3d68 | Gender&Age | 407MB |
buffalo_l | RetinaFace-10GF | ResNet50@WebFace600K | 2d106 & 3d68 | Gender&Age | 326MB |
buffalo_m | RetinaFace-2.5GF | ResNet50@WebFace600K | 2d106 & 3d68 | Gender&Age | 313MB |
buffalo_s | RetinaFace-500MF | MBF@WebFace600K | 2d106 & 3d68 | Gender&Age | 159MB |
buffalo_sc | RetinaFace-500MF | MBF@WebFace600K | - | - | 16MB |
Name | MR-ALL | African | Caucasian | South Asian | East Asian | LFW | CFP-FP | AgeDB-30 | IJB-C(E4) |
---|---|---|---|---|---|---|---|---|---|
buffalo_l | 91.25 | 90.29 | 94.70 | 93.16 | 74.96 | 99.83 | 99.33 | 98.23 | 97.25 |
buffalo_s | 71.87 | 69.45 | 80.45 | 73.39 | 51.03 | 99.70 | 98.00 | 96.58 | 95.02 |
buffalo_m has the same accuracy with buffalo_l.
buffalo_sc has the same accuracy with buffalo_s.
(Note that almost all ONNX models in our model_zoo can be called by python library.)
The default training loss is margin based softmax if not specified.
MFN
: MobileFaceNet
MS1MV2
: MS1M-ArcFace
MS1MV3
: MS1M-RetinaFace
MS1M_MegaFace
: MS1MV2+MegaFace_train
_pfc
: using Partial FC, with sample-ratio=0.1
MegaFace
: MegaFace identification test, with gallery=1e6.
IJBC
: IJBC 1:1 test, under FAR<=1e-4.
BDrive
: BaiduDrive
GDrive
: GoogleDrive
Backbone | Dataset | Method | LFW | CFP-FP | AgeDB-30 | MegaFace | Link. |
---|---|---|---|---|---|---|---|
R100 (mxnet) | MS1MV2 | ArcFace | 99.77 | 98.27 | 98.28 | 98.47 | BDrive, GDrive |
MFN (mxnet) | MS1MV1 | ArcFace | 99.50 | 88.94 | 95.91 | - | BDrive, GDrive |
MFN (paddle) | MS1MV2 | ArcFace | 99.45 | 93.43 | 96.13 | - | pretrained model, inference model |
iResNet50 (paddle) | MS1MV2 | ArcFace | 99.73 | 97.43 | 97.88 | - | pretrained model, inference model |
Backbone | Dataset | MR-ALL | African | Caucasian | South Asian | East Asian | Link(onnx) |
---|---|---|---|---|---|---|---|
R100 | Casia | 42.735 | 39.666 | 53.933 | 47.807 | 21.572 | GDrive |
R100 | MS1MV2 | 80.725 | 79.117 | 87.176 | 85.501 | 55.807 | GDrive |
R18 | MS1MV3 | 68.326 | 62.613 | 75.125 | 70.213 | 43.859 | GDrive |
R34 | MS1MV3 | 77.365 | 71.644 | 83.291 | 80.084 | 53.712 | GDrive |
R50 | MS1MV3 | 80.533 | 75.488 | 86.115 | 84.305 | 57.352 | GDrive |
R100 | MS1MV3 | 84.312 | 81.083 | 89.040 | 88.082 | 62.193 | GDrive |
R18 | Glint360K | 72.074 | 68.230 | 80.575 | 75.852 | 47.831 | GDrive |
R34 | Glint360K | 83.015 | 79.907 | 88.620 | 86.815 | 60.604 | GDrive |
R50 | Glint360K | 87.077 | 85.272 | 91.617 | 90.541 | 66.813 | GDrive |
R100 | Glint360K | 90.659 | 89.488 | 94.285 | 93.434 | 72.528 | GDrive |
Dataset | MR-ALL | African | Caucasian | South Asian | East Asian | LFW | CFP-FP | AgeDB-30 | IJB-C(E4) | Link(onnx) |
---|---|---|---|---|---|---|---|---|---|---|
CISIA | 36.794 | 42.550 | 55.825 | 49.618 | 19.611 | 99.450 | 95.214 | 94.900 | 87.220 | GDrive |
CISIA_pfc | 37.107 | 38.934 | 53.823 | 48.674 | 19.927 | 99.367 | 95.429 | 94.600 | 84.970 | GDrive |
VGG2 | 38.578 | 35.259 | 54.304 | 44.081 | 24.095 | 99.550 | 97.410 | 95.080 | 91.220 | GDrive |
VGG2_pfc | 40.673 | 36.767 | 60.180 | 49.039 | 24.255 | 99.683 | 98.529 | 95.400 | 92.490 | GDrive |
GlintAsia | 62.663 | 49.531 | 64.829 | 57.984 | 61.743 | 99.583 | 93.186 | 95.400 | 91.500 | GDrive |
