From 93cec49212fe82816fcadf69f429cebaec60e058 Mon Sep 17 00:00:00 2001 From: Hyukjin Kwon Date: Wed, 25 Aug 2021 10:02:53 +0900 Subject: [PATCH] [SPARK-36559][SQL][PYTHON] Create plans dedicated to distributed-sequence index for optimization ### What changes were proposed in this pull request? This PR proposes to move distributed-sequence index implementation to SQL plan to leverage optimizations such as column pruning. ```python import pyspark.pandas as ps ps.set_option('compute.default_index_type', 'distributed-sequence') ps.range(10).id.value_counts().to_frame().spark.explain() ``` **Before:** ```bash == Physical Plan == AdaptiveSparkPlan isFinalPlan=false +- Sort [count#51L DESC NULLS LAST], true, 0 +- Exchange rangepartitioning(count#51L DESC NULLS LAST, 200), ENSURE_REQUIREMENTS, [id=#70] +- HashAggregate(keys=[id#37L], functions=[count(1)], output=[__index_level_0__#48L, count#51L]) +- Exchange hashpartitioning(id#37L, 200), ENSURE_REQUIREMENTS, [id=#67] +- HashAggregate(keys=[id#37L], functions=[partial_count(1)], output=[id#37L, count#63L]) +- Project [id#37L] +- Filter atleastnnonnulls(1, id#37L) +- Scan ExistingRDD[__index_level_0__#36L,id#37L] # ^^^ Base DataFrame created by the output RDD from zipWithIndex (and checkpointed) ``` **After:** ```bash == Physical Plan == AdaptiveSparkPlan isFinalPlan=false +- Sort [count#275L DESC NULLS LAST], true, 0 +- Exchange rangepartitioning(count#275L DESC NULLS LAST, 200), ENSURE_REQUIREMENTS, [id=#174] +- HashAggregate(keys=[id#258L], functions=[count(1)]) +- HashAggregate(keys=[id#258L], functions=[partial_count(1)]) +- Filter atleastnnonnulls(1, id#258L) +- Range (0, 10, step=1, splits=16) # ^^^ Removed the Spark job execution for `zipWithIndex` ``` ### Why are the changes needed? To leverage optimization of SQL engine and avoid unnecessary shuffle to create default index. ### Does this PR introduce _any_ user-facing change? No. ### How was this patch tested? Unittests were added. Also, this PR will test all unittests in pandas API on Spark after switching the default index implementation to `distributed-sequence`. Closes #33807 from HyukjinKwon/SPARK-36559. Authored-by: Hyukjin Kwon Signed-off-by: Hyukjin Kwon --- python/pyspark/pandas/tests/test_dataframe.py | 39 ++++++------ .../analysis/DeduplicateRelations.scala | 4 ++ .../sql/catalyst/optimizer/Optimizer.scala | 5 ++ .../logical/pythonLogicalOperators.scala | 17 +++++ .../optimizer/ColumnPruningSuite.scala | 8 ++- .../scala/org/apache/spark/sql/Dataset.scala | 23 ++----- .../spark/sql/execution/SparkStrategies.scala | 2 + .../AttachDistributedSequenceExec.scala | 62 +++++++++++++++++++ 8 files changed, 121 insertions(+), 39 deletions(-) create mode 100644 sql/core/src/main/scala/org/apache/spark/sql/execution/python/AttachDistributedSequenceExec.scala diff --git a/python/pyspark/pandas/tests/test_dataframe.py b/python/pyspark/pandas/tests/test_dataframe.py index 6ea2b22d7b076..9c77025514413 100644 --- a/python/pyspark/pandas/tests/test_dataframe.py +++ b/python/pyspark/pandas/tests/test_dataframe.py @@ -5160,26 +5160,25 @@ def test_print_schema(self): sys.stdout = prev def test_explain_hint(self): - with ps.option_context("compute.default_index_type", "sequence"): - psdf1 = ps.DataFrame( - {"lkey": ["foo", "bar", "baz", "foo"], "value": [1, 2, 3, 5]}, - columns=["lkey", "value"], - ) - psdf2 = ps.DataFrame( - {"rkey": ["foo", "bar", "baz", "foo"], "value": [5, 6, 7, 8]}, - columns=["rkey", "value"], - ) - merged = psdf1.merge(psdf2.spark.hint("broadcast"), left_on="lkey", right_on="rkey") - prev = sys.stdout - try: - out = StringIO() - sys.stdout = out - merged.spark.explain() - actual = out.getvalue().strip() - - self.assertTrue("Broadcast" in actual, actual) - finally: - sys.stdout = prev + psdf1 = ps.DataFrame( + {"lkey": ["foo", "bar", "baz", "foo"], "value": [1, 2, 3, 5]}, + columns=["lkey", "value"], + ) + psdf2 = ps.DataFrame( + {"rkey": ["foo", "bar", "baz", "foo"], "value": [5, 6, 7, 8]}, + columns=["rkey", "value"], + ) + merged = psdf1.merge(psdf2.spark.hint("broadcast"), left_on="lkey", right_on="rkey") + prev = sys.stdout + try: + out = StringIO() + sys.stdout = out + merged.spark.explain() + actual = out.getvalue().strip() + + self.assertTrue("Broadcast" in actual, actual) + finally: + sys.stdout = prev def test_mad(self): pdf = pd.DataFrame( diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/DeduplicateRelations.