From e76d4bff655bfc3161343bf483ab7764e1662916 Mon Sep 17 00:00:00 2001 From: Lyz Date: Tue, 24 Dec 2024 00:17:18 +0100 Subject: [PATCH] feat(aleph#Available datasets): Available datasets MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit OpenSanctions helps investigators find leads, allows companies to manage risk and enables technologists to build data-driven products. You can check [their datasets](https://www.opensanctions.org/datasets/). feat(aleph#offshore-graph): offshore-graph [offshore-graph](https://github.com/opensanctions/offshore-graph) contains scripts that will merge the OpenSanctions Due Diligence dataset with the ICIJ OffshoreLeaks database in order create a combined graph for analysis. The result is a Cypher script to load the full graph into the Neo4J database and then browse it using the Linkurious investigation platform. Based on name-based entity matching between the datasets, an analyst can use this graph to find offshore holdings linked to politically exposed and sanctioned individuals. As a general alternative, you can easily export and convert entities from an Aleph instance to visualize them in Neo4j or Gephi using the ftm CLI: https://docs.aleph.occrp.org/developers/how-to/data/export-network-graphs/ feat(ccc): introduce the CCC [Chaos Communication Congress](https://events.ccc.de/en/) is the best gathering of hacktivism in europe. **Prepare yourself for the congress** You can follow [MacLemon's checklist](https://github.com/MacLemon/CongressChecklist) **[Install the useful apps](https://events.ccc.de/congress/2024/hub/de/wiki/apps/)** *The schedule app* You can use either the Fahrplan app or giggity, I've been using the second for a while, so is the one I use *The navigation app* `c3nav` is an application to get around the congress. The official F-droid is outdated, so add [their repository](https://f-droid.c3nav.de/fdroid/repo/?fingerprint=C1EC2D062F67A43F87CCF95B8096630285E1B2577DC803A0826539DF6FB4C95D) to get the latest version. **Reference** - [Home](https://events.ccc.de/en/ - [Engelsystem](https://engel.events.ccc.de/) - [Angel FAQ](https://engel.events.ccc.de/faq) feat(ccc#Angel's system): introduce the Angel's system [Angels](https://angelguide.c3heaven.de/) are participants who volunteer to make the event happen. They are neither getting paid for their work nor do they get free admission. **[Expectation](https://angelguide.c3heaven.de/#_expectations)** Helping at our events also comes with some simple, but important expectations of you: - Be on time for your shift or give Heaven early notice. - Be well rested, sober and not hungry. - Be open-minded and friendly in attitude. - Live our moral values: - Be excellent to each other. - All creatures are welcome. **[Quickstart](https://angelguide.c3heaven.de/#_quick_start)** - Create yourself an [Engelsystem account](https://engel.events.ccc.de/) - Arrive at the venue - Find [the Heaven](https://c3nav.de/) and go there. - Talk to a welcome angel or a shift coordinator to get your angel badge and get marked as arrived. - If you have any questions, you can always ask the shift coordinators behind the counter. - Attend an angel meeting - Announced in the Engelsystem news - Click yourself an interesting shift - Read shift descriptions first - Participate in your shift - Use the navigation to find the right place. - Arrive a little bit early at the meeting point - Rest for at least one hour - Repeat from step 5 And always, have a lot of fun. To get more insights read [this article](https://jascha.wtf/angels-at-chaos-about-volunteering-and-fitting-in/) **[The engelsystem](https://angelguide.c3heaven.de/#_the_engelsystem)** The [Engelsystem](https://engel.events.ccc.de/) is the central place to distribute the work to all the helping angels. It can be a bit overwhelming at the beginning but you will get used to it and find your way around. As you might have seen there are many different shifts and roles for angels — some sounding more appealing than others. There are shifts where you need to have some knowledge before you can take them. This knowledge is given in introduction meetings or by taking an unrestricted shift in the team and getting trained on the job. These introduction meetings are announced in the Engelsystem under the tab "Meetings". Heaven and the teams try to make sure that there are only restrictions for shifts in place where they are absolutely needed. Most restrictions really only need a meeting or some unrestricted shifts at the team to get lifted. Harder restrictions are in place where volunteers need to have special certification, get access to certain systems with a huge amount of data (e.g. mail-queues with emails from participants) or handling big piles of money. Usually the requirements for joining an angeltype are included in the description of the angeltype. Especially the restricted shifts are tempting because after all we want to get the event running, aren’t we? From our personal experience what gets the event running are the most common things: Guarding a door, collecting bottle/trash, washing dishes in the angel kitchen, being on standby to hop in when spontaneous help is needed or check the wrist band at the entrance. If there are any further questions about angeltypes, the description of the angeltype usually includes contact data such as a DECT number or an e-mail address that can be used. Alternatively, you can also ask one of the persons of the respective angeltype mentioned under "Supporter". **[Teams](https://angelguide.c3heaven.de/#_teams)** Congress is organized from different teams, each with its own area of expertise. All teams are self-organized and provide their own set of services to the event. Teams spawn into existence by a need not fulfilled. They are seldom created by an authority. Check out the [different teams](https://angelguide.c3heaven.de/#_teams) to see which one suits you best. [Some poeple](https://jascha.wtf/angels-at-chaos-about-volunteering-and-fitting-in/) suggest not to try to fit into special roles at your first event. The roles will find you – not the other way around. Our com­mu­ni­ty is not about per­so­nal gro­wing but about con­tri­bu­ting to each other and gro­wing by doing this. **Perks** Being an angel also comes with some perks. While we hope that participation is reward enough, here is a list of things that are exclusive to angels: - Community acknowledgement - Hanging out in Heaven and the angel hack center with its chill out area - Free coffee and (sparkling) water - Warm drinks or similar to make the cold night shifts more bearable **Rewards** If you have contributed a certain amount of time, you may receive access to: - Fantastic hot vegan and vegetarian meals - The famous limited™ angel T-shirt in Congress design - Maybe some other perks feat(kubectl_commands#Delete