-
Notifications
You must be signed in to change notification settings - Fork 5
/
util.py
366 lines (306 loc) · 14.5 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import os
from nltk.translate.bleu_score import sentence_bleu
from nltk.translate.bleu_score import SmoothingFunction
import pickle
import torch
import numpy as np
import itertools
import inspect
import copy
from hparams import hparams as hp
from eval_metrics import evaluate_metrics
from eval_metrics import evaluate_metrics_from_lists
from eval_metrics import combine_single_and_per_file_metrics
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import heapq
from gensim.models.word2vec import Word2Vec
def get_file_list(filepath, file_extension, recursive=True):
'''
@:param filepath: a string of directory
@:param file_extension: a string of list of strings of the file extension wanted, format in, for example, '.xml', with the ".".
@:return A list of all directories of files in given extension in given filepath.
If recursive is True,search the directory recursively.
'''
pathlist = []
if recursive:
for root, dirs, files in os.walk(filepath):
for file in files:
if type(file_extension) is list:
for exten in file_extension:
if file.endswith(exten):
pathlist.append(os.path.join(root, file))
elif type(file_extension) is str:
if file.endswith(file_extension):
pathlist.append(os.path.join(root, file))
else:
files = os.listdir(filepath)
for file in files:
if type(file_extension) is list:
for exten in file_extension:
if file.endswith(exten):
pathlist.append(os.path.join(filepath, file))
elif type(file_extension) is str:
if file.endswith(file_extension):
pathlist.append(os.path.join(filepath, file))
if len(pathlist) == 0:
print('Wrong or empty directory')
raise FileNotFoundError
return pathlist
def get_word_dict(word_dict_pickle_path, offset=0, reverse=False):
word_dict_pickle = pickle.load(open(word_dict_pickle_path, 'rb'))
word_dict = {}
for i in range(0 + offset, len(word_dict_pickle) + offset):
if reverse:
word_dict[word_dict_pickle[i]] = i
else:
word_dict[i] = word_dict_pickle[i]
return word_dict
def ind_to_str(sentence_ind, special_token, word_dict):
sentence_str = []
for s in sentence_ind:
if word_dict[s] not in special_token:
sentence_str.append(word_dict[s])
return sentence_str
def gen_str(output_batch,word_dict_pickle_path):
word_dict = get_word_dict(word_dict_pickle_path)
word_dict[len(word_dict)] = '<pad>'
special_token = ['<sos>', '<eos>', '<pad>']
output_str = [ind_to_str(o, special_token, word_dict) for o in output_batch]
output_str = [' '.join(o) for o in output_str]
return output_str
def get_eval(output_batch, ref_batch, word_dict_pickle_path):
word_dict = get_word_dict(word_dict_pickle_path)
word_dict[len(word_dict)] = '<pad>'
special_token = ['<sos>', '<eos>', '<pad>']
output_str = [ind_to_str(o, special_token, word_dict) for o in output_batch]
ref_str = [[ind_to_str(r, special_token, word_dict) for r in ref] for ref in ref_batch]
output_str = [' '.join(o) for o in output_str]
ref_str = [[' '.join(r) for r in ref] for ref in ref_str]
return output_str, ref_str
def calculate_bleu(output, ref, word_dict_pickle_path, multi_ref=False):
word_dict = get_word_dict(word_dict_pickle_path)
word_dict[len(word_dict)] = '<pad>'
special_token = ['<sos>', '<eos>', '<pad>']
output_str = ind_to_str(output, special_token, word_dict)
if multi_ref:
ref_str = [ind_to_str(r, special_token, word_dict) for r in ref]
else:
ref_str = [ind_to_str(ref, special_token, word_dict)]
gram_weights = []
max_gram = 4
for gram in range(1, max_gram + 1):
weights = [0, 0, 0, 0]
for i in range(gram):
weights[i] = 1 / gram
weights = tuple(weights)
gram_weights.append(weights)
score_list = []
for weights in gram_weights:
score = sentence_bleu(ref_str, output_str, weights=weights)
score_list.append(score)
return score_list, output_str, ref_str
def calculate_spider(output_batch, ref_batch, word_dict_pickle_path):
word_dict = get_word_dict(word_dict_pickle_path)
word_dict[len(word_dict)] = '<pad>'
special_token = ['<sos>', '<eos>', '<pad>']
output_str = [ind_to_str(o, special_token, word_dict) for o in output_batch]
ref_str = [[ind_to_str(r, special_token, word_dict) for r in ref] for ref in ref_batch]
output_str = [' '.join(o) for o in output_str]
ref_str = [[' '.join(r) for r in ref] for ref in ref_str]
metrics, per_file_metrics = evaluate_metrics_from_lists(output_str, ref_str)
score = metrics['SPIDEr']
return score, output_str, ref_str
def greedy_decode(model, src, max_len, start_symbol_ind=0):
device = src.device # src:(batch_size,T_in,feature_dim)
batch_size = src.size()[0]
# memory = model.cnn(src)
memory = model.encode(src)
ys = torch.ones(batch_size, 1).fill_(start_symbol_ind).long().to(device) # ys_0: (batch_size,T_pred=1)
for i in range(max_len - 1):
# ys_i:(batch_size, T_pred=i+1)
target_mask = model.generate_square_subsequent_mask(ys.size()[1]).to(device)
out = model.decode(memory, ys, target_mask=target_mask) # (T_out, batch_size, nhid)
prob = model.generator(out[-1, :]) # (T_-1, batch_size, nhid)
next_word = torch.argmax(prob, dim=1) # (batch_size)
next_word = next_word.unsqueeze(1)
ys = torch.cat([ys, next_word], dim=1)
# ys_i+1: (batch_size,T_pred=i+2)
return ys
class Beam:
"""
The beam class for handling beam search.
