-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathold_utils.py
997 lines (798 loc) · 43.7 KB
/
old_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
import tqdm
import pandas as pd
import copy
from collections import defaultdict
from tqdm import tqdm
tqdm.pandas()
import re
from collections import Counter
import numpy as np
from scipy.stats import kurtosis, skew, hmean
from scipy.stats.mstats import winsorize
from numpy import percentile
from scipy.stats import gmean, trim_mean, entropy
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
'''
Reconstruction
'''
class EssayConstructor:
def processingInputs(self,currTextInput):
# Where the essay content will be stored
essayText = ""
# Produces the essay
for Input in currTextInput.values:
# Input[0] = activity
# Input[1] = cursor_position
# Input[2] = text_change
# Input[3] = id
# If activity = Replace
if Input[0] == 'Replace':
# splits text_change at ' => '
replaceTxt = Input[2].split(' => ')
# DONT TOUCH
essayText = essayText[:Input[1] - len(replaceTxt[1])] + replaceTxt[1] + essayText[Input[1] - len(replaceTxt[1]) + len(replaceTxt[0]):]
continue
# If activity = Paste
if Input[0] == 'Paste':
# DONT TOUCH
essayText = essayText[:Input[1] - len(Input[2])] + Input[2] + essayText[Input[1] - len(Input[2]):]
continue
# If activity = Remove/Cut
if Input[0] == 'Remove/Cut':
# DONT TOUCH
essayText = essayText[:Input[1]] + essayText[Input[1] + len(Input[2]):]
continue
# If activity = Move...
if "M" in Input[0]:
# Gets rid of the "Move from to" text
croppedTxt = Input[0][10:]
# Splits cropped text by ' To '
splitTxt = croppedTxt.split(' To ')
# Splits split text again by ', ' for each item
valueArr = [item.split(', ') for item in splitTxt]
# Move from [2, 4] To [5, 7] = (2, 4, 5, 7)
moveData = (int(valueArr[0][0][1:]), int(valueArr[0][1][:-1]), int(valueArr[1][0][1:]), int(valueArr[1][1][:-1]))
# Skip if someone manages to activiate this by moving to same place
if moveData[0] != moveData[2]:
# Check if they move text forward in essay (they are different)
if moveData[0] < moveData[2]:
# DONT TOUCH
essayText = essayText[:moveData[0]] + essayText[moveData[1]:moveData[3]] + essayText[moveData[0]:moveData[1]] + essayText[moveData[3]:]
else:
# DONT TOUCH
essayText = essayText[:moveData[2]] + essayText[moveData[0]:moveData[1]] + essayText[moveData[2]:moveData[0]] + essayText[moveData[1]:]
continue
# If activity = input
# DONT TOUCH
essayText = essayText[:Input[1] - len(Input[2])] + Input[2] + essayText[Input[1] - len(Input[2]):]
return essayText
def getEssays(self,df):
# Copy required columns
textInputDf = copy.deepcopy(df[['id', 'activity', 'cursor_position', 'text_change']])
# Get rid of text inputs that make no change
textInputDf = textInputDf[textInputDf.activity != 'Nonproduction']
# construct essay, fast
tqdm.pandas()
essay=textInputDf.groupby('id')[['activity','cursor_position', 'text_change']].progress_apply(lambda x: self.processingInputs(x))
# to dataframe
essayFrame=essay.to_frame().reset_index()
essayFrame.columns=['id','essay']
# Returns the essay series
return essayFrame
'''
Feat eng
'''
# Helper functions
def q1(x):
return x.quantile(0.25)
def q3(x):
return x.quantile(0.75)
AGGREGATIONS = [
'count', # Count of non-null values
'mean', # Mean (average)
'median', # Median (middle value)
'std', # Standard deviation
'min', # Minimum value
'max', # Maximum value
'sum', # Sum of values
'var', # Variance
'sem', # Standard error of the mean
'first', # First value
'last', # Last value
]
def split_essays_into_sentences(df):
essay_df = df
essay_df['id'] = essay_df.index
essay_df['sent'] = essay_df['essay'].apply(lambda x: re.split('\\.|\\?|\\!',x))
essay_df = essay_df.explode('sent')
essay_df['sent'] = essay_df['sent'].apply(lambda x: x.replace('\n','').strip())
# Number of characters in sentences
essay_df['sent_len'] = essay_df['sent'].apply(lambda x: len(x))
# Number of words in sentences
essay_df['sent_word_count'] = essay_df['sent'].apply(lambda x: len(x.split(' ')))
essay_df = essay_df[essay_df.sent_len!=0].reset_index(drop=True)
return essay_df
def compute_sentence_aggregations(df):
sent_agg_df = pd.concat(
[df[['id','sent_len']].groupby(['id']).agg(AGGREGATIONS), df[['id','sent_word_count']].groupby(['id']).agg(AGGREGATIONS)], axis=1
)
sent_agg_df.columns = ['_'.join(x) for x in sent_agg_df.columns]
sent_agg_df['id'] = sent_agg_df.index
sent_agg_df = sent_agg_df.reset_index(drop=True)