pods that are stuck in terminating state for a while): Delete pods that are stuck in terminating state for a while ```bash kubectl delete pod --grace-period=0 --force ``` fix(himalaya): tweak the bindings Move forward and backwards in the history of emails: ```lua vim.api.nvim_create_autocmd("FileType", { group = "HimalayaCustomBindings", pattern = "himalaya-email-listing", callback = function() vim.api.nvim_buf_set_keymap(0, "n", "b", "(himalaya-folder-select-previous-page)", { noremap = true, silent = true }) vim.api.nvim_buf_set_keymap(0, "n", "f", "(himalaya-folder-select-next-page)", { noremap = true, silent = true }) end, }) ``` Better bindings for the email list view: ```lua -- Refresh emails vim.api.nvim_buf_set_keymap(0, "n", "r", ":lua FetchEmails()", { noremap = true, silent = true }) -- Email list view bindings vim.api.nvim_buf_set_keymap(0, "n", "b", "(himalaya-folder-select-previous-page)", { noremap = true, silent = true }) vim.api.nvim_buf_set_keymap(0, "n", "f", "(himalaya-folder-select-next-page)", { noremap = true, silent = true }) vim.api.nvim_buf_set_keymap(0, "n", "R", "(himalaya-email-reply-all)", { noremap = true, silent = true }) vim.api.nvim_buf_set_keymap(0, "n", "F", "(himalaya-email-forward)", { noremap = true, silent = true }) vim.api.nvim_buf_set_keymap(0, "n", "m", "(himalaya-folder-select)", { noremap = true, silent = true }) vim.api.nvim_buf_set_keymap(0, "n", "M", "(himalaya-email-move)", { noremap = true, silent = true }) ``` feat(himalaya#Searching emails): Searching emails You can use the `g/` binding from within nvim to search for emails. The query syntax supports filtering and sorting query. I've tried changing it to `/` without success :'( **Filters** A filter query is composed of operators and conditions. There is 3 operators and 8 conditions: - `not `: filter envelopes that do not match the condition - ` and `: filter envelopes that match both conditions - ` or `: filter envelopes that match one of the conditions - `date `: filter envelopes that match the given date - `before `: filter envelopes with date strictly before the given one - `after `: filter envelopes with date stricly after the given one - `from `: filter envelopes with senders matching the given pattern - `to `: filter envelopes with recipients matching the given pattern - `subject `: filter envelopes with subject matching the given pattern - `body `: filter envelopes with text bodies matching the given pattern - `flag `: filter envelopes matching the given flag **Sorting** A sort query starts by "order by", and is composed of kinds and orders. There is 4 kinds and 2 orders: - `date [order]`: sort envelopes by date - `from [order]`: sort envelopes by sender - `to [order]`: sort envelopes by recipient - `subject [order]`: sort envelopes by subject - ` asc`: sort envelopes by the given kind in ascending order - ` desc`: sort envelopes by the given kind in descending order **Examples** `subject foo and body bar`: filter envelopes containing "foo" in their subject and "bar" in their text bodies `order by date desc subject`: sort envelopes by descending date (most recent first), then by ascending subject `subject foo and body bar order by date desc subject`: combination of the 2 previous examples feat(himalaya#Not there yet): List more detected issues - [Replying an email doesn't mark it as replied](https://github.com/pimalaya/himalaya-vim/issues/14) feat(himalaya#Cannot install): Troubleshoot cannot install the program Sometimes [the installation steps fail](https://github.com/pimalaya/himalaya/issues/513) as it's still not in stable. A workaround is to download the binary created by the [pre-release CI](https://github.com/pimalaya/himalaya/actions/workflows/pre-releases.yml). You can do it by: - Click on the latest job - Click on jobs - Click on the job of your architecture - Click on "Upload release" - Search for "Artifact download URL" and download the file - Unpack it and add it somewhere in your `$PATH` feat(jellyfin#Enable hardware transcoding): Enable hardware transcoding **[Enable NVIDIA hardware transcoding](https://jellyfin.org/docs/general/administration/hardware-acceleration/nvidia)** *Remove the artificial limit of concurrent NVENC transcodings* Consumer targeted [Geforce and some entry-level Quadro cards](https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new) have an artificial limit on the number of concurrent NVENC encoding sessions (max of 8 on most modern ones). This restriction can be circumvented by applying an unofficial patch to the NVIDIA Linux and Windows driver. To apply the patch: First check that your current version is supported `nvidia-smi`, if it's not try to upgrade the drivers to a supported one, or think if you need more than 8 transcodings. ```bash wget https://raw.githubusercontent.com/keylase/nvidia-patch/refs/heads/master/patch.sh chmod +x patch.sh ./patch.sh ``` If you need to rollback the changes run `./patch.sh -r`. You can also patch it [within the docker itself](https://github.com/keylase/nvidia-patch?tab=readme-ov-file#docker-support) ```yaml services: jellyfin: image: jellyfin/jellyfin user: 1000:1000 network_mode: 'host' volumes: - /path/to/config:/config - /path/to/cache:/cache - /path/to/media:/media runtime: nvidia deploy: resources: reservations: devices: - driver: nvidia count: all capabilities: [gpu] ``` Restart the docker and then check that you can access the graphics card with: ```bash docker exec -it jellyfin nvidia-smi ``` Enable NVENC in Jellyfin and uncheck the unsupported codecs. **Tweak the docker-compose** The official Docker image doesn't include any NVIDIA proprietary driver. You have to install the NVIDIA driver and NVIDIA Container Toolkit on the host system to allow Docker access to your GPU. refactor(life_review): into roadmap_adjustment feat(nodejs#Using nvm): Install using nvm ```bash curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.40.1/install.sh | bash nvm install 22 node -v # should print `v22.12.0` npm -v # should print `10.9.0` ``` feat(linux_snippets#Convert an html to a pdf): Convert an html to a pdf **Using weasyprint** Install it with `pip install weasyprint PyMuPDF` ```bash weasyprint input.html output.pdf ``` It gave me better result than `wkhtmltopdf` **Using wkhtmltopdf** To convert the given HTML into a PDF with proper styling and formatting using a simple method on Linux, you can use `wkhtmltopdf` with some custom options. First, ensure that you have `wkhtmltopdf` installed on your system. If not, install it using your package manager (e.g., Debian: `sudo apt-get install wkhtmltopdf`). Then, convert the HTML to PDF using `wkhtmltopdf` with the following command: ```bash wkhtmltopdf --page-size A4 --margin-top 15mm --margin-bottom 15mm --encoding utf8 input.html output.pdf ``` In this command: - `--page-size A4`: Sets the paper