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/DeduplicateRelations.scala index 63824af072ad4..7b37891de2edf 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/DeduplicateRelations.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/DeduplicateRelations.scala @@ -225,6 +225,10 @@ object DeduplicateRelations extends Rule[LogicalPlan] { if oldVersion.outputSet.intersect(conflictingAttributes).nonEmpty => Seq((oldVersion, oldVersion.copy(output = output.map(_.newInstance())))) + case oldVersion @ AttachDistributedSequence(sequenceAttr, _) + if oldVersion.producedAttributes.intersect(conflictingAttributes).nonEmpty => + Seq((oldVersion, oldVersion.copy(sequenceAttr = sequenceAttr.newInstance()))) + case oldVersion: Generate if oldVersion.producedAttributes.intersect(conflictingAttributes).nonEmpty => val newOutput = oldVersion.generatorOutput.map(_.newInstance()) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala index 80955deed18c8..ea37cbbd294f7 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala @@ -800,6 +800,11 @@ object ColumnPruning extends Rule[LogicalPlan] { } a.copy(child = Expand(newProjects, newOutput, grandChild)) + // Prune and drop AttachDistributedSequence if the produced attribute is not referred. + case p @ Project(_, a @ AttachDistributedSequence(_, grandChild)) + if !p.references.contains(a.sequenceAttr) => + p.copy(child = prunedChild(grandChild, p.references)) + // Prunes the unused columns from child of `DeserializeToObject` case d @ DeserializeToObject(_, _, child) if !child.outputSet.subsetOf(d.references) => d.copy(child = prunedChild(child, d.references)) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/pythonLogicalOperators.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/pythonLogicalOperators.scala index ba8352cf6ac89..af18540c564ab 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/pythonLogicalOperators.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/pythonLogicalOperators.scala @@ -115,3 +115,20 @@ case class ArrowEvalPython( override protected def withNewChildInternal(newChild: LogicalPlan): ArrowEvalPython = copy(child = newChild) } + +/** + * A logical plan that adds a new long column with the name `name` that + * increases one by one. This is for 'distributed-sequence' default index + * in pandas API on Spark. + */ +case class AttachDistributedSequence( + sequenceAttr: Attribute, + child: LogicalPlan) extends UnaryNode { + + override val producedAttributes: AttributeSet = AttributeSet(sequenceAttr) + + override val output: Seq[Attribute] = sequenceAttr +: child.output + + override protected def withNewChildInternal(newChild: LogicalPlan): AttachDistributedSequence = + copy(child = newChild) +} diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/ColumnPruningSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/ColumnPruningSuite.scala index 4db58298e1f6c..0655acbcb1bab 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/ColumnPruningSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/ColumnPruningSuite.scala @@ -452,5 +452,11 @@ class ColumnPruningSuite extends PlanTest { val expected = input.where(rand(0L) > 0.5).where('key < 10).select('key).analyze comparePlans(optimized, expected) } - // todo: add more tests for column pruning + + test("SPARK-36559 Prune and drop distributed-sequence if the produced column is not referred") { + val input = LocalRelation('a.int, 'b.int, 'c.int) + val plan1 = AttachDistributedSequence('d.int, input).select('a) + val correctAnswer1 = Project(Seq('a), input).analyze + comparePlans(Optimize.execute(plan1.analyze), correctAnswer1) + } } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala b/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala index 779d7f18a3bdc..bd3411d8d7ece 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala @@ -3541,24 +3541,11 @@ class Dataset[T] private[sql]( * This is for 'distributed-sequence' default index in pandas API on Spark. */ private[sql] def withSequenceColumn(name: String) = { - val rdd: RDD[InternalRow] = - // Checkpoint the DataFrame to fix the partition ID. - localCheckpoint(false) - .queryExecution.toRdd.zipWithIndex().mapPartitions { iter => - val joinedRow = new JoinedRow - val unsafeRowWriter = - new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1) - - iter.map { case (row, id) => - // Writes to an UnsafeRow directly - unsafeRowWriter.reset() - unsafeRowWriter.write(0, id) - joinedRow(unsafeRowWriter.getRow, row) - } - } - - sparkSession.internalCreateDataFrame( - rdd, StructType(StructField(name, LongType, nullable = false) +: schema), isStreaming) + Dataset.ofRows( + sparkSession, + AttachDistributedSequence( + AttributeReference(name, LongType, nullable = false)(), + logicalPlan)) } /** diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala index 931e9865b4ec7..d6a3c590b5f77 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala @@ -754,6 +754,8 @@ abstract class SparkStrategies extends QueryPlanner[SparkPlan] { func, output, planLater(left), planLater(right)) :: Nil case logical.MapInPandas(func, output, child) => execution.python.MapInPandasExec(func, output, planLater(child)) :: Nil + case logical.AttachDistributedSequence(attr, child) => + execution.python.AttachDistributedSequenceExec(attr, planLater(child)) :: Nil case logical.MapElements(f, _, _, objAttr, child) => execution.MapElementsExec(f, objAttr, planLater(child)) :: Nil case logical.AppendColumns(f, _, _, in, out, child) => diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/python/AttachDistributedSequenceExec.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/python/AttachDistributedSequenceExec.scala new file mode 100644 index 0000000000000..27bfb7f682572 --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/python/AttachDistributedSequenceExec.scala @@ -0,0 +1,62 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.execution.python + +import org.apache.spark.rdd.RDD +import org.apache.spark.sql.catalyst.InternalRow +import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.catalyst.plans.physical._ +import org.apache.spark.sql.execution.{SparkPlan, UnaryExecNode} + +/** + * A physical plan that adds a new long column with `sequenceAttr` that + * increases one by one. This is for 'distributed-sequence' default index + * in pandas API on Spark. + */ +case class AttachDistributedSequenceExec( + sequenceAttr: Attribute, + child: SparkPlan) + extends UnaryExecNode { + + override def producedAttributes: AttributeSet = AttributeSet(sequenceAttr) + + override val output: Seq[Attribute] = sequenceAttr +: child.output + + override def outputPartitioning: Partitioning = child.outputPartitioning + + override protected def doExecute(): RDD[InternalRow] = { + child.execute().map(_.copy()) + .localCheckpoint() // to avoid execute multiple jobs. zipWithIndex launches a Spark job. + .zipWithIndex().mapPartitions { iter => + val unsafeProj = UnsafeProjection.create(output, output) + val joinedRow = new JoinedRow + val unsafeRowWriter = + new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1) + + iter.map { case (row, id) => + // Writes to an UnsafeRow directly + unsafeRowWriter.reset() + unsafeRowWriter.write(0, id) + joinedRow(unsafeRowWriter.getRow, row) + }.map(unsafeProj) + } + } + + override protected def withNewChildInternal(newChild: SparkPlan): AttachDistributedSequenceExec = + copy(child = newChild) +}