sent_agg_df.drop(columns=["sent_word_count_count"], inplace=True)
sent_agg_df = sent_agg_df.rename(columns={"sent_len_count":"sent_count"})
return sent_agg_df
def split_essays_into_paragraphs(df):
essay_df = df
essay_df['id'] = essay_df.index
essay_df['paragraph'] = essay_df['essay'].apply(lambda x: x.split('\n'))
essay_df = essay_df.explode('paragraph')
# Number of characters in paragraphs
essay_df['paragraph_len'] = essay_df['paragraph'].apply(lambda x: len(x))
# Number of words in paragraphs
essay_df['paragraph_word_count'] = essay_df['paragraph'].apply(lambda x: len(x.split(' ')))
essay_df = essay_df[essay_df.paragraph_len!=0].reset_index(drop=True)
return essay_df
def compute_paragraph_aggregations(df):
paragraph_agg_df = pd.concat(
[df[['id','paragraph_len']].groupby(['id']).agg(AGGREGATIONS), df[['id','paragraph_word_count']].groupby(['id']).agg(AGGREGATIONS)], axis=1
)
paragraph_agg_df.columns = ['_'.join(x) for x in paragraph_agg_df.columns]
paragraph_agg_df['id'] = paragraph_agg_df.index
paragraph_agg_df = paragraph_agg_df.reset_index(drop=True)
paragraph_agg_df.drop(columns=["paragraph_word_count_count"], inplace=True)
paragraph_agg_df = paragraph_agg_df.rename(columns={"paragraph_len_count":"paragraph_count"})
return paragraph_agg_df
class Preprocessor:
def __init__(self, seed):
self.seed = seed
self.activities = ['Input', 'Remove/Cut', 'Nonproduction', 'Replace', 'Paste']
self.events = ['q', 'Space', 'Backspace', 'Shift', 'ArrowRight', 'Leftclick', 'ArrowLeft', '.', ',',
'ArrowDown', 'ArrowUp', 'Enter', 'CapsLock', "'", 'Delete', 'Unidentified']
self.text_changes = ['q', ' ', 'NoChange', '.', ',', '\n', "'", '"', '-', '?', ';', '=', '/', '\\', ':']
self.punctuations = ['"', '.', ',', "'", '-', ';', ':', '?', '!', '<', '>', '/',
'@', '#', '$', '%', '^', '&', '*', '(', ')', '_', '+']
self.gaps = [1, 2, 3, 5, 10, 20, 50, 100]
self.idf = defaultdict(float)
def activity_counts(self, df):
tmp_df = df.groupby('id').agg({'activity': list}).reset_index()
ret = list()
for li in tqdm(tmp_df['activity'].values):
items = list(Counter(li).items())
di = dict()
for k in self.activities:
di[k] = 0
for item in items:
k, v = item[0], item[1]
if k in di:
di[k] = v
ret.append(di)
ret = pd.DataFrame(ret)
cols = [f'activity_{i}_count' for i in range(len(ret.columns))]
ret.columns = cols
cnts = ret.sum(1)
for col in cols:
if col in self.idf.keys():
idf = self.idf[col]
else:
idf = df.shape[0] / (ret[col].sum() + 1)
idf = np.log(idf)
self.idf[col] = idf
ret[col] = 1 + np.log(ret[col] / cnts)
ret[col] *= idf
return ret
def event_counts(self, df, colname):
tmp_df = df.groupby('id').agg({colname: list}).reset_index()
ret = list()
for li in tqdm(tmp_df[colname].values):
items = list(Counter(li).items())
di = dict()
for k in self.events:
di[k] = 0
for item in items:
k, v = item[0], item[1]
if k in di:
di[k] = v
ret.append(di)
ret = pd.DataFrame(ret)
cols = [f'{colname}_{i}_count' for i in range(len(ret.columns))]
ret.columns = cols
cnts = ret.sum(1)
for col in cols:
if col in self.idf.keys():
idf = self.idf[col]
else:
idf = df.shape[0] / (ret[col].sum() + 1)
idf = np.log(idf)
self.idf[col] = idf
ret[col] = 1 + np.log(ret[col] / cnts)
ret[col] *= idf
return ret
def text_change_counts(self, df):
tmp_df = df.groupby('id').agg({'text_change': list}).reset_index()
ret = list()
for li in tqdm(tmp_df['text_change'].values):
items = list(Counter(li).items())
di = dict()
for k in self.text_changes:
di[k] = 0
for item in items:
k, v = item[0], item[1]
if k in di:
di[k] = v
ret.append(di)
ret = pd.DataFrame(ret)
cols = [f'text_change_{i}_count' for i in range(len(ret.columns))]
ret.columns = cols
cnts = ret.sum(1)
for col in cols:
if col in self.idf.keys():
idf = self.idf[col]
else:
idf = df.shape[0] / (ret[col].sum() + 1)
idf = np.log(idf)
self.idf[col] = idf
ret[col] = 1 + np.log(ret[col] / cnts)
ret[col] *= idf
return ret
def match_punctuations(self, df):
tmp_df = df.groupby('id').agg({'down_event': list}).reset_index()
ret = list()
for li in tqdm(tmp_df['down_event'].values):
cnt = 0
items = list(Counter(li).items())
for item in items:
k, v = item[0], item[1]
if k in self.punctuations:
cnt += v
ret.append(cnt)
ret = pd.DataFrame({'punct_cnt': ret})
return ret
def get_input_words(self, df):
tmp_df = df[(~df['text_change'].str.contains('=>'))&(df['text_change'] != 'NoChange')].reset_index(drop=True)
tmp_df = tmp_df.groupby('id').agg({'text_change': list}).reset_index()
tmp_df['text_change'] = tmp_df['text_change'].apply(lambda x: ''.join(x))