size to A4. - `--margin-top 15mm` and `--margin-bottom 15mm`: Adds top and bottom margins of 15 mm to the PDF. After running the command, you should have a nicely formatted `output.pdf` file in your current directory. This method preserves most of the original HTML styling while providing a simple way to export it as a PDF on Linux. If you need to zoom in, you can use the `--zoom 1.2` flag. For this to work you need your css to be using the `em` sizes. feat(linux_snippets#Format a drive to use a FAT32 system): Format a drive to use a FAT32 system ```bash sudo mkfs.vfat -F 32 /dev/sdX ``` Replace /dev/sdX with your actual drive identifier feat(linux_snippets#Get the newest file of a directory with nested directories and files): Get the newest file of a directory with nested directories and files ```bash find . -type f -printf '%T@ %p\n' | sort -n | tail -1 | cut -f2- -d" " ``` fix(linux_snippets#How to debug a CPU Throttling high alert): How to debug a CPU Throttling high alert If the docker is using less resources than the limits but they are still small (for example 0.1 CPUs) the issue may be that the CPU spikes are being throttle before they are shown in the CPU usage, the solution is then to increase the CPU limits # Create a systemd service for a non-root user To set up a systemd service as a **non-root user**, you can create a user-specific service file under your home directory. User services are defined in `~/.config/systemd/user/` and can be managed without root privileges. feat(linux_snippets): Check the docker images sorted by size ```bash docker images --format "{{.Repository}}:{{.Tag}}\t{{.Size}}" | sort -k2 -h ``` You can also use the builtin `docker system df -v` to get a better understanding of the usage of disk space. feat(orgzly): Migrate from Orgzly to Orgzly Revived - [Home](https://www.orgzlyrevived.com/) - [F-droid page](https://f-droid.org/en/packages/com.orgzlyrevived/) - [Source](https://github.com/orgzly-revived/orgzly-android-revived) - [Old Home](https://orgzly.com/) feat(parkour#Vaults): Introduce Vaults **[Safety vault](https://yewtu.be/watch?v=f65H4Rr0oD0)** I'm going to describe one way of doing it, but it could also be done as a mirror image. - Advance towards the fence - Place your left hand on the fence with your fingers pointing in the direction you're going - Jump while placing your right foot on the fence - Pass your left foot over the fence by pulling your knee close to your chest to prevent your foot from catching on the fence - Once your left foot is over, let go of your right foot - Advance with your right hand in the direction of movement (not upwards), until it rests on the bar (your hand should be facing opposite to the left, with fingers pointing downwards) - Once both feet are free and hands supported, push yourself forward. *[Thief vault](https://yewtu.be/watch?v=f65H4Rr0oD0)* *[Speed vault](https://yewtu.be/watch?v=f65H4Rr0oD0)* *[Kong vault or Cat](https://yewtu.be/watch?v=f65H4Rr0oD0)* If you're thinking on starting to learn parkour when you're an adult there are some things that you need to take into account: refactor(roadmap_adjustment): Reorder the file feat(transcoding): Introduce transcoding **Big disclaimer!!!** I have absolutely no idea of what I'm doing. It's the first time I do this and I'm just recording what I'm learning. Use the contents of this page at your own risk. I've made this document thinking mainly of using [AV1](#av1) as a video encoding algorithm, `ffmpeg` to do the transcoding and `jellyfin` to stream it, so the content is heavily **Initial guidance into the transcoding world** *Shall I transcode my library?* There are some discrepancies whether it makes sense to transcode your library. In my case I'm going to do it because disks are expensive (people compare with buying one disk, but to upgrade my NAS I need 5, so it would be around 1400$). Here are other opinions: [1](https://www.reddit.com/r/AV1/comments/ymrs5v/id_like_to_encode_my_entire_library_to_av1/) **[Do's and don'ts](https://wiki.x266.mov/blog/av1-for-dummies#dos--donts)** Due to a lot of misunderstandings about codecs and compression, there are a lot of common misconceptions that are held regarding video encoding. We'll start by outlining some bad practices: - Don't encode the same video multiple times. This is a common mistake made by people new to video encoding. Every time you encode a video, you lose additional quality due to generation loss. This is because video codecs are lossy, and every time you encode a video, you lose more information. This is why it is important to keep the original video file if you frequently re-encode it. - Don't blindly copy settings from others without understanding them. What works for one person's content and workflow may not work for yours. Even the default settings on many encoders are not optimal for most content. - Don't assume that higher bitrate equates to better quality. Inefficient encoding can waste bits without improving visual quality, and efficient encoding can make lower bitrate video look drastically better than higher bitrate video using the same codec. - Don't assume all encoders/presets/settings/implementations are created equal. Even given two encoding frameworks that use the same underlying encoder, you may achieve different results given encoder version mismatches or subtly different settings used under the hood. - Don't use unnecessarily slow presets/speeds unless you have a specific need and ample time. W slower presets improve encoding efficiency most of the time, the quality gains reach a point of diminishing returns beyond a certain point. Use the slowest preset you can tolerate, not the slowest preset available. - Don't blindly trust metric scores. It is unfortunate how trusted VMAF is considering how infrequently it correlates with visual fidelity in practice now that it has become so popular. Even the beloved SSIMULACRA2 is not a perfect one-to-one with the human eye. Now, let's move on to some good practices: - Experiment with different settings and compare the results. - Consider your content type when choosing encoding settings. Film, animation, and sports all have different characteristics that benefit from distinct approaches. - Keep your encoding software up-to-date; the encoding world moves quickly. **[Types of transcoding](https://jellyfin.org/docs/general/server/transcoding/#types-of-transcoding)** There are four types of playback in jellyfin; three of which involve transcoding. The type being used will be listed in the dashboard when playing a file. They are ordered below from lowest to highest load on the server: - Direct Play: Delivers the file without transcoding. There is no modification to the file and almost no additional load on the server. - Remux: Changes the container but leaves both audio and video streams untouched. - Direct Stream: Transcodes audio but leaves original video untouched. - Transcode: Transcodes the video stream. **Shall I use CPU or GPU to do the transcoding?