-
Notifications
You must be signed in to change notification settings - Fork 0
/
solver.py
201 lines (162 loc) · 7.86 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torch.nn as nn
import time
from torch.nn.utils.rnn import pack_padded_sequence
from nltk.translate.bleu_score import corpus_bleu
from utils import *
def train(train_loader, encoder, decoder, criterion, encoder_optimizer, decoder_optimizer, epoch, cfg):
"""
Performs one epoch's training.
:param train_loader: DataLoader for training data
:param encoder: encoder model
:param decoder: decoder model
:param criterion: loss layer
:param encoder_optimizer: optimizer to update encoder's weights (if fine-tuning)
:param decoder_optimizer: optimizer to update decoder's weights
:param epoch: epoch number
"""
decoder.train()
encoder.train()
batch_time = AverageMeter() # forward prop. + back prop. time
data_time = AverageMeter() # data loading time
losses = AverageMeter() # loss (per word decoded)
top5accs = AverageMeter() # top5 accuracy
start = time.time()
# Batches
for i, (imgs, caps, caplens) in enumerate(train_loader):
data_time.update(time.time() - start)
imgs = imgs.to(cfg['device'])
caps = caps.to(cfg['device'])
caplens = caplens.to(cfg['device'])
# Forward prop.
imgs = encoder(imgs)
if cfg['attention']:
scores, caps_sorted, decode_lengths, alphas, sort_ind = decoder(imgs, caps, caplens)
else:
scores, caps_sorted, decode_lengths, sort_ind = decoder(imgs, caps, caplens)
# Since we decoded starting with <start>, the targets are all words after <start>, up to <end>
targets = caps_sorted[:, 1:]
# Remove timesteps that we didn't decode at, or are pads
# pack_padded_sequence is an easy trick to do this
scores = pack_padded_sequence(scores, decode_lengths, batch_first=True)[0]
targets = pack_padded_sequence(targets, decode_lengths, batch_first=True)[0]
# Calculate loss
loss = criterion(scores, targets)
# Add doubly stochastic attention regularization
if cfg['attention']:
loss += cfg['alpha_c'] * ((1. - alphas.sum(dim=1)) ** 2).mean()
# Back prop.
decoder_optimizer.zero_grad()
if encoder_optimizer is not None:
encoder_optimizer.zero_grad()
loss.backward()
# Clip gradients
if cfg['grad_clip'] is not None:
clip_gradient(decoder_optimizer, cfg['grad_clip'])
if encoder_optimizer is not None:
clip_gradient(encoder_optimizer, cfg['grad_clip'])
# Update weights
decoder_optimizer.step()
if encoder_optimizer is not None:
encoder_optimizer.step()
# Keep track of metrics
top5 = accuracy(scores, targets, 5)
losses.update(loss.item(), sum(decode_lengths))
top5accs.update(top5, sum(decode_lengths))
batch_time.update(time.time() - start)
start = time.time()
# Print status
if i % cfg['print_freq'] == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data Load Time {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Top-5 Accuracy {top5.val:.3f} ({top5.avg:.3f})'.format(epoch, i, len(train_loader),
batch_time=batch_time,
data_time=data_time, loss=losses,
top5=top5accs))
def validate(val_loader, encoder, decoder, criterion, word_map, cfg):
"""
Performs one epoch's validation.
:param val_loader: DataLoader for validation data.
:param encoder: encoder model
:param decoder: decoder model
:param criterion: loss layer
:return: BLEU-4 score
"""
decoder.eval() # eval mode (no dropout or batchnorm)
if encoder is not None:
encoder.eval()
batch_time = AverageMeter()
losses = AverageMeter()
top5accs = AverageMeter()
start = time.time()
references = list() # references (true captions) for calculating BLEU-4 score
hypotheses = list() # hypotheses (predictions)
# explicitly disable gradient calculation to avoid CUDA memory error
# solves the issue #57
with torch.no_grad():
# Batches
for i, (imgs, caps, caplens, allcaps) in enumerate(val_loader):
# Move to device, if available
imgs = imgs.to(cfg['device'])
caps = caps.to(cfg['device'])
caplens = caplens.to(cfg['device'])
# Forward prop.
if encoder is not None:
imgs = encoder(imgs)
if cfg['attention']:
scores, caps_sorted, decode_lengths, alphas, sort_ind = decoder(imgs, caps, caplens)
else:
scores, caps_sorted, decode_lengths, sort_ind = decoder(imgs, caps, caplens)
# Since we decoded starting with <start>, the targets are all words after <start>, up to <end>
targets = caps_sorted[:, 1:]
# Remove timesteps that we didn't decode at, or are pads
# pack_padded_sequence is an easy trick to do this
scores_copy = scores.clone()
scores = pack_padded_sequence(scores, decode_lengths, batch_first=True)[0]
targets = pack_padded_sequence(targets, decode_lengths, batch_first=True)[0]
# Calculate loss
loss = criterion(scores, targets)
# Add doubly stochastic attention regularization
if cfg['attention']:
loss += cfg['alpha_c'] * ((1. - alphas.sum(dim=1)) ** 2).mean()
# Keep track of metrics
losses.update(loss.item(), sum(decode_lengths))
top5 = accuracy(scores, targets, 5)
top5accs.update(top5, sum(decode_lengths))
batch_time.update(time.time() - start)
start = time.time()
if i % cfg['print_freq'] == 0:
print('Validation: [{0}/{1}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Top-5 Accuracy {top5.val:.3f} ({top5.avg:.3f})\t'.format(i, len(val_loader), batch_time=batch_time,
loss=losses, top5=top5accs))
# Store references (true captions), and hypothesis (prediction) for each image
# If for n images, we have n hypotheses, and references a, b, c... for each image, we need -
# references = [[ref1a, ref1b, ref1c], [ref2a, ref2b], ...], hypotheses = [hyp1, hyp2, ...]
# References
allcaps = allcaps[sort_ind] # because images were sorted in the decoder
for j in range(allcaps.shape[0]):
img_caps = allcaps[j].tolist()
img_captions = list(
map(lambda c: [w for w in c if w not in {word_map['<start>'], word_map['<pad>']}],
img_caps)) # remove <start> and pads
references.append(img_captions)
# Hypotheses
_, preds = torch.max(scores_copy, dim=2)
preds = preds.tolist()
temp_preds = list()
for j, p in enumerate(preds):
temp_preds.append(preds[j][:decode_lengths[j]]) # remove pads
preds = temp_preds
hypotheses.extend(preds)
assert len(references) == len(hypotheses)
# Calculate BLEU-4 scores
bleu4 = corpus_bleu(references, hypotheses)
print(
'\n * LOSS - {loss.avg:.3f}, TOP-5 ACCURACY - {top5.avg:.3f}, BLEU-4 - {bleu}\n'.format(
loss=losses,
top5=top5accs,
bleu=bleu4))
return bleu4