tmp_df['text_change'] = tmp_df['text_change'].apply(lambda x: re.findall(r'q+', x))
tmp_df['input_word_count'] = tmp_df['text_change'].apply(len)
tmp_df['input_word_length_mean'] = tmp_df['text_change'].apply(lambda x: np.mean([len(i) for i in x] if len(x) > 0 else 0))
tmp_df['input_word_length_max'] = tmp_df['text_change'].apply(lambda x: np.max([len(i) for i in x] if len(x) > 0 else 0))
tmp_df['input_word_length_std'] = tmp_df['text_change'].apply(lambda x: np.std([len(i) for i in x] if len(x) > 0 else 0))
tmp_df.drop(['text_change'], axis=1, inplace=True)
return tmp_df
def make_feats(self, df):
feats = pd.DataFrame({'id': df['id'].unique().tolist()})
print("Engineering time data")
for gap in self.gaps:
df[f'up_time_shift{gap}'] = df.groupby('id')['up_time'].shift(gap)
df[f'action_time_gap{gap}'] = df['down_time'] - df[f'up_time_shift{gap}']
df.drop(columns=[f'up_time_shift{gap}' for gap in self.gaps], inplace=True)
print("Engineering cursor position data")
for gap in self.gaps:
df[f'cursor_position_shift{gap}'] = df.groupby('id')['cursor_position'].shift(gap)
df[f'cursor_position_change{gap}'] = df['cursor_position'] - df[f'cursor_position_shift{gap}']
df[f'cursor_position_abs_change{gap}'] = np.abs(df[f'cursor_position_change{gap}'])
df.drop(columns=[f'cursor_position_shift{gap}' for gap in self.gaps], inplace=True)
print("Engineering word count data")
for gap in self.gaps:
df[f'word_count_shift{gap}'] = df.groupby('id')['word_count'].shift(gap)
df[f'word_count_change{gap}'] = df['word_count'] - df[f'word_count_shift{gap}']
df[f'word_count_abs_change{gap}'] = np.abs(df[f'word_count_change{gap}'])
df.drop(columns=[f'word_count_shift{gap}' for gap in self.gaps], inplace=True)
print("Engineering statistical summaries for features")
feats_stat = [
('event_id', ['max']),
('up_time', ['max']),
('action_time', AGGREGATIONS),
('activity', ['nunique']),
('down_event', ['nunique']),
('up_event', ['nunique']),
('text_change', ['nunique']),
('cursor_position', ['nunique', 'max', 'quantile', 'sem', 'mean']),
('word_count', ['nunique', 'max', 'quantile', 'sem', 'mean'])]
for gap in self.gaps:
feats_stat.extend([
(f'action_time_gap{gap}', AGGREGATIONS),
(f'cursor_position_change{gap}', AGGREGATIONS),
(f'word_count_change{gap}', AGGREGATIONS)
])
pbar = tqdm(feats_stat)
for item in pbar:
colname, methods = item[0], item[1]
for method in methods:
pbar.set_postfix()
if isinstance(method, str):
method_name = method
else:
method_name = method.__name__
pbar.set_postfix(column=colname, method=method_name)
tmp_df = df.groupby(['id']).agg({colname: method}).reset_index().rename(columns={colname: f'{colname}_{method_name}'})
feats = feats.merge(tmp_df, on='id', how='left')
print("Engineering activity counts data")
tmp_df = self.activity_counts(df)
feats = pd.concat([feats, tmp_df], axis=1)
print("Engineering event counts data")
tmp_df = self.event_counts(df, 'down_event')
feats = pd.concat([feats, tmp_df], axis=1)
tmp_df = self.event_counts(df, 'up_event')
feats = pd.concat([feats, tmp_df], axis=1)
print("Engineering text change counts data")
tmp_df = self.text_change_counts(df)
feats = pd.concat([feats, tmp_df], axis=1)
print("Engineering punctuation counts data")
tmp_df = self.match_punctuations(df)
feats = pd.concat([feats, tmp_df], axis=1)
print("Engineering input words data")
tmp_df = self.get_input_words(df)
feats = pd.merge(feats, tmp_df, on='id', how='left')
print("Engineering ratios data")
feats['word_time_ratio'] = feats['word_count_max'] / feats['up_time_max']
feats['word_event_ratio'] = feats['word_count_max'] / feats['event_id_max']
feats['event_time_ratio'] = feats['event_id_max'] / feats['up_time_max']
feats['idle_time_ratio'] = feats['action_time_gap1_sum'] / feats['up_time_max']
return feats
'''
Feats from: https://www.kaggle.com/code/magnussesodia/writing-processes-feature-generation
'''
def get_word_counts(train):
word_counts = train.groupby(['id']).agg(final_word_count=('word_count', 'last'))
return word_counts
def get_session_length(sub_df):
start = np.clip(sub_df['down_time'].min(), 0, 1.8e6)
end = np.clip(sub_df['up_time'].max(), 0, 1.8e6) # clip times to within the 30 minute window, since there is some anomalous data
session_length_in_minutes = (end - start) * (1 / 1000) * (1 / 60)
return session_length_in_minutes
def get_keys_pressed_per_minute(train):
inputs_remove_cut = train[train['activity'].isin(['Input', 'Remove/Cut'])]