** The choice between **CPU** or **GPU** for transcoding depends on your specific needs, including speed, quality, and hardware capabilities. Both have their pros and cons, and the best option varies by situation. *CPU-Based Transcoding* Pros: - **High Quality**: Software encoders like `libx264`, `libx265`, or `libsvtav1` produce better compression and visual quality at the same bitrate compared to GPU-based encoders. - **Flexibility**: Supports a wider range of encoding features, tuning options, and codecs. - **Optimized for Low Bitrates**: CPU encoders handle complex scenes more effectively, producing fewer artifacts at lower bitrates. - **No Dedicated Hardware Required**: Works on any modern system with a CPU. Cons: - **Slower Speed**: CPU encoding is much slower, especially for high-resolution content (e.g., 4K or 8K). - **High Resource Usage**: Consumes significant CPU resources, leaving less processing power for other tasks. Best Use Cases: - High-quality archival or master files. - Transcoding workflows where quality is the top priority. - Systems without modern GPUs or hardware encoders. *GPU-Based Transcoding* Pros: - **Fast Encoding**: Hardware-accelerated encoders like NVIDIA NVENC, AMD VCE, or Intel QuickSync can encode video much faster than CPUs. - **Lower Resource Usage**: Frees up the CPU for other tasks during encoding. - **Good for High-Resolution Video**: Handles 4K or even 8K video with ease. - **Low Power Consumption**: GPUs are optimized for parallel processing, often consuming less power per frame encoded. Cons: - **Lower Compression Efficiency**: GPU-based encoders often produce larger files or lower quality compared to CPU-based encoders at the same bitrate. - **Limited Features**: Fewer tuning options and sometimes less flexibility in codec support. - **Artifact Risk**: May introduce visual artifacts, especially in complex scenes or at low bitrates. Best Use Cases: - Streaming or real-time encoding. - High-volume batch transcoding where speed matters more than maximum quality. - Systems with capable GPUs (e.g., NVIDIA GPUs with Turing or Ampere architecture). *Quality vs. Speed* | **Factor** | **CPU Encoding** | **GPU Encoding** | |--------------------------|-------------------------------|--------------------------------| | **Speed** | Slower | Much faster | | **Quality** | Higher | Good but not the best | | **Bitrate Efficiency** | Better | Less efficient | | **Compatibility** | Broader | Limited by hardware support | | **Power Consumption** | Higher | Lower | *Conclusion* - For **quality-focused tasks** such as a whole library encoding: Use CPU-based encoding. - For **speed-focused tasks** such as streaming with jellyfin: Use GPU-based encoding. For more information read [1](https://www.reddit.com/r/PleX/comments/16w1hsz/cpu_vs_gpu_whats_the_smartest_choice/). **[Video transcoding algorithms](https://jellyfin.org/docs/general/clients/codec-support/)** [This guide](https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Video_codecs) introduces the video codecs you're most likely to encounter or consider using. I'm only going to analyse the ones that I might use. When deciding which one to use check [jellyfin's video compatibility table](https://jellyfin.org/docs/general/clients/codec-support/#video-compatibility) or [test your browser's compatibility for any codec profile](https://cconcolato.github.io/media-mime-support/). Without taking into account H264 8Bits AV1 is the one which has more compatibility support except for iOS (but who cares about them?). **[AV1](https://wiki.x266.mov/blog/av1-for-dummies)** [AV1](https://wiki.x266.mov/docs/video/AV1) is a royalty-free video codec developed by the Alliance for Open Media. It is designed to replace VP9 and presently competes with H.266. AV1 is known for its high compression efficiency, which the marketing will have you believe reduces file sizes by up to 50% compared to H.264 and up to 30% compared to H.265 across the board. It is supported by several major browsers and is widely used across many streaming services and video platforms. Before we dive in, it is important to understand why you may want to use AV1 instead of other codecs. The reality is that AV1 is not better than H.264/5 in every single scenario; video encoding is a complicated field, and the best codec for you will depend on your specific needs. AV1 excels in: - Low to medium-high fidelity encoding - Higher resolution encoding - Encoding content with very little grain or noise - Slow, non-realtime contexts (e.g. offline encoding) The enumeration above still consists of broad strokes, but the point is to understand that AV1 is not a silver bullet. It will not automatically make your videos smaller while preserving your desired quality. To make things more difficult, the x264 & x265 encoders are very mature, while AV1 encoding efforts designed to meet the extremely complicated needs of the human eye are still in their infancy. **AV1 current problems** The first problem I've seen is that Unmanic doesn't support AV1 very well, you need to write your own ffmpeg configuration (which is fine). Some issues that track this are [1](https://github.com/Unmanic/unmanic-plugins/issues/333), [2](https://github.com/Unmanic/unmanic/issues/181), [3](https://github.com/Unmanic/unmanic/issues/390), [4](https://github.com/Unmanic/unmanic/issues/471) or [5](https://github.com/Unmanic/unmanic-plugins/issues?q=is%3Aissue+is%3Aopen+av1) **[AV1 probably outdated problems](https://gist.github.com/dvaupel/716598fc9e7c2d436b54ae00f7a34b95#current-problems)** The original article is dated of early 2022 so it's probably outdated given the speed of this world. - 10 bit playback performance is not reliable enough on average consumer hardware. - AV1 tends to smooth video noticeably, even at high bitrates. This is especially appearant in scenes with rain, snow etc, where it is very hard to conserve details. - Grainy movies are a weakpoint of AV1. Even with film grain synthesis enabled, it is very hard to achieve satisfying results. At the moment (early 2022, SVT-AV1 v0.9.0) it is a fairly promising, but not perfect, codec. It is great for most regular content, achieves great quality at small file sizes and appearantly keeps its promise of being considerably more efficient than HEVC. The only area where it must still improve is grainy, detailed movie scenes. With such high-bitrate, bluray-quality source material it's hard to achieve visual transparency. If grain synthesis has improved enough and smooth decoding is possible in most devices, it can be generally recommended. For now, it is still in the late experimental phase. feat(transcoding#AV1 