partly adapted from
https://github.com/OpenNMT/OpenNMT-py/blob/195f5ae17f572c22ff5229e52c2dd2254ad4e3db/onmt/translate/beam.py
There are some place which needs improvement:
1. The prev_beam should be separated as prev_beam and beam_score.
The prev_beam should be a tensor and beam_score should be a numpy array,
such that the beam advance() method could speeds up.
2. Do not support advance function like length penalty.
3. If the beam is done searching, it could quit from further computation.
In here, an eos is simply appended and still go through the model in next iteration.
"""
def __init__(self, beam_size, device, start_symbol_ind, end_symbol_ind):
self.device = device
self.beam_size = beam_size
self.prev_beam = [[torch.ones(1).fill_(start_symbol_ind).long().to(device), 0]]
self.start_symbol_ind = start_symbol_ind
self.end_symbol_ind = end_symbol_ind
self.eos_top = False
self.finished = []
self.first_time = True
def advance(self, word_probs, first_time): # word_probs: (beam_size, ntoken) or (1, ntoken) for the first time.
if self.done():
# if current beam is done, just add eos to the beam.
for b in self.prev_beam:
b[0] = torch.cat([b[0], torch.tensor(self.end_symbol_ind).unsqueeze(0).to(self.device)])
return
# in first time, the beam need not to align with each index.
if first_time: # word_probs:(1, ntoken)
score, index = word_probs.squeeze(0).topk(self.beam_size, 0, True, True) # get the initial topk
self.prev_beam = []
for s, ind in zip(score, index):
# initialize each beam
self.prev_beam.append([torch.tensor([self.start_symbol_ind, ind]).long().to(self.device), s.item()])
self.prev_beam = self.sort_beam(self.prev_beam)
else: # word_probs:(beam_size, ntoken)
score, index = word_probs.topk(self.beam_size, 1, True, True) # get topk
current_beam = [[b[0].clone().detach(), b[1]] for b in self.prev_beam for i in range(self.beam_size)]
# repeat each beam beam_size times for global score comparison, need to detach each tensor copied.
i = 0
for score_beam, index_beam in zip(score, index): # get topk scores and corresponding index for each beam
for s, ind in zip(score_beam, index_beam):
current_beam[i][0] = torch.cat([current_beam[i][0], ind.unsqueeze(0)])
# append current index to beam
current_beam[i][1] += s.item() # add the score
i += 1
current_beam = self.sort_beam(current_beam) # sort current beam
if current_beam[0][0][-1] == self.end_symbol_ind: # check if the top beam ends with eos
self.eos_top = True
# check for eos node and added them to finished beam list.
# In the end, delete those nodes and do not let them have child note.
delete_beam_index = []
for i in range(len(current_beam)):
if current_beam[i][0][-1] == self.end_symbol_ind:
delete_beam_index.append(i)
for i in sorted(delete_beam_index, reverse=True):
self.finished.append(current_beam[i])
del current_beam[i]
self.prev_beam = current_beam[:self.beam_size] # get top beam_size beam
# print(self.prev_beam)
def done(self):
# check if current beam is done searching
return self.eos_top and len(self.finished) >= 1
def get_current_state(self):
# get current beams
# print(self.prev_beam)
return torch.stack([b[0] for b in self.prev_beam])
def get_output(self):
if len(self.finished) > 0:
