-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_contrastive_llama.py
481 lines (432 loc) · 19.9 KB
/
run_contrastive_llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import argparse
import logging
import os
import sys
from dataclasses import dataclass, field, asdict
from pathlib import Path
from typing import List, Optional
import torch
import transformers
import wandb
from ContrastiveDataCollator import ContrastiveDataCollator
from ContrastiveLlama import ContrastiveLlama
from ContrastiveTrainer import ContrastiveTrainer
import promptbench.main as promptbench_main
from peft import (
LoraConfig,
get_peft_model,
prepare_model_for_int8_training,
set_peft_model_state_dict, PeftModel,
)
from transformers import LlamaTokenizer, LlamaConfig, HfArgumentParser, GenerationConfig, \
LlamaForCausalLM, set_seed
from promptbench.postprocessing import ALL_INSTRUCTION_OOD_TASKS
from utils.common_utils import load_contrastive_dataset, generate_flan_input, output_args_to_pkl, output_args_to_txt, \
seed_all, load_data_from_pkl
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
@dataclass
class UnseenInstructionEvalArgs:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
# Dataset src params
promptbench_eval_task: str = field(default='all',
metadata={"help": "Name of task on which model is evaluated",
"choices": ['all', 'cola', 'mnli', 'mnli_matched', 'mnli_mismatched',
'mrpc', 'qnli', 'qqp', 'rte', 'sst2', 'wnli']},
)
perturb_method: Optional[str] = field(
default="all",
metadata={
"help": "Perturbation method for perturbing unseen instructions.",
"choices": ["all", "clean", "deepwordbug", "textfooler", "checklist", "semantic"]
# Corresponds to clean, character, word, sentence, and semantic
}
)
eval_sample_cnt: Optional[int] = field(
default=300,
metadata={
"help": "Number of samples to evaluate"
},
)
@dataclass
class ContrastiveLlamaTrainingArgument:
# Model and lora hyperparams
base_model: Optional[str] = field(
default='yahma/llama-7b-hf',
metadata={"help": "Base model of Llama"}
)
lora_weights: Optional[str] = field(
default="tloen/alpaca-lora-7b",
metadata={
"help": "lora weights that will be loaded to peft model (when not using contrastive loss)",
"choices": [None, "tloen/alpaca-lora-7b", "chansung/alpaca-lora-13b"]
}
)
lora_r: Optional[int] = field(
default=16
)
lora_alpha: Optional[int] = field(
default=16
)
lora_dropout: Optional[float] = field(
default=0.05
)
lora_target_modules: Optional[List[str]] = field(
default_factory=list
)
# Data
use_contrastive_data: Optional[bool] = field(
default=True,
metadata={"help": "True for running ablation studies and training contrastive alpaca."}
)
data_path: Optional[str] = field(
default='dataset/contrastive_flan_data.csv',
)
add_eos_token: Optional[bool] = field(
default=False
)
output_dir: Optional[str] = field(
default='./outputs',
)
cache_dir: Optional[str] = field(
default=None,
)
# Training args
do_train: Optional[bool] = field(
default=False,
)
do_predict: Optional[bool] = field(
default=False,
metadata={"help": "Run evaluation on unseen instructions"}
)
seed: Optional[int] = field(
default=42,
)
resume_from_checkpoint: Optional[str] = field(
default=None,
metadata={"help": "directory of the saved adapter model"}
)
batch_size: Optional[int] = field(
default=64
)
micro_batch_size: Optional[int] = field(
default=2
)
num_epochs: Optional[int] = field(
default=1
)
group_by_length: Optional[bool] = field(
default=False,
metadata={"help": "faster, but produces an odd training loss curve"}
)
learning_rate: Optional[float] = field(
default=1e-4
)
cutoff_len: Optional[int] = field(
default=256
)
val_set_size: Optional[int] = field(
default=2000
)
# Contrastive loss params
do_contrastive: Optional[bool] = field(
default=True,
metadata={
"help": "True for training with contrastive loss. False for continual instruction tuning."}
)
