forked from Neon8988/LigandDiff
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
183 lines (154 loc) · 6.68 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import argparse
import os
import numpy as np
import tempfile
import torch
from src import const
from src import utils
from src.lightning import DDPM
from torch_geometric.loader import DataLoader
from torch_geometric.data import Data
from sampling import reform_data
from torch_scatter import scatter_add
from src.molecule_builder import build_mol,extract_ligand,sanitycheck,write_xyz_file
from molSimplify.Classes.mol3D import mol3D
from molSimplify.Classes.ligand import ligand_breakdown
parser = argparse.ArgumentParser()
parser.add_argument('--outdir', type=str)
parser.add_argument('--model', type=str)
parser.add_argument('--complex', type=str)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--n_samples', type=int, default=1)
parser.add_argument('--ligand_sizes', type=str, default='random')
atom2idx=const.ATOM2IDX
idx2atom=const.IDX2ATOM
charges=const.CHARGES
num_atoms_type=const.NUMBER_OF_ATOM_TYPES
metal_list=const.metals
def reform_pos(xyz_file):
metal_index = None
with open(xyz_file, 'r') as file:
lines = file.readlines()
for i, line in enumerate(lines):
if line.strip().startswith(tuple(metal_list)):
metal_index = i
break
if metal_index is not None:
lines.insert(2, lines.pop(metal_index))
with open(f'{xyz_file[:-4]}_re.xyz', 'w') as file:
file.writelines(lines)
def parse_complex(filename):
label=filename[:-4]
data_list=[]
ele=[]
pos=[]
nuclear_charges=[]
H_list=[]# store H atoms, maybe add them back later
noH_list=[]
with open(filename, 'r') as f:
lines=f.readlines()
for i in lines[3:]:
if i.split()[0] =='H':
H_list.append(i)
else:
noH_list.append(i)
ele.append(atom2idx[i.split()[0]])
nuclear_charges.append(charges[i.split()[0]])
pos.append([float(j) for j in i.split()[1:]])
noH_list.insert(0,lines[2])
pos.insert(0,[float(j) for j in lines[2].split()[1:]]) # add metal position
nuclear_charges.insert(0,charges[lines[2].split()[0]]) # add metal charge
one_hot=torch.zeros(len(ele),8)
one_hot[range(len(ele)),ele]=1
one_hot=torch.cat([torch.zeros(8).view(1,-1),one_hot],dim=0)
num_atoms=len(pos)
pos=torch.tensor(pos)
nuclear_charges=torch.tensor(nuclear_charges)
with tempfile.NamedTemporaryFile() as tmp:
tmp_file = tmp.name
with open(f'{tmp_file}.xyz', 'w') as file:
file.write(f"{num_atoms}\n\n")
for sublist in noH_list:
file.write(f"{sublist}")
mol=mol3D()
mol.readfromxyz(f'{tmp_file}.xyz')
liglist,ligdents,ligcon=ligand_breakdown(mol,silent=True,BondedOct=True)
f_group=torch.zeros(num_atoms)
for i in range(len(liglist)):
f_group[liglist[i]]=i+1
ligand_group=torch.zeros((num_atoms,7) )
ligand_group[range(len(f_group.long())),f_group.long()]=1
for k in range(len(liglist)):
ligand=torch.zeros(num_atoms)
for i in liglist[k]:
ligand[i]=1
context = 1-ligand
data = Data(pos=pos,label=label, context=context, nuclear_charges=nuclear_charges,ligand_diff=ligand, num_atoms=num_atoms, one_hot=one_hot,ligand_group=ligand_group[:,1:])
data_list.append(data)
return data_list
def read_molecule(filename):
if not filename.endswith('.xyz'):
raise Exception('Unknown file extension, only .xyz files are supported')
with open(filename, 'r') as file:
metal = file.readlines()[2]
if metal.split()[0] not in metal_list:
reform_pos(filename)
print(f'Metal is not located at the begining of the coordinates.The {filename} is rearranged and saved to {filename[:-4]}_re.xyz')
return parse_complex(f'{filename[:-4]}_re.xyz')
else:
return parse_complex(filename)
def main(outdir,model,complex,batch_size=64,n_samples=1,ligand_sizes='random'):
"""
Generate multiple samples for each ligand in a given complex
Args:
outdir: path to save generated complexes
n_samples: number of samples to generate for each ligand
ligand_size: fix the ligand size or randomly sample from 6 to 20
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model
ddpm = DDPM.load_from_checkpoint(model, map_location=device).eval().to(device)
dataset=read_molecule(complex)*n_samples
print(f'{len(dataset)} samples will be generated')
data=reform_data(dataset,device,ligand_sizes=ligand_sizes)
batch_size=min(batch_size,len(dataset))
os.makedirs(outdir, exist_ok=True)
num=0
with torch.no_grad():
dataloader = DataLoader(data, batch_size=batch_size, shuffle=False)
for b, data in enumerate(dataloader):
pos_orginal=data['pos']
batch_seg=data.batch
batch_size=torch.max(batch_seg)+1
ligand_diff = data['ligand_diff'].view(-1,1)
context=data['context'].view(-1,1)
metals=[data['nuclear_charges'][batch_seg==i][0] for i in range(batch_size)]
fixed_mean=scatter_add(pos_orginal*context, batch_seg, dim=0)/scatter_add(context, batch_seg, dim=0).view(-1,1)
natoms=data['num_atoms']
try:
chain_batch = ddpm.sample_chain(data, keep_frames=100)
except utils.FoundNaNException as e:
continue
x = chain_batch[0][ :, :3]
x=x+fixed_mean[batch_seg]
one_hot = chain_batch[0][ :, 3:]
assert one_hot.shape[1]==ddpm.in_node_nf
ligands=extract_ligand(x,one_hot,ligand_diff,batch_seg)
rdmols=[build_mol(*graph) for graph in ligands]
(validity, connectivity), (valid, connected_mol,connected_index) = ddpm.ligand_metrics.evaluate_rdmols(rdmols)
if connectivity!=0:
assert max(connected_index)<=batch_size
for i in connected_index:
positions=x[batch_seg==i]
atom_types=one_hot[batch_seg==i].argmax(dim=1)
metal=metals[i]
overlapping,liglist=sanitycheck(positions, atom_types,metal)
total_atoms=sum(len(lig) for lig in liglist)+1
if not overlapping and total_atoms ==natoms[i].item():
num+=1
write_xyz_file(positions, atom_types,f'{outdir}/{b}_{i}', metal)
print('Done')
print(f'Totally {num} valid complexes are generated and saved in {outdir}')
if __name__ == '__main__':
args = parser.parse_args()
main(args.outdir,args.model,args.complex,args.batch_size,args.n_samples,args.ligand_sizes)