# sort the finished beam and return the sentence with the highest score.
self.finished = self.sort_beam(self.finished)
return self.finished[0][0]
else:
self.prev_beam = self.sort_beam(self.prev_beam)
return self.prev_beam[0][0]
def sort_beam(self, beam):
# sort the beam according to the score
return sorted(beam, key=lambda x: x[1], reverse=True)
def beam_search(model, src, max_len=30, start_symbol_ind=0, end_symbol_ind=9, beam_size=1):
device = src.device # src:(batch_size,T_in,feature_dim)
batch_size = src.size()[0]
memory = model.encode(src) # memory:(T_mem,batch_size,nhid)
# ys = torch.ones(batch_size, 1).fill_(start_symbol_ind).long().to(device) # ys_0: (batch_size,T_pred=1)
first_time = True
beam = [Beam(beam_size, device, start_symbol_ind, end_symbol_ind) for _ in range(batch_size)] # a batch of beams
for i in range(max_len):
# end if all beams are done, or exceeds max length
if all((b.done() for b in beam)):
break
# get current input
ys = torch.cat([b.get_current_state() for b in beam], dim=0).to(device).requires_grad_(False)
# get input mask
target_mask = model.generate_square_subsequent_mask(ys.size()[1]).to(device)
out = model.decode(memory, ys, target_mask=target_mask) # (T_out, batch_size, ntoken) for first time,
# (T_out, batch_size*beam_size, ntoken) in other times
out = F.log_softmax(out[-1, :], dim=-1) # (batch_size, ntoken) for first time,
# (batch_size*beam_size, ntoken) in other times
beam_batch = 1 if first_time else beam_size
# in the first run, a slice of 1 should be taken for each beam,
# later, a slice of [beam_size] need to be taken for each beam.
for j, b in enumerate(beam):
b.advance(out[j * beam_batch:(j + 1) * beam_batch, :], first_time) # update each beam
if first_time:
first_time = False # reset the flag
# after the first run, the beam expands, so the memory needs to expands too.
memory = memory.repeat_interleave(beam_size, dim=1)
output = [b.get_output() for b in beam]
return output
def get_padding(tgt, tgt_len):
# tgt: (batch_size, max_len)
device = tgt.device
batch_size = tgt.size()[0]
max_len = tgt.size()[1]
mask = torch.zeros(tgt.size()).type_as(tgt).to(device)
for i in range(batch_size):
d = tgt[i]
num_pad = max_len-int(tgt_len[i].item())
mask[i][max_len - num_pad:] = 1
# tgt[i][max_len - num_pad:] = pad_idx
# mask:(batch_size,max_len)
mask = mask.float().masked_fill(mask == 1, True).masked_fill(mask == 0, False).bool()
return mask
def print_hparams(hp):
attributes = inspect.getmembers(hp, lambda a: not (inspect.isroutine(a)))
return dict([a for a in attributes if not (a[0].startswith('__') and a[0].endswith('__'))])
def flatten_list(l):
return [item for sublist in l for item in sublist]
def find_item(data, key, query, item):
"""
Search the query in key and take out the corresponding item.
:param data:
:param key:
:param query:
:param item:
:return:
"""
return data[data[key] == query][item].iloc[0]
# https://github.com/pytorch/pytorch/issues/7455#issuecomment-513062631
# When smoothing=0.0, the output is almost the same as nn.CrossEntropyLoss
class LabelSmoothingLoss(nn.Module):
def __init__(self, classes, smoothing=0.0, dim=-1, ignore_index=None):
super(LabelSmoothingLoss, self).__init__()
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
self.cls = classes
self.dim = dim
self.ignore_index = ignore_index
def forward(self, pred, target):
pred = pred.log_softmax(dim=self.dim)
with torch.no_grad():
# true_dist = pred.data.clone()
true_dist = torch.zeros_like(pred)
true_dist.fill_(self.smoothing / (self.cls - 1))
true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence)
if self.ignore_index:
true_dist[:, self.ignore_index] = 0
mask = torch.nonzero(target.data == self.ignore_index)
if mask.dim() > 0:
true_dist.index_fill_(0, mask.squeeze(), 0.0)
return torch.mean(torch.sum(-true_dist * pred, dim=self.dim))
def align_word_embedding(word_dict_pickle_path, w2v_model_path, ntoken, nhid):
word_dict = get_word_dict(word_dict_pickle_path)
model = Word2Vec.load(w2v_model_path)
word_emb = torch.zeros((ntoken, nhid)).float()
word_emb.uniform_(-0.1, 0.1)
w2v_vocab = [k for k in model.wv.vocab.keys()]
for i in range(len(word_dict)):
word = word_dict[i]
if word in w2v_vocab:
w2v_vector = model.wv[word]
word_emb[i] = torch.tensor(w2v_vector).float()
return word_emb
if __name__ == '__main__':
print('util')