This repository was archived by the owner on Aug 13, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsubmit.py
190 lines (149 loc) · 5.29 KB
/
submit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.autograd import Variable
import pandas as pd
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
from skimage.transform import rescale
# CUDA for PyTorch
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
#load data
train_images = pd.read_pickle('train_images.pkl')
train_labels = pd.read_csv('train_labels.csv')
test_images = pd.read_pickle('test_images.pkl')
train_labels = np.asarray(train_labels.Category)
def normalization(images):
pop_mean = []
pop_std0 = []
images2 = []
for image in images:
batch_mean = (image.mean())
batch_std0 = (image.std())
pop_mean.append(batch_mean)
pop_std0.append(batch_std0)
pop_mean = (sum(pop_mean)/len(pop_mean))
pop_std0 = (sum(pop_std0)/len(pop_std0))
for image in images:
image = (image - pop_mean)/pop_std0
images2.append(image)
return images2
def rescaling(images):
images2 = []
for image in images:
image = rescale(image, 1.5, multichannel = False, mode = 'constant', anti_aliasing = True)
images2.append(image)
return images2
train_images = np.asarray(normalization(train_images))
test_images = np.asarray(normalization(test_images))
features_train = train_images
targets_train = train_labels
features_test = test_images
# **** HYPERPARAMETERS ****
train_batch_size = 1000
test_batch_size = 10000
epochs = 320
lr = 0.0007
# *************************
X_train = torch.from_numpy(features_train)
X_test = torch.from_numpy(features_test)
Y_train = torch.from_numpy(targets_train).type(torch.LongTensor)
train = torch.utils.data.TensorDataset(X_train,Y_train)
train_loader = torch.utils.data.DataLoader(train, batch_size = train_batch_size, shuffle = True)
class CNN(nn.Module):
def __init__(self):
super(CNN,self).__init__()
self.cnn_1 = nn.Conv2d(in_channels = 1, out_channels = 16, kernel_size = 4, stride=1, padding=1)
self.cnn_2 = nn.Conv2d(in_channels = 16, out_channels = 32, kernel_size = 4, stride=1, padding=1)
self.cnn_3 = nn.Conv2d(in_channels = 32, out_channels = 64, kernel_size = 3, stride=1, padding=1)
self.cnn_4 = nn.Conv2d(in_channels = 64, out_channels = 100, kernel_size = 3, stride=1, padding=1)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(2,2)
self.dropout = nn.Dropout(p=0.3)
self.dropout2d = nn.Dropout2d(p=0.3)
self.fc1 = nn.Linear(100*9, 300)
self.fc2 = nn.Linear(300, 100)
self.out = nn.Linear(100, 10)
def forward(self,x):
# print(x.size())
out = self.cnn_1(x)
# print(out.size(), 'cn1')
out = self.relu(out)
# print(out.size())
out = self.dropout2d(out)
# print(out.size())
out = self.maxpool(out)
# print(out.size())
out = self.cnn_2(out)
# print(out.size(), 'cn2')
out = self.relu(out)
# print(out.size())
out = self.dropout2d(out)
# print(out.size())
out = self.maxpool(out)
# print(out.size())
out = self.cnn_3(out)
# print(out.size(), 'cn3')
out = self.relu(out)
# print(out.size())
out = self.dropout2d(out)
# print(out.size())
out = self.maxpool(out)
# print(out.size())
out = self.cnn_4(out)
# print(out.size())
out = self.relu(out)
# print(out.size())
out = self.dropout2d(out)
# print(out.size())
out = self.maxpool(out)
# print(out.size())
out = out.view(out.size(0), -1)
# print(out.size())
out = self.fc1(out)
# print(out.size())
out = self.dropout(out)
# print(out.size())
out = self.fc2(out)
out = self.dropout(out)
out = self.out(out)
return out
model = CNN()
if use_cuda:
model = model.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),lr=lr)
train_losses = []
for epoch in range(epochs):
running_loss = 0
for images,labels in train_loader:
if use_cuda:
# images = images.float()
images, labels = images.cuda(), labels.cuda()
train = Variable(images.view(-1,1,64,64))
labels = Variable(labels)
optimizer.zero_grad()
output = model(train)
loss = criterion(output,labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
# **** TEST *****
def predict_image(image):
model.eval()
input = Variable(image.view(-1,1,64,64))
input = input.to(device)
output = model(input)
index = output.data.cpu().numpy().argmax()
return index
test_labels = []
for images in X_test:
test_labels.append(predict_image(images))
# print(test_labels)
id = list(range(10000))
ss = list(zip(id,test_labels))
with open('submission_log.csv', 'w', newline = '') as f:
writer = csv.writer(f, delimiter=',')
writer.writerows(ss)