encoders): AV1 encoders The world of AV1 encoding is diverse and complex, with several open-source encoders available, each bringing its own set of strengths, weaknesses, and unique features to the table. - SVT-AV1 - rav1e - aomenc (libaom) - SVT-AV1-PSY Understanding these encoders is crucial for making informed decisions about what best suits your specific encoding needs. **SVT-AV1** [SVT-AV1](https://wiki.x266.mov/docs/encoders/SVT-AV1) (Scalable Video Technology for AV1) is an AV1 encoder library and application developed by Intel, Netflix, and others. It has gained significant popularity in the encoding community due to its impressive balance of speed, quality, and scalability. Links: - Wiki page: [SVT-AV1](https://wiki.x266.mov/docs/encoders/SVT-AV1) - Git repository: https://gitlab.com/AOMediaCodec/SVT-AV1 - Documentation: https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/README.md 1. **Performance & Scalability** - SVT-AV1 is renowned for its encoding speed, particularly at higher speed presets. - It leverages parallel processing, making it exceptionally efficient on multi-core systems. Fun fact: SVT-AV1's parallel processing is lossless, so it doesn't compromise quality for speed. 2. **Quality-to-Speed Ratio** - SVT-AV1 strikes an impressive balance between encoding speed and output quality. - At faster presets, it usually outperforms other encoders in quality per unit of encoding time. - While it may not achieve the absolute highest *quality per bit* possible, its quality is generally considered impressive for its speed. 3. **Flexibility** - SVT-AV1 offers a wide range of encoding options and presets, allowing fine-tuned control over the encoding process. - It provides 14 presets (0-13), with 0 being the slowest and highest quality, and 13 being the fastest but lowest quality. - Advanced options allow users to adjust parameters like hierarchical levels, intra-refresh type, and tuning modes. 4. **Continuous Development** - SVT-AV1 receives frequent updates and optimizations, with new releases often coming alongside big changes. - The open-source nature of the project encourages community contributions and rapid feature development. SVT-AV1 is an excellent choice for a wide range of encoding scenarios. It's particularly well-suited for: - High-volume encoding operations where speed is crucial - Live or near-live encoding of high-resolution content - Scenarios where a balance between quality and encoding speed is required - Users with multi-core systems who want to leverage their hardware efficiently Some downsides include: - Higher memory usage compared to other encoders - The developers assess quality via its performance on traditional legacy metrics, which harms its perceptual fidelity ceiling. **rav1e** [rav1e](https://wiki.x266.mov/docs/encoders/rav1e) is an AV1 encoder written in Rust & Assembly. Developed by the open-source community alongside Xiph, it brings a unique approach to AV1 encoding with its focus on safety and correctness. Links: - Wiki page: [rav1e](https://wiki.x266.mov/docs/encoders/rav1e) - Git repository: https://github.com/xiph/rav1e - Documentation: https://github.com/xiph/rav1e/tree/master/doc#readme 1. **Safety & Reliability** - Being written in Rust, rav1e emphasizes memory safety and thread safety. - This focus on safety translates to a more stable and reliable encoding process, with reduced risks of crashes or undefined behavior. 2. **High Fidelity** - At high fidelity targets - an area where AV1 usually lacks - rav1e is a strong contender compared to other encoders. - It excels in preserving fine details and textures, making it a good choice for high-fidelity encoding. 3. **Quality** - While not typically matching aomenc or SVT-AV1 in pure compression efficiency, rav1e can produce high-quality output videos. - It often achieves a good balance between quality and encoding time, especially at medium-speed settings. 4. **Perceptually Driven** - rav1e's development is driven by visual fidelity, without relying heavily on metrics. - This focus on perceptual quality leads to a stronger foundation for future potential improvements in visual quality, as well as making the encoder very easy to use as it does not require excessive tweaking. rav1e is well-suited for: - Projects where stability is paramount - Users who prioritize a community-driven, open-source development approach - Encoding tasks where a balance between quality and speed is needed, but the absolute fastest speeds are not required Some limitations of rav1e include: - Lagging development compared to other encoders - Slower encoding speeds compared to SVT-AV1 at similar quality & size - Fewer advanced options compared to other encoders **aomenc (libaom)** [aomenc](https://wiki.x266.mov/docs/encoders/aomenc), based on the libaom library, is the reference encoder for AV1. Developed by the Alliance for Open Media (AOM), it is the benchmark for AV1 encoding quality and compliance. Links: - Wiki page: [aomenc](https://wiki.x266.mov/docs/encoders/aomenc) - Git repository: https://aomedia.googlesource.com/aom/ 1. **Encoding Quality** - aomenc is widely regarded as the gold standard for AV1 encoding quality. - It often achieves high compression efficiency among AV1 encoders, especially at slower speed settings. - The encoder squeezes out nearly every last bit of efficiency from the AV1 codec, making it ideal for archival purposes or when quality per bit is critical. 2. **Encoding Speed** - aomenc is generally the slowest among major AV1 encoders. - It offers 13 CPU speed levels (0-12), but even at its fastest settings, it's typically slower than other encoders at their slower settings. - The slow speed is often considered a trade-off for its high compression efficiency. 3. **Extensive Options** - As the reference implementation, aomenc offers the most comprehensive encoding options. - It provides fine-grained control over nearly every aspect of the AV1 encoding process. - Advanced users can tweak many parameters to optimize for specific content types or encoding scenarios. 