keys_pressed_per_minute = inputs_remove_cut.groupby(['id']).agg(keys_pressed_per_minute=('event_id', 'count'))
session_lengths = inputs_remove_cut.groupby(['id']).apply(get_session_length)
keys_pressed_per_minute['keys_pressed_per_minute'] = round(keys_pressed_per_minute['keys_pressed_per_minute'] / session_lengths, 2)
return keys_pressed_per_minute
# Define a pause as a period of time between the up_time of one event and the down_time of the following event that is greater than 2000 ms
# helper
def count_pauses(sub_df):
gap = sub_df['down_time'] - sub_df['up_time'].shift(1)
pauses = (gap > 2000).sum()
return pauses
def get_n_pauses(train):
n_pauses = train.groupby(['id']).apply(count_pauses).rename('n_pauses')
return n_pauses
# helper
def pause_proportion(sub_df):
gap = sub_df['down_time'] - sub_df['up_time'].shift(1)
total_pause_time = gap[gap > 2000].sum()
total_essay_time = sub_df['up_time'].max() - sub_df['down_time'].min()
proportion = round(total_pause_time / total_essay_time, 4)
return proportion
def get_pause_proportions(train):
pause_proportions = train.groupby(['id']).apply(pause_proportion).rename('pause_proportion')
return pause_proportions
# helper
def mean_pause_length(sub_df):
gap = sub_df['down_time'] - sub_df['up_time'].shift(1)
mean_pause_length = round(gap[gap > 2000].mean() / 1000, 2)
return mean_pause_length
def get_mean_pause_lengths(train):
mean_pause_lengths = train.groupby(['id']).apply(mean_pause_length).rename('mean_pause_length')
return mean_pause_lengths
# helper
def process_variance(sub_df):
bins = np.linspace(sub_df['down_time'].min(), sub_df['up_time'].max(), 11)
divisions = pd.cut(sub_df['down_time'], bins=bins, include_lowest=True, labels=range(1, 11))
production_deciles = sub_df.groupby(divisions).agg(n_events=('event_id', 'count'))
process_variance = np.std(production_deciles['n_events'], ddof=1)
return process_variance
def get_process_variances(train):
process_variances = train.groupby(['id']).apply(process_variance).rename('process_variance')
return process_variances
def gen_features(train):
ids = pd.DataFrame({'id': train['id'].unique()}).set_index('id')
word_counts = get_word_counts(train)
keys_pressed_per_minute = get_keys_pressed_per_minute(train)
n_pauses = get_n_pauses(train)
pause_proportions = get_pause_proportions(train)
mean_pause_lengths = get_mean_pause_lengths(train)
process_variances = get_process_variances(train)
X = pd.concat([ids,
word_counts,
keys_pressed_per_minute,
n_pauses,
pause_proportions,
mean_pause_lengths,
process_variances], axis=1)
X = X.reset_index()
return X
'''
https://www.kaggle.com/code/habedi/baseline-model-with-over-2000-features#2.2-Generating-new-features
'''
# Keeping the states of these objects global to reuse them in the test data
count_vect = CountVectorizer()
tfidf_vect = TfidfVectorizer()
def make_text_features(df, name="Train Logs"):
# Filter and reset index
filtered_df = df[(~df['text_change'].str.contains('=>')) & (df['text_change'] != 'NoChange')].reset_index(drop=True)
# Group and concatenate text changes
grouped_df = filtered_df.groupby('id')['text_change'].apply(''.join).reset_index()
# Find all occurrences of 'q+'
grouped_df['text_change'] = grouped_df['text_change'].apply(lambda x: re.findall(r'q+', x))
#tmp_df = df.groupby('id').agg({'text_change': list}).reset_index()
tmp_df = grouped_df
tmp_df['essay'] = tmp_df['text_change'].apply(lambda x: ' '.join(x))
tmp_df.drop(columns=['text_change'], inplace=True)
def count_encoding(essays_as_string, name=name):
"""Applies Count Encoding to the essay data and returns a DataFrame with prefixed column names."""
if name == "Train Logs":
features = count_vect.fit_transform(essays_as_string)
else:
features = count_vect.transform(essays_as_string)
feature_names = [f'bow_{name}' for name in count_vect.get_feature_names_out()]
return pd.DataFrame(features.toarray(), columns=feature_names)
def tfidf_encoding(essays_as_string, name=name):
"""Applies TF-IDF Encoding to the essay data and returns a DataFrame with prefixed column names."""
if name == "Train Logs":
features = tfidf_vect.fit_transform(essays_as_string)
else:
features = tfidf_vect.transform(essays_as_string)
feature_names = [f'tfidf_{name}' for name in tfidf_vect.get_feature_names_out()]
return pd.DataFrame(features.toarray(), columns=feature_names)
def custom_feature_engineering(essays):
"""Example custom feature: calculates the length of each essay with prefixed column name."""