temperature: Optional[float] = field(
default=0.05,
metadata={"help": "temperature for contrastive loss"}
)
contrastive_loss_ratio: Optional[float] = field(
default=1000,
metadata={
"help": "weight assigned to contrastive loss"}
)
pooling_method: Optional[str] = field(
default='last',
metadata={
"help": "How to pool hidden states for contrastive learning. Choices: ['average_all', 'average_first_last', 'max', 'last']"}
)
# wandb params
wandb_usr: Optional[str] = field(
default=None
)
wandb_project: Optional[str] = field(
default=""
)
wandb_run_name: Optional[str] = field(
default=""
)
wandb_watch: Optional[str] = field(
default="",
metadata={"help": "options: false | gradients | all"}
)
wandb_log_model: Optional[str] = field(
default="",
metadata={"help": "options: false | true"}
)
def initialize_pretrained_peft_model(contrastive_llama_args, device_map):
# Load pretrained lora weights to the Contrastive peft model
pretrained_llama_model = LlamaForCausalLM.from_pretrained(
contrastive_llama_args.base_model,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map=device_map,
cache_dir=contrastive_llama_args.cache_dir
)
print(f"Initialize with lora weights from {contrastive_llama_args.lora_weights} to contrastive model")
logger.info(
f"Initialize with lora weights from {contrastive_llama_args.lora_weights} to contrastive model")
pretrained_peft_model = PeftModel.from_pretrained(
pretrained_llama_model,
contrastive_llama_args.lora_weights,
device_map=device_map,
torch_dtype=torch.float16,
cache_dir=contrastive_llama_args.cache_dir
)
return pretrained_peft_model
def main():
parser = HfArgumentParser((ContrastiveLlamaTrainingArgument, UnseenInstructionEvalArgs))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
contrastive_llama_args, eval_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
contrastive_llama_args, eval_args = parser.parse_args_into_dataclasses()
if contrastive_llama_args.do_train:
# Save arguments
output_args_to_pkl(contrastive_llama_args, contrastive_llama_args.output_dir, "contrastive_llama_args.pkl")
output_args_to_txt(asdict(contrastive_llama_args), contrastive_llama_args.output_dir,
"contrastive_llama_args.txt")
output_args_to_pkl(eval_args, contrastive_llama_args.output_dir, "eval_args.pkl")
output_args_to_txt(asdict(eval_args), contrastive_llama_args.output_dir, "eval_args.txt")
seed_all(contrastive_llama_args.seed)
if contrastive_llama_args.do_train:
logger.info(f"Run with train params:\n {contrastive_llama_args}")
if contrastive_llama_args.do_predict:
logger.info(f"Run with predict params:\n {eval_args}")
gradient_accumulation_steps = contrastive_llama_args.batch_size // contrastive_llama_args.micro_batch_size
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
# Check if parameter passed or if set within environ
use_wandb = len(contrastive_llama_args.wandb_project) > 0 or (
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
)
# Only overwrite environ if wandb param passed
if len(contrastive_llama_args.wandb_project) > 0:
os.environ["WANDB_PROJECT"] = contrastive_llama_args.wandb_project
if len(contrastive_llama_args.wandb_watch) > 0:
os.environ["WANDB_WATCH"] = contrastive_llama_args.wandb_watch
if len(contrastive_llama_args.wandb_log_model) > 0:
os.environ["WANDB_LOG_MODEL"] = contrastive_llama_args.wandb_log_model
# -------- Tokenizer & functions for tokenizing pair-wise instructions ----
tokenizer = LlamaTokenizer.from_pretrained(contrastive_llama_args.base_model)
tokenizer.pad_token_id = (
0 # unk. we want this to be different from the eos token
)
tokenizer.padding_side = "left" # Allow batched inference
def tokenize(original_prompt: str, paraphrased_prompt: str, add_eos_token=False):
result = tokenizer(
(original_prompt, paraphrased_prompt),
truncation=True,
max_length=contrastive_llama_args.cutoff_len,
padding=False,
return_tensors=None,
)
for idx in range(2):