4. **Flexibility** - Being the reference encoder, aomenc produces highly standards-compliant AV1 bitstreams that take advantage of the full arsenal of AV1 features. - It supports 4:2:0 and 4:4:4 chroma subsampling, 8- to 12-bit color depth, and various other advanced features that more specialized encoders like SVT-AV1 do not support. aomenc is ideal for: - Scenarios where achieving the highest possible quality is the primary goal - Archival encoding where compression efficiency is crucial - Research and development in video compression - Encoding projects where encoding time is not a significant constraint Some drawbacks of aomenc include: - Unresponsive development driven by legacy metrics, leading to slower adoption of new techniques and ignoring improvements communicated by people outside the Google development team - Cripplingly difficult to use for beginners, with a culture of cargo-culting settings - Slow encoding speeds compared to other AV1 encoders, which has less of an impact on the quality of the output than it used to compared to maturing encoders like SVT-AV1 **SVT-AV1-PSY** [SVT-AV1-PSY](https://wiki.x266.mov/docs/encoders/svt-av1-psy) is a community fork of the SVT-AV1 encoder focused on psychovisual optimizations to enhance perceived visual quality. It aims at closing the distance between SVT-AV1's high speeds and the perceptual quality of aomenc's slow brute force approach. Links: - Wiki page: [SVT-AV1-PSY](https://wiki.x266.mov/docs/encoders/svt-av1-psy) - Git repository: https://github.com/gianni-rosato/svt-av1-psy - Documentation: https://github.com/gianni-rosato/svt-av1-psy/blob/master/Docs/PSY-Development.md 1. **Perceptual Optimizations** - SVT-AV1-PSY introduces various psychovisual enhancements to improve the perceived quality of encoded video. - These optimizations often result in output that looks better to the human eye, even if it might not always score as well in objective metrics. 2. **Additional Features** - Introduces new options like variance boost, which can help maintain detail in high-contrast scenes. - Offers alternative curve options for more nuanced control over the encoding process. - Extends the CRF (Constant Rate Factor) range to 70 (from 63 in mainline SVT-AV1), allowing for extremely low-bitrate encodes. - Introduces additional tuning options, including a new "SSIM with Subjective Quality Tuning" mode that can improve perceived quality. 3. **Visual Fidelity Focus** - Aims to produce more visually pleasing results, sometimes at the expense of metric performance. - Includes options like sharpness adjustment and adaptive film grain synthesis which can significantly impact the visual characteristics of the output. - Features modified defaults driven by perceptual quality considerations. 4. **Extended HDR Support** - Includes built-in support for Dolby Vision & HDR10+ encoding. - This makes it particularly useful for encoding HDR content without requiring additional post-processing steps or external tools. 5. **Performance** - Based on SVT-AV1, it retains the performance characteristics of its parent encoder. - Adds super slow presets (-2 and -3) for research purposes and extremely high-quality encoding. These additional presets can be useful for creating reference encodes or applications where encoding time is not a concern. SVT-AV1-PSY is particularly well-suited for: - Encoding scenarios where subjective visual quality is prioritized over pure metric performance - HDR content encoding in Dolby Vision or HDR10+ - Users who want fine-grained control over psychovisual aspects of encoding - Projects that require a balance between the speed of SVT-AV1 and enhanced visual quality - Encoding challenging content with complex textures or high-contrast scenes Some drawbacks are: - Everything that applies to SVT-AV1, including the lack of support for 4:4:4 chroma subsampling and 12-bit color depth that are useful in specific scenarios - There are no official ffmpeg builds with this fork, but there are community built binaries: - https://github.com/Uranite/FFmpeg-Builds - https://github.com/Nj0be/HandBrake-SVT-AV1-PSY - https://www.reddit.com/r/AV1/comments/1fppk4d/ffmpeg_with_svtav1_psy_latest_for_windows_10_x64/ **Conclusion** While SVT-AV1 is known for being fast, aomenc is renowned for its high-quality output, and rav1e is recognized for its safety and reliability, each encoder has strengths and weaknesses. The best encoder for you will depend on your specific needs and priorities. I'll go with SVT-AV1 given that is the standard maintained by the community, and that SVT-AV1-PSY is not available by default in the tools that I am going to use (you'd need to compile it, and maintain it), and that I probably won't notice the difference. **X265 (HVEC)** - Is not open source **Conclusion** I'll use AV1 because: - Is an open source, royalty free codec - It's one of the most modern encoders - It has a wide range of compatibility support - It has better compression rate than x265 and it seems to be faster? feat(transcoding#Transcoding parameter comparison): Transcoding parameter comparison **Check the original file transcoding information** To investigate the encoding details of an existing video file, you can use FFprobe (which comes with FFmpeg). ```bash ffprobe -v quiet -print_format json -show_streams -show_format file_to_test.mp4 ``` The metadata isn't always perfectly reliable, especially if the file has been modified or re-encoded multiple times. **CRF comparison** Try to use CRF (Constant Rate Factor) for offline encoding, as opposed to CBR (onstant Bitrate) or VBR (Variable Bitrate). While the latter two are effective for precisely targeting a particular bitrate, CRF is more effective at targeting a specific quality level efficiently. So avoid the `-b:v 0` `ffmpeg` flag. Check these articles [1](https://ottverse.com/analysis-of-svt-av1-presets-and-crf-values/), [2](https://academysoftwarefoundation.github.io/EncodingGuidelines/EncodeAv1.html#crf-comparison-for-libsvtav1) and [3](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/Ffmpeg.md) for an interesting comparison between `presets` and `crf` when encoding in AV1. A good starting point for 1080p video is `crf=30`. **Can you compare values of CRF between video algorithms?** No, CRF (Constant Rate Factor) values are not directly comparable between different encoding algorithms like AV1 and H.265. Each codec has its own unique compression characteristics, so a CRF of 32 in AV1 will look different from a CRF of 32 in H.265, and similarly, a CRF of 21 will have different visual qualities. Here's a more detailed explanation: 1. Codec-Specific Compression: - Each codec (AV1, H.265, H.264, etc.) has its own compression algorithm and efficiency - AV1 is generally more efficient at compression compared to H.265 - This means a higher CRF value in AV1 might produce similar or better quality compared to a lower CRF in H.265 2. Rough Equivalence Guidelines: While not exact, here are some rough comparative CRF ranges: - H.264: CRF 18-28 - H.265: CRF 20-28 - AV1: CRF 25-35 **Script to see the quality difference by changing the CRF** It's recommended to test encodes at different CRF values and compare for your specific content: - File size versus visual quality - Review objective quality metrics You can use the next script for that: ```bash input_video="$1" initial_time="00:15:00" probe_length="00:01:00" ffmpeg -i "$input_video" -ss $initial_time -t "$probe_length" -c copy original_segment.mkv crfs=(28 30 32 34 36) echo "CRF Comparison:" >size_comparison.log echo "Original Segment Size:" >>size_comparison.log