GlintAsia_pfc | 63.149 | 50.366 | 65.227 | 57.936 | 61.820 | 99.650 | 93.029 | 95.233 | 91.140 | GDrive |
MS1MV2 | 77.696 | 74.596 | 84.126 | 82.041 | 51.105 | 99.833 | 98.083 | 98.083 | 96.140 | GDrive |
MS1MV2_pfc | 77.738 | 74.728 | 84.883 | 82.798 | 52.507 | 99.783 | 98.071 | 98.017 | 96.080 | GDrive |
MS1M_MegaFace | 78.372 | 74.138 | 82.251 | 77.223 | 60.203 | 99.750 | 97.557 | 97.400 | 95.350 | GDrive |
MS1M_MegaFace_pfc | 78.773 | 73.690 | 82.947 | 78.793 | 57.566 | 99.800 | 97.870 | 97.733 | 95.400 | GDrive |
MS1MV3 | 82.522 | 77.172 | 87.028 | 86.006 | 60.625 | 99.800 | 98.529 | 98.267 | 96.580 | GDrive |
MS1MV3_pfc | 81.683 | 78.126 | 87.286 | 85.542 | 58.925 | 99.800 | 98.443 | 98.167 | 96.430 | GDrive |
Glint360k | 86.789 | 84.749 | 91.414 | 90.088 | 66.168 | 99.817 | 99.143 | 98.450 | 97.130 | GDrive |
Glint360k_pfc | 87.077 | 85.272 | 91.616 | 90.541 | 66.813 | 99.817 | 99.143 | 98.450 | 97.020 | GDrive |
WebFace600K | 90.566 | 89.355 | 94.177 | 92.358 | 73.852 | 99.800 | 99.200 | 98.100 | 97.120 | GDrive |
WebFace600K_pfc | 89.951 | 89.301 | 94.016 | 92.381 | 73.007 | 99.817 | 99.143 | 98.117 | 97.010 | GDrive |
Average | 69.247 | 65.908 | 77.121 | 72.819 | 52.014 | 99.706 | 97.374 | 96.962 | 93.925 | |
Average_pfc | 69.519 | 65.898 | 77.497 | 73.213 | 51.853 | 99.715 | 97.457 | 96.965 | 93.818 |
FLOPS
: 450M FLOPs
Model-Size
: 13MB
Dataset | MR-ALL | African | Caucasian | South Asian | East Asian | LFW | CFP-FP | AgeDB-30 | IJB-C(E4) | Link(onnx) |
---|---|---|---|---|---|---|---|---|---|---|
WebFace600K | 71.865 | 69.449 | 80.454 | 73.394 | 51.026 | 99.70 | 98.00 | 96.58 | 95.02 | - |
In RetinaFace, mAP was evaluated with multi-scale testing.
m025
: means MobileNet-0.25
Impelmentation | Easy-Set | Medium-Set | Hard-Set | Link |
---|---|---|---|---|
RetinaFace-R50 | 96.5 | 95.6 | 90.4 | BDrive, GDrive |
RetinaFace-m025(yangfly) | - | - | 82.5 | BDrive(nzof), GDrive |
BlazeFace-FPN-SSH (paddle) | 91.9 | 89.8 | 81.7% | pretrained model, inference model |
In SCRFD, mAP was evaluated with single scale testing, VGA resolution.
2.5G
: means the model cost 2.5G
FLOPs while the input image is in VGA(640x480) resolution.
_KPS
: means this model can detect five facial keypoints.
Name | Easy | Medium | Hard | FLOPs | Params(M) | Infer(ms) | Link(pth) |
---|---|---|---|---|---|---|---|
SCRFD_500M | 90.57 | 88.12 | 68.51 | 500M | 0.57 | 3.6 | GDrive |
SCRFD_1G | 92.38 | 90.57 | 74.80 | 1G | 0.64 | 4.1 | GDrive |
SCRFD_2.5G | 93.78 | 92.16 | 77.87 | 2.5G | 0.67 | 4.2 | GDrive |
SCRFD_10G | 95.16 | 93.87 | 83.05 | 10G | 3.86 | 4.9 | GDrive |
SCRFD_34G | 96.06 | 94.92 | 85.29 | 34G | 9.80 | 11.7 | GDrive |
SCRFD_500M_KPS | 90.97 | 88.44 | 69.49 | 500M | 0.57 | 3.6 | GDrive |
SCRFD_2.5G_KPS | 93.80 | 92.02 | 77.13 | 2.5G | 0.82 | 4.3 | GDrive |
SCRFD_10G_KPS | 95.40 | 94.01 | 82.80 | 10G | 4.23 | 5.0 | GDrive |
Impelmentation | Points | Backbone | Params(M) | Link(onnx) |
---|---|---|---|---|
Coordinate-regression | 106 | MobileNet-0.5 | 1.2 | GDrive |
Impelmentation | Points | Backbone | Params(M) | Link(onnx) |
---|---|---|---|---|
- | 68 | ResNet-50 | 34.2 | GDrive |
Training-Set | Backbone | Params(M) | Link(onnx) |
---|---|---|---|
CelebA | MobileNet-0.25 | 0.3 | GDrive |