# idx: 0 for original, 1 for paraphrased
if (
result["input_ids"][idx][-1] != tokenizer.eos_token_id
and len(result["input_ids"][idx]) < contrastive_llama_args.cutoff_len
and add_eos_token
):
result["input_ids"][idx].append(tokenizer.eos_token_id)
result["attention_mask"][idx].append(1)
result["labels"] = result["input_ids"].copy()
return result, tokenizer.eos_token_id
def generate_and_tokenize_prompt(data_point):
"""
data_point: original_instruction, input, output, paraphrased_instruction
Use pad token (in this case <unk>) as separator between 2 instructions for concatenation
"""
original_instruction = data_point['original_instruction']
paraphrased_instruction = data_point['paraphrased_instruction']
original_full_prompt = generate_flan_input(
original_instruction,
data_point["targets"],
)
paraphrased_full_prompt = generate_flan_input(
paraphrased_instruction,
data_point["targets"],
)
tokenized_full_prompt, eos_token = tokenize(original_full_prompt, paraphrased_full_prompt, add_eos_token=contrastive_llama_args.add_eos_token)
original_user_prompt = generate_flan_input(original_instruction)
paraphrased_user_prompt = generate_flan_input(paraphrased_instruction)
tokenized_user_prompt, eos_token = tokenize(original_user_prompt, paraphrased_user_prompt, add_eos_token=contrastive_llama_args.add_eos_token)
for i in range(2):
# 0 for original 1 for paraphrased
tmp_input_ids = tokenized_user_prompt["input_ids"][i]
user_prompt_len = len(tmp_input_ids)
if contrastive_llama_args.add_eos_token and tmp_input_ids[-1] == eos_token:
user_prompt_len -= 1
# For not train on inputs
tokenized_full_prompt["labels"][i] = [-100] * user_prompt_len + tokenized_full_prompt["labels"][i][
user_prompt_len:]
return tokenized_full_prompt
# -------- Prepare config and base model --------
if contrastive_llama_args.use_contrastive_data:
model_config = LlamaConfig.from_pretrained(contrastive_llama_args.base_model)
# Set parameter for contrastive loss
model_config.base_model = contrastive_llama_args.base_model
model_config.temperature = contrastive_llama_args.temperature
model_config.device_map = device_map
model_config.contrastive_loss_ratio = contrastive_llama_args.contrastive_loss_ratio
model_config.do_contrastive = contrastive_llama_args.do_contrastive
model_config.pooling_method = contrastive_llama_args.pooling_method
logger.info(f"Initialize ContrastiveLlama w/ base LlamaModel from {model_config.base_model}")
model = ContrastiveLlama.from_pretrained(
model_config.base_model,
config=model_config,
do_predict=contrastive_llama_args.do_predict,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map=model_config.device_map,
cache_dir=contrastive_llama_args.cache_dir
)
model = prepare_model_for_int8_training(model)
lora_config_args = contrastive_llama_args if contrastive_llama_args.do_train else load_data_from_pkl(
contrastive_llama_args.resume_from_checkpoint, "contrastive_llama_args.pkl")
# Prepare peft model for contrastive learning
config = LoraConfig(
r=lora_config_args.lora_r,
lora_alpha=lora_config_args.lora_alpha,
target_modules=lora_config_args.lora_target_modules,
lora_dropout=lora_config_args.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
config.base_model = lora_config_args.base_model
config.temperature = lora_config_args.temperature
config.device_map = device_map
model = get_peft_model(model, config)
else:
# For running evaluation on Alpaca LoRA
model = initialize_pretrained_peft_model(contrastive_llama_args, device_map)
logger.info(f"Initialize Alpaca lora baseline from {contrastive_llama_args.lora_weights}")
print(f"Initialize Alpaca lora baseline from {contrastive_llama_args.lora_weights}")
if contrastive_llama_args.resume_from_checkpoint:
# Check the available weights and load them
checkpoint_name = os.path.join(
contrastive_llama_args.resume_from_checkpoint, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