original_size=$(du -sh original_segment.mkv) echo "$original_size" >>size_comparison.log echo "-------------------" >>size_comparison.log echo "CRF Quality Metrics Comparison:" >quality_metrics.log echo "-------------------" >>quality_metrics.log for crf in "${crfs[@]}"; do # Encode test segments ffmpeg -i "$input_video" \ -ss "$initial_time" -t "$probe_length" \ -c:v libsvtav1 \ -preset 5 \ -crf $crf \ -g 240 \ -pix_fmt yuv420p10le \ preview_crf_${crf}.mkv # Create a side by side comparison to see the differences ffmpeg -i original_segment.mkv -i preview_crf_${crf}.mkv \ -filter_complex \ "[0:v][1:v]hstack=inputs=2[v]" \ -map "[v]" \ -c:v libx264 \ side_by_side_comparison_original_vs_crf_${crf}.mkv # Log file size size=$(du -h preview_crf_${crf}.mkv | cut -f1) echo "CRF $crf: $size" >>size_comparison.log # Measure PSNR and SSIM ffmpeg -i original_segment.mkv -i preview_crf_${crf}.mkv \ -filter_complex "[0:v][1:v]psnr=stats_file=psnr_${crf}.log;[0:v][1:v]ssim=stats_file=ssim_${crf}.log" -f null - psnr_value=$(grep "psnr_avg:" psnr_${crf}.log | awk -F'psnr_avg:' '{sum += $2; count++} END {if (count > 0) print sum / count; else print "N/A"}') ssim_value=$(grep "All:" ssim_${crf}.log | awk -F'All:' '{sum += $2; count++} END {if (count > 0) print sum / count; else print "N/A"}') # Log the results echo "CRF $crf:" >>quality_metrics.log echo " PSNR: ${psnr_value:-N/A}" >>quality_metrics.log echo " SSIM: ${ssim_value:-N/A}" >>quality_metrics.log echo "-------------------" >>quality_metrics.log done ffmpeg -i preview_crf_${crfs[1]}.mkv -i preview_crf_${crfs[-1]}.mkv \ -filter_complex \ "[0:v][1:v]hstack=inputs=2[v]" \ -map "[v]" \ -c:v libx264 \ side_by_side_comparison_crf_${crfs[1]}_vs_crf_${crfs[-1]}.mkv ffmpeg -i preview_crf_${crfs[1]}.mkv -i preview_crf_${crfs[-1]}.mkv \ -filter_complex "[0:v][1:v]psnr=stats_file=psnr_crfs_max_difference.log;[0:v][1:v]ssim=stats_file=ssim_crfs_max_difference.log" -f null - psnr_value=$(grep "psnr_avg:" psnr_crfs_max_difference.log | awk -F'psnr_avg:' '{sum += $2; count++} END {if (count > 0) print sum / count; else print "N/A"}') ssim_value=$(grep "All:" ssim_crfs_max_difference.log | awk -F'All:' '{sum += $2; count++} END {if (count > 0) print sum / count; else print "N/A"}') echo "CRF ${crfs[1]} vs CRF ${crfs[-1]}:" >>quality_metrics.log echo " PSNR: ${psnr_value:-N/A}" >>quality_metrics.log echo " SSIM: ${ssim_value:-N/A}" >>quality_metrics.log echo "-------------------" >>quality_metrics.log cat size_comparison.log cat quality_metrics.log ``` It will: - Create a `original_segment.mp4` segment so you can compare the output - Create a series of `preview_crf_XX.mkv` files with a 1 minute preview of the content - Create a list of `side_by_side_comparison` files to visually see the difference between the CRF factors - Create a quality metrics report `quality_metrics.log` by analysing the SSIM and PSNR tests (explained below) - A `size_comparison.log` file to see the differences in size. **Results** **CRF vs file size** I've run this script against three files with the next results: - Big non animation file: "H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10", 1920x1080, profile high, bit rate 23439837 ``` Original Segment Size: 152M original_segment.mp4 ------------------- CRF 28: 12M CRF 30: 9.9M CRF 32: 8.5M CRF 34: 7.4M CRF 36: 6.6M ``` - Big animation file: "H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10", 1920x1038, profile high ``` Original Segment Size: 136M original_segment.mp4 ------------------- CRF 28: 12M CRF 30: 9.5M CRF 32: 8.0M CRF 34: 6.8M CRF 36: 6.0M ``` - small non animation file: ``` Original Segment Size: 5.9M original_segment.mp4 ------------------- CRF 28: 5.4M CRF 30: 4.9M CRF 32: 4.5M CRF 34: 4.1M CRF 36: 3.7M ``` **Compare the SSIM and PSNR results** PSNR (Peak Signal-to-Noise Ratio) measures the quality of the reconstruction of the image. It calculates the ratio between the maximum possible signal (pixel values) and the noise (the error between the original and reconstructed image). Higher PSNR means better quality. The range typically goes between 30-50dB, where 40 dB is considered excellent and 35dB is good, while less than 30 dB indicates noticeable quality loss [SSIM (Structural Similarity Index Measure)](https://en.wikipedia.org/wiki/Structural_similarity_index_measure) evaluates the perceptual similarity between two images by considering luminance, contrast, and structure. It ranges from -1 to 1, where 1 means identical images. Typically, > 0.95 is considered very good - Big non animation file: ``` CRF Quality Metrics Comparison: ------------------- CRF 28: PSNR: 37.6604 SSIM: 0.963676 ------------------- CRF 30: PSNR: 37.6572 SSIM: 0.96365 ------------------- CRF 32: PSNR: 37.6444 SSIM: 0.963535 ------------------- CRF 34: PSNR: 37.6306 SSIM: 0.963408 ------------------- CRF 36: PSNR: 37.6153 SSIM: 0.963276 ------------------- CRF 30 vs CRF 36: PSNR: 51.0188 SSIM: 0.996617 ------------------- ``` - Big animation file: ``` CRF Quality Metrics Comparison: ------------------- CRF 28: PSNR: 34.6944 SSIM: 0.904112 ------------------- CRF 30: PSNR: 34.6695 SSIM: 0.903986 ------------------- CRF 32: PSNR: 34.6388 SSIM: 0.903787 ------------------- CRF 34: PSNR: 34.612 SSIM: 0.903616 ------------------- CRF 36: PSNR: 34.5822 SSIM: 0.903423 ------------------- CRF 30 vs CRF 36: PSNR: 49.5002 SSIM: 0.99501 ------------------- ``` - small non animation file: ``` CRF Quality Metrics Comparison: ------------------- CRF 28: PSNR: 35.347 SSIM: 0.957198 ------------------- CRF 30: PSNR: 35.3302 SSIM: 0.957124 ------------------- CRF 32: PSNR: 35.3035 SSIM: 0.956993 ------------------- CRF 34: PSNR: 35.2767 SSIM: 0.956848 ------------------- CRF 36: PSNR: 35.2455 SSIM: 0.95666 ------------------- CRF 30 vs CRF 36: PSNR: 49.4795 SSIM: 0.995958 ------------------- ``` **CRF conclusion** In all cases the PSNR and SSIM values are very good, there is not much variability between the different CRF and it looks it changes more based on the type of video, working worse for animation. The side by side comparisons in the three cases returned similar results that my untrained eye was not able to catch big issues. I have to say that my screens are not very good and I'm not very picky. The size reduction is in fact astonishing being greater as the size of the original file increases. So it will make sense to transcode first the biggest ones. As I don't see many changes, and the recommended setting is CRF 30 I'll stick with it. **Preset comparison** This parameter governs the efficiency/encode-time trade-off. Lower presets will result in an output with better quality for a given file size, but will take longer to encode. Higher presets can result in a very fast encode, but will make some compromises on visual quality for a given crf value. Since SVT-AV1 0.9.0, supported presets