return pd.DataFrame({'custom_length': [len(essay) for essay in essays]})
def merge_features(data):
"""Merges features from different methods into one DataFrame with the id column."""
essays_as_string = data['essay']
# Extract features
bow_df = count_encoding(essays_as_string)
tfidf_df = tfidf_encoding(essays_as_string)
custom_features_df = custom_feature_engineering(data['essay'])
# Merge all features
merged_features = pd.concat([data[['id']], bow_df, tfidf_df, custom_features_df], axis=1)
return merged_features
return merge_features(tmp_df)
def create_time_features(dfx):
df = dfx.copy()
new_columns = []
# Calculate action time in seconds
df['action_time_sec'] = (df['up_time'] - df['down_time']) / 1000.0
new_columns.append('action_time_sec')
# Time since last event
df['time_since_last_event'] = df.groupby('id')['down_time'].diff() / 1000.0
new_columns.append('time_since_last_event')
# Cumulative time of actions for each essay
df['cumulative_action_time'] = df.groupby('id')['action_time_sec'].cumsum()
new_columns.append('cumulative_action_time')
# Time differences between down and up events
for lag in [1, 2, 3, 5, 10]:
col_down = f'time_diff_down_{lag}'
col_up = f'time_diff_up_{lag}'
df[col_down] = df.groupby('id')['down_time'].diff(periods=lag) / 1000.0
df[col_up] = df.groupby('id')['up_time'].diff(periods=lag) / 1000.0
new_columns.extend([col_down, col_up])
# Count of events per essay
df['event_count'] = df.groupby('id')['event_id'].transform('count')
new_columns.append('event_count')
# Average, max, min, and std of action time per essay
stats_features = ['mean_action_time', 'max_action_time', 'min_action_time', 'std_action_time']
for feature in stats_features:
df[feature] = df.groupby('id')['action_time_sec'].transform(feature.split('_')[0])
new_columns.append(feature)
# Total word count per essay
df['total_word_count'] = df.groupby('id')['word_count'].transform('max')
new_columns.append('total_word_count')
# Rolling window features (e.g., rolling mean and std of action times)
window_sizes = [5, 10, 15, 20, 30, 50]
for window in window_sizes:
rolling_mean = f'rolling_mean_{window}'
rolling_std = f'rolling_std_{window}'
df[rolling_mean] = df.groupby('id')['action_time_sec'].transform(lambda x: x.rolling(window).mean())
df[rolling_std] = df.groupby('id')['action_time_sec'].transform(lambda x: x.rolling(window).std())
new_columns.extend([rolling_mean, rolling_std])
return df, new_columns
def create_additional_time_features(dfx):
# Copying the original DataFrame
df = dfx.copy()
# Creating new features
df['up_time_lagged'] = df.groupby('id')['up_time'].shift(1).fillna(df['down_time'])
df['time_diff'] = abs(df['down_time'] - df['up_time_lagged']) / 1000
# Grouping by 'id'
grouped = df.groupby('id')
# Aggregating and computing new features
aggregates = {
'largest_latency': grouped['time_diff'].max(),
'smallest_latency': grouped['time_diff'].min(),
'median_latency': grouped['time_diff'].median(),
'initial_pause': grouped['down_time'].first() / 1000
}
# Adding boolean counts for pauses
for pause in [0.5, 1, 1.5, 2, 3, 5, 10, 20]:
aggregates[f'pauses_{pause}_sec'] = grouped['time_diff'].apply(lambda x: ((x > pause) & (x < pause + 0.5)).sum())
# Creating a new DataFrame from the aggregates
features_df = pd.DataFrame(aggregates)
# Getting the names of the new columns
new_columns = features_df.columns.tolist()
return features_df, new_columns
# Used some code from: https://www.kaggle.com/code/olyatsimboy/towards-tf-idf-in-logs-features
class FeatureMaker:
def __init__(self):
"""Initializes the FeatureMaker class."""