contrastive_llama_args.resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
# The two files above have a different name depending on how they were saved, but are actually the same.
if os.path.exists(checkpoint_name):
logger.info(f"Starting from {checkpoint_name}")
print(f"Starting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name, map_location=torch.device('cuda'))
set_peft_model_state_dict(model, adapters_weights)
else:
raise ValueError(f"Checkpoint {checkpoint_name} not found")
else:
# Load pretrained lora weights to the Contrastive peft model
pretrained_peft_model = initialize_pretrained_peft_model(contrastive_llama_args, device_map)
model.base_model.model.model.load_state_dict(pretrained_peft_model.base_model.model.model.state_dict())
model.base_model.model.lm_head.load_state_dict(pretrained_peft_model.base_model.model.lm_head.state_dict())
if not ddp and torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
trainer_args = transformers.TrainingArguments(
per_device_train_batch_size=contrastive_llama_args.micro_batch_size,
per_device_eval_batch_size=contrastive_llama_args.micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
num_train_epochs=contrastive_llama_args.num_epochs,
learning_rate=contrastive_llama_args.learning_rate,
fp16=True,
logging_steps=1,
optim="adamw_torch",
evaluation_strategy="steps" if contrastive_llama_args.val_set_size > 0 else "no",
save_strategy="steps",
output_dir=contrastive_llama_args.output_dir,
save_total_limit=3,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=contrastive_llama_args.group_by_length,
report_to="wandb" if use_wandb else None,
run_name=contrastive_llama_args.wandb_run_name if use_wandb else None
)
all_metrics = {}
""" ------------------------ Test on PromptBench and unseen instructions ------------------------"""
if contrastive_llama_args.do_train:
data = load_contrastive_dataset(contrastive_llama_args.data_path)
val_data = None
if contrastive_llama_args.val_set_size > 0:
# Not to shuffle the entries to make sure original, positive, and negative samples are in the correct order for contrastive learning.
train_val = data.train_test_split(test_size=contrastive_llama_args.val_set_size, shuffle=False)
train_data = train_val["train"].map(generate_and_tokenize_prompt)
val_data = train_val["test"].map(generate_and_tokenize_prompt)
else:
train_data = data.map(generate_and_tokenize_prompt)
logger.info(f"** Train **")
# Load training data & initialize trainer
trainer_args.remove_unused_columns = False
# warmup steps: 10% of total training steps
trainer_args.warmup_steps = int(len(train_data) / contrastive_llama_args.batch_size * 0.1)
eval_steps = int(len(train_data) / contrastive_llama_args.batch_size / 8)
trainer_args.eval_steps = eval_steps if contrastive_llama_args.val_set_size > 0 else None
trainer_args.save_steps = eval_steps
trainer = ContrastiveTrainer(
model=model,
args=trainer_args,
train_dataset=train_data,
data_collator=ContrastiveDataCollator(tokenizer=tokenizer, model=model, pad_to_multiple_of=8, return_tensors="pt", padding=True),
eval_dataset=val_data,
)
model.config.use_cache = False
train_result = trainer.train()
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
all_metrics.update(metrics)
# Save model
model.save_pretrained(contrastive_llama_args.output_dir)
""" ------------------------ Test on PromptBench and unseen instructions ------------------------"""
if contrastive_llama_args.do_predict:
Path(contrastive_llama_args.output_dir).mkdir(parents=True, exist_ok=True)
# PromptBench
from promptbench.postprocessing import ALL_PERTURB_METHODS
attach_method_list = ALL_PERTURB_METHODS if eval_args.perturb_method == 'all' else [eval_args.perturb_method]
if eval_args.promptbench_eval_task == 'all_instruction_ood':
promptbench_dataset_list = ALL_INSTRUCTION_OOD_TASKS
else:
promptbench_dataset_list = [eval_args.promptbench_eval_task]
promptbench_args = argparse.Namespace()
promptbench_args.model = "contrastive_llama"
promptbench_args.loaded_model = model
promptbench_args.query_budget = float("inf")
promptbench_args.verbose = False
promptbench_args.output_dir = os.path.join(contrastive_llama_args.output_dir, "preds")
promptbench_args.shot = 0 # all zero-shot
promptbench_args.prompt_selection = False # Perturbed versions of all unseen instructions are already created and stored locally. No need to select prompts.
promptbench_args.sample_cnt = eval_args.eval_sample_cnt
wandb.init(project=contrastive_llama_args.wandb_project, name=contrastive_llama_args.wandb_run_name)
for attack_method in attach_method_list:
for tmp_dataset in promptbench_dataset_list:
promptbench_args.dataset = tmp_dataset
promptbench_args.attack = attack_method
promptbench_args.generate_len = 7
promptbench_main.main(promptbench_args)
wandb.finish()
if __name__ == "__main__":
main()