# Punctuation characters
self.punctuations = ['"', '.', ',', "'", '-', ';', ':', '?', '!', '<', '>', '/',
'@', '#', '$', '%', '^', '&', '*', '(', ')', '_', '+']
# For making gap-based features
self.gaps = [1, 2, 3, 4, 5, 10, 20, 50, 100]
# Original features to be used for feature engineering
self.categorical_features = ['activity', 'down_event', 'up_event', 'text_change']
self.discrete_numeric_features = ['event_id', 'cursor_position', 'word_count', 'down_time', 'up_time',
'action_time']
# Aggregation functions to be used for feature engineering of continuous features
self.aggregation_functions = [
'count', # Count of non-null values
'mean', # Mean (average)
'median', # Median (middle value)
'std', # Standard deviation
'min', # Minimum value
'max', # Maximum value
'sum', # Sum of values
'var', # Variance
lambda x: x.quantile(0.25), # 25th percentile
lambda x: x.quantile(0.75), # 75th percentile
lambda x: x.max() - x.min(), # Range (max - min)
lambda x: x.nunique(), # Number of unique values
lambda x: x.mode()[0] if not x.mode().empty else np.NaN, # Mode (most frequent value)
'first', # First value
'last', # Last value
lambda x: np.std(x) / np.mean(x) if np.mean(x) != 0 else np.NaN, # Coefficient of variation
lambda x: x.quantile(0.75) - x.quantile(0.25), # Interquartile range
lambda x: np.sum(x ** 2), # Sum of squares
lambda x: gmean(x.dropna()), # Geometric mean
lambda x: np.prod(x), # Product of values
lambda x: np.sqrt(np.mean(x ** 2)), # Root mean square
lambda x: trim_mean(x, 0.1), # Trimmed mean (10% trimmed)
lambda x: x.cummax().iloc[-1], # Cumulative maximum
lambda x: x.cummin().iloc[-1], # Cumulative minimum
lambda x: entropy(x.value_counts(normalize=True), base=2), # Entropy
# Additional aggregation functions
'skew', # Skewness
kurtosis, # Kurtosis
hmean, # Harmonic mean
lambda x: percentile(x, 10), # 10th percentile
lambda x: percentile(x, 90), # 90th percentile
lambda x: np.mean(np.diff(x)), # Mean of differences
lambda x: np.median(np.abs(x - np.median(x))), # Median absolute deviation
lambda x: np.max(np.abs(x)), # Max absolute value
lambda x: np.min(np.abs(x)), # Min absolute value
lambda x: np.mean(np.abs(x)), # Mean absolute value
lambda x: np.var(np.abs(x)), # Variance of absolute values
lambda x: np.std(np.abs(x)), # Standard deviation of absolute values
lambda x: skew(x.dropna()), # Skewness with NaN handling
lambda x: kurtosis(x.dropna()), # Kurtosis with NaN handling
lambda x: winsorize(x, limits=[0.05, 0.05]).mean(), # Winsorized mean
lambda x: np.ptp(x), # Peak to peak (max - min)
lambda x: np.product(np.unique(x)), # Product of unique values
lambda x: np.sum(np.unique(x)), # Sum of unique values
lambda x: np.mean(x) / np.std(x) if np.std(x) != 0 else np.NaN, # Signal to noise ratio
lambda x: np.sqrt(np.var(x)), # Root of variance
lambda x: np.log(np.sum(np.exp(x))) # Log-sum-exp
]
# Aggregation functions to be used for feature engineering of categorical features
self.categorical_aggregations = [
'count', # Count of non-null entries
lambda x: x.value_counts().max(), # Count of the most frequent value (mode)
'nunique', # Number of unique values
lambda x: entropy(x.value_counts(normalize=True), base=2) if x.nunique() > 1 else 0, # Entropy
lambda x: x.value_counts(normalize=True).max(), # Percentage of the most common value
lambda x: x.value_counts(normalize=True).nlargest(2).iloc[-1] if x.nunique() > 1 else 0,
# Percentage of the second most common value
lambda x: len(x) - x.nunique(), # Redundancy count (total count minus unique count)
lambda x: (x == x.mode()[0]).sum() if not x.mode().empty else 0, # Count of occurrences of the mode
lambda x: (x == x.shift()).sum(), # Count of consecutive duplicate values
lambda x: x.apply(lambda v: len(str(v))).max(), # Max length of the string representation of the categories
lambda x: x.apply(lambda v: len(str(v))).min() # Min length of the string representation of the categories
]
def match_punctuations(self, df):
tmp_df = df.groupby('id').agg({'down_event': list}).reset_index()
ret = list()
for li in tqdm(tmp_df['down_event'].values):
cnt = 0
items = list(Counter(li).items())
for item in items:
k, v = item[0], item[1]
if k in self.punctuations:
cnt += v
ret.append(cnt)
ret = pd.DataFrame({'punct_cnt': ret})
return ret
def get_input_words(self, df):
# Filter and reset index
filtered_df = df[(~df['text_change'].str.contains('=>')) & (df['text_change'] != 'NoChange')].reset_index(drop=True)
# Group and concatenate text changes
grouped_df = filtered_df.groupby('id')['text_change'].apply(''.join).reset_index()
# Find all occurrences of 'q+'
grouped_df['text_change'] = grouped_df['text_change'].apply(lambda x: re.findall(r'q+', x))
# Define a helper function to calculate various statistics
def calculate_statistics(text_list):
lengths = [len(i) for i in text_list]
if not lengths:
return [0] * 16
return [
len(text_list), # word count
np.mean(lengths), # mean length
np.max(lengths), # max length
np.std(lengths), # std deviation
np.min(lengths), # min length
np.median(lengths), # median
pd.Series(lengths).skew(), # skewness
pd.Series(lengths).kurtosis(), # kurtosis
gmean(lengths), # geometric mean
trim_mean(lengths, 0.1), # trimmed mean
entropy(lengths), # entropy
np.var(lengths), # variance
np.sum(lengths), # sum
np.prod(lengths), # product
np.sqrt(np.mean(lengths)), # sqrt of mean
pd.Series(lengths).cummax().iloc[-1], # cumulative max
pd.Series(lengths).cummin().iloc[-1], # cumulative min
pd.Series(lengths).cumsum().iloc[-1], # cumulative sum
pd.Series(lengths).cumprod().iloc[-1] # cumulative product
]
# Apply the helper function to each row
stats_df = pd.DataFrame(grouped_df['text_change'].apply(calculate_statistics).tolist(),
columns=['word_count', 'mean_length', 'max_length', 'std_dev',
'min_length', 'median_length', 'skewness', 'kurtosis',
'geom_mean', 'trim_mean', 'entropy', 'variance',
'sum_length', 'prod_length', 'sqrt_mean_length',
'cummax_length', 'cummin_length', 'cumsum_length', 'cumprod_length'])
# Compute additional derived features from the statistics (below)
# Calculate the difference between max and min lengths
stats_df['max_min'] = stats_df['max_length'] - stats_df['min_length']
# Calculate the ratio of max length to min length (handling division by zero)
stats_df['max_min_ratio'] = stats_df['max_length'] / stats_df['min_length'].replace(0, np.nan)
# Calculate the ratio of max length to mean length
stats_df['max_mean_ratio'] = stats_df['max_length'] / stats_df['mean_length']
# Calculate the ratio of min length to mean length
stats_df['min_mean_ratio'] = stats_df['min_length'] / stats_df['mean_length']
# Calculate the ratio of max length to median length
stats_df['max_median_ratio'] = stats_df['max_length'] / stats_df['median_length']
# Calculate the ratio of min length to median length
stats_df['min_median_ratio'] = stats_df['min_length'] / stats_df['median_length']
# Calculate the ratio of max length to skewness (handling division by zero)
stats_df['max_skew_ratio'] = stats_df['max_length'] / stats_df['skewness'].replace(0, np.nan)
# Calculate the ratio of min length to skewness (handling division by zero)
stats_df['min_skew_ratio'] = stats_df['min_length'] / stats_df['skewness'].replace(0, np.nan)
# Calculate the ratio of max length to kurtosis (handling division by zero)
stats_df['max_kurtosis_ratio'] = stats_df['max_length'] / stats_df['kurtosis'].replace(0, np.nan)
# Calculate the ratio of min length to kurtosis (handling division by zero)
stats_df['min_kurtosis_ratio'] = stats_df['min_length'] / stats_df['kurtosis'].replace(0, np.nan)
# Calculate the ratio of max length to geometric mean
stats_df['max_gmean_ratio'] = stats_df['max_length'] / stats_df['geom_mean']
# Calculate the ratio of min length to geometric mean
stats_df['min_gmean_ratio'] = stats_df['min_length'] / stats_df['geom_mean']
# Calculate the ratio of max length to trimmed mean
stats_df['max_trim_mean_ratio'] = stats_df['max_length'] / stats_df['trim_mean']
# Calculate the ratio of min length to trimmed mean
stats_df['min_trim_mean_ratio'] = stats_df['min_length'] / stats_df['trim_mean']
# Calculate the ratio of max length to entropy (handling division by zero)
stats_df['max_entropy_ratio'] = stats_df['max_length'] / stats_df['entropy'].replace(0, np.nan)
# Calculate the ratio of min length to entropy (handling division by zero)
stats_df['min_entropy_ratio'] = stats_df['min_length'] / stats_df['entropy'].replace(0, np.nan)
# Calculate the ratio of max length to variance (handling division by zero)
stats_df['max_var_ratio'] = stats_df['max_length'] / stats_df['variance'].replace(0, np.nan)
# Calculate the ratio of min length to variance (handling division by zero)
stats_df['min_var_ratio'] = stats_df['min_length'] / stats_df['variance'].replace(0, np.nan)
# Calculate the ratio of max length to sum length
stats_df['max_sum_ratio'] = stats_df['max_length'] / stats_df['sum_length']
# Calculate the ratio of min length to sum length
stats_df['min_sum_ratio'] = stats_df['min_length'] / stats_df['sum_length']
# Calculate the ratio of max length to product length
stats_df['max_prod_ratio'] = stats_df['max_length'] / stats_df['prod_length']
# Calculate the ratio of min length to product length
stats_df['min_prod_ratio'] = stats_df['min_length'] / stats_df['prod_length']
# Calculate the ratio of max length to square root of mean length
stats_df['max_sqrt_mean_ratio'] = stats_df['max_length'] / stats_df['sqrt_mean_length']
# Calculate the ratio of min length to square root of mean length
stats_df['min_sqrt_mean_ratio'] = stats_df['min_length'] / stats_df['sqrt_mean_length']
# Calculate the ratio of max length to cumulative maximum length
stats_df['max_cummax_ratio'] = stats_df['max_length'] / stats_df['cummax_length']
# Calculate the ratio of min length to cumulative maximum length
stats_df['min_cummax_ratio'] = stats_df['min_length'] / stats_df['cummax_length']
# Calculate the ratio of max length to cumulative minimum length
stats_df['max_cummin_ratio'] = stats_df['max_length'] / stats_df['cummin_length']
# Calculate the ratio of min length to cumulative minimum length
stats_df['min_cummin_ratio'] = stats_df['min_length'] / stats_df['cummin_length']
# Calculate the ratio of max length to cumulative sum length
stats_df['max_cumsum_ratio'] = stats_df['max_length'] / stats_df['cumsum_length']
# Calculate the ratio of min length to cumulative sum length
stats_df['min_cumsum_ratio'] = stats_df['min_length'] / stats_df['cumsum_length']
# Calculate the ratio of max length to cumulative product length
stats_df['max_cumprod_ratio'] = stats_df['max_length'] / stats_df['cumprod_length']
# Calculate the ratio of min length to cumulative product length
stats_df['min_cumprod_ratio'] = stats_df['min_length'] / stats_df['cumprod_length']
# Calculate the ratio of max length to max_min (handling division by zero)
stats_df['max_max_min_ratio'] = stats_df['max_length'] / stats_df['max_min'].replace(0, np.nan)
# Calculate the ratio of min length to max_min (handling division by zero)
stats_df['min_max_min_ratio'] = stats_df['min_length'] / stats_df['max_min'].replace(0, np.nan)
# Concatenate the original ID column with the new statistics dataframe
result_df = pd.concat([grouped_df[['id']], stats_df], axis=1)
return result_df
def make_features(self, dfx, name='Train Logs'):
print(f'--- {name} Feature Engineering ---')
# Create time features
dfx, new_time_columns = create_time_features(dfx)
self.discrete_numeric_features = list(set(self.discrete_numeric_features + new_time_columns))
# Make a copy of the dataframe
df = dfx.copy()
new_df = pd.DataFrame()
new_df['id'] = df['id'].unique()
def make_agg_features(original_df, agg_functions, feature_names):
tmp_df = pd.DataFrame()
tmp_df['id'] = original_df['id'].unique()
for dcf in feature_names:
print(f'--- Making features from: {dcf} ---')
# Group by 'id' and aggregate the features
grouped = original_df.groupby('id')[dcf].agg(agg_functions)
# Rename the columns
grouped.columns = [f'{dcf}_{col}' for col in grouped.columns]
# Merge the aggregated features into new_df
tmp_df = pd.merge(tmp_df, grouped, left_on='id', right_index=True, how='left')
return tmp_df
# ------------------ Engineering shifted numerical features ------------------
print("Engineering time data")
for gap in self.gaps:
print(f"> for gap {gap}")
df[f'up_time_shift{gap}'] = df.groupby('id')['up_time'].shift(gap)
df[f'action_time_gap{gap}'] = df['down_time'] - df[f'up_time_shift{gap}']
self.discrete_numeric_features.append(f'action_time_gap{gap}')
df.drop(columns=[f'up_time_shift{gap}' for gap in self.gaps], inplace=True)
# cursor position shift
print("Engineering cursor position data")
for gap in self.gaps:
print(f"> for gap {gap}")
df[f'cursor_position_shift{gap}'] = df.groupby('id')['cursor_position'].shift(gap)
df[f'cursor_position_change{gap}'] = df['cursor_position'] - df[f'cursor_position_shift{gap}']
df[f'cursor_position_abs_change{gap}'] = np.abs(df[f'cursor_position_change{gap}'])
self.discrete_numeric_features.append(f'cursor_position_change{gap}')
self.discrete_numeric_features.append(f'cursor_position_abs_change{gap}')
df.drop(columns=[f'cursor_position_shift{gap}' for gap in self.gaps], inplace=True)
# word count shift
print("Engineering word count data")
for gap in self.gaps:
print(f"> for gap {gap}")
df[f'word_count_shift{gap}'] = df.groupby('id')['word_count'].shift(gap)
df[f'word_count_change{gap}'] = df['word_count'] - df[f'word_count_shift{gap}']
df[f'word_count_abs_change{gap}'] = np.abs(df[f'word_count_change{gap}'])
self.discrete_numeric_features.append(f'word_count_change{gap}')
self.discrete_numeric_features.append(f'word_count_abs_change{gap}')
df.drop(columns=[f'word_count_shift{gap}' for gap in self.gaps], inplace=True)
# ------------------ Engineering aggregated features ------------------
# Make features from numerical features
print('\n=== Making features from numerical features ===')
tmp_df_nf = make_agg_features(df, self.aggregation_functions, self.discrete_numeric_features)
# Make features from categorical features
print('\n=== Making features from categorical features ===')
tmp_df_cf = make_agg_features(df, self.categorical_aggregations, self.categorical_features)
# Merge the aggregated features into new_df
new_df = pd.merge(new_df, tmp_df_nf, on='id', how='left')
new_df = pd.merge(new_df, tmp_df_cf, on='id', how='left')
feats = new_df
print("\n=== Engineering punctuation counts data ===")
tmp_df = self.match_punctuations(df)
feats = pd.concat([feats, tmp_df], axis=1)
# Input words
print("\n=== Engineering input words data ===")
tmp_df = self.get_input_words(df)
feats = pd.merge(feats, tmp_df, on='id', how='left')
# TF-IDF features
print("\n=== Engineering TF-IDF ===")
tmp_df = make_text_features(df, name=name)
feats = pd.merge(feats, tmp_df, on='id', how='left')
# Create additional time features
tmp_df, _ = create_additional_time_features(dfx)
feats = pd.merge(feats, tmp_df, on='id', how='left')
new_df = feats
# ------------------ Engineering other features ------------------
# Ratio-based features
print("Engineering ratio-based features")
feats['word_time_ratio'] = feats['word_count_max'] / feats['up_time_max']
feats['word_event_ratio'] = feats['word_count_max'] / feats['event_id_max']
feats['event_time_ratio'] = feats['event_id_max'] / feats['up_time_max']
# ------------------ Done feature engineering ------------------
return new_df