range from 0 to 13, with higher numbers providing a higher encoding speed. Note that preset 13 is only meant for debugging and running fast convex-hull encoding. In versions prior to 0.9.0, valid presets are 0 to 8. After checking above articles [1](https://ottverse.com/analysis-of-svt-av1-presets-and-crf-values/), [2](https://academysoftwarefoundation.github.io/EncodingGuidelines/EncodeAv1.html#crf-comparison-for-libsvtav1), [3](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/Ffmpeg.md) and [4](https://wiki.x266.mov/blog/svt-av1-third-deep-dive) I feel that a preset of `4` is the sweet spot, going to `3` for a little better quality or `5` for a little worse. AOMediaCodec people agrees: "Presets between 4 and 6 offer what many people consider a reasonable trade-off between quality and encoding time". And [wiki x266 also agrees](https://wiki.x266.mov/blog/svt-av1-third-deep-dive): It appears as if once again preset 2 through preset 4 remain the most balanced presets all-around in an efficient encoding scenario, with preset 3 not offering much improvements over preset 4 in average scores but nicely improving on consistency instead, and preset 2 offering a nice efficiency and consistency uplift on top. Clear quality gains can be observed as we decrease presets, until preset 2, however the effectiveness of dropping presets is noticeably less and less important as quality is increased. **[keyframe interval](https://trac.ffmpeg.org/wiki/Encode/AV1#Keyframeplacement)** `-g` flag in ffmpeg. This parameter governs how many frames will pass before the encoder will add a key frame. Key frames include all information about a single image. Other (delta) frames store only differences between one frame and another. Key frames are necessary for seeking and for error-resilience (in VOD applications). More frequent key frames will make the video quicker to seek and more robust, but it will also increase the file size. For VOD, a setting a key frame once per second or so is a common choice. In other contexts, less frequent key frames (such as 5 or 10 seconds) are preferred. Anything up to 10 seconds is considered reasonable for most content, so for 30 frames per second content one would use -g 300, for 60 fps content -g 600, etc. By default, SVT-AV1's keyframe interval is 2-3 seconds, which is quite short for most use cases. Consider changing this up to 5 seconds (or higher) with the -g option ; `-g 120` for 24 fps content, `-g 150` for 30 fps, etc. Using a higher GOP via the `-g` ffmpeg parameter results in a more efficient encode in terms of quality per bitrate, at the cost of seeking performance. A common rule-of-thumb among hobbyists is to use ten times the framerate of the video, but not more than `300`. The 3 files I'm analysing are using 24fps so I'll use a `-g 240` **Film grain** Consider using grain synthesis for grainy content, as AV1 can struggle with preserving film grain efficiently, especially when encoding high-quality content like old films or videos with a lot of grain detail. This is due to the fact that AV1's compression algorithms are optimized for clean, detailed content, and they tend to remove or smooth out film grain to achieve better compression ratios. Grain synthesis is the process of adding synthetic grain to a video to simulate or preserve the original grain structure. *[SVT-AV1 guidelines](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/Ffmpeg.md)* The film-grain parameter enables this behavior. Setting it to a higher level does so more aggressively. Very high levels of denoising can result in the loss of some high-frequency detail, however. [The film-grain synthesis](https://trac.ffmpeg.org/wiki/Encode/AV1#Filmgrainsynthesis) feature is invoked with `-svtav1-params film-grain=X`, where `X` is an integer from `1` to `50`. Higher numbers correspond to higher levels of denoising for the grain synthesis process and thus a higher amount of grain. The grain denoising process can remove detail as well, especially at the high values that are required to preserve the look of very grainy films. This can be mitigated with the `film-grain-denoise=0` option, passed via svtav1-params. While by default the denoised frames are passed on to be encoded as the final pictures (`film-grain-denoise=1`), turning this off will lead to the original frames to be used instead. Passing film-grain-denoise=0 may result in higher fidelity by disabling source denoising. In that case, the correct film-grain level is important because a more conservative smoothing process is used--too high a film-grain level can lead to noise stacking. AOMediaCodec people suggests that a value of 8 is a reasonable starting point for live-action video with a normal amount of grain. Higher values in the range of 10-15 enable more aggressive use of this technique for video with lots of natural grain. For 2D animation, lower values in the range of 4-6 are often appropriate. If the original video does not have natural grain, this parameter can be omitted. There are two types of video that are called "animation": hand-drawn 2D and 3D animated. Both types tend to be easy to encode (meaning the resulting file will be small), but for different reasons. 2D animation often has large areas that do not move, so the difference between one frame and another is often small. In addition, it tends to have low levels of grain. Experience has shown that relatively high crf values with low levels of film-grain produce 2D animation results that are visually good. 3D animation has much more detail and movement, but it sometimes has no grain whatsoever, or only small amounts that were purposely added to the image. If the original animated video has no grain, encoding without film-grain will increase encoding speed and avoid the possible loss of fine detail that can sometimes result from the denoising step of the synthetic grain process. For more information on the synthetic grain check [this appendix](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/Appendix-Film-Grain-Synthesis.md) **Film grain analysis** Using a similar script as the one for the crf we can see the differences in film grain: ```bash input_video="$1" initial_time="00:15:00" probe_length="00:01:00" ffmpeg -i "$input_video" -ss $initial_time -t "$probe_length" -c copy original_segment.mkv grains=(0 4 8 12) echo "Grain Comparison:" >size_comparison.log echo "Original Segment Size:" >>size_comparison.log original_size=$(du -sh original_segment.mkv) echo "$original_size" >>size_comparison.log echo "-------------------" >>size_comparison.log echo "Grain Quality Metrics Comparison:" >quality_metrics.log echo "-------------------" >>quality_metrics.log for grain in "${grains[@]}"; do # Encode test segments ffmpeg -i "$input_video" \ -ss "$initial_time" -t "$probe_length" \ -c:v libsvtav1 \ -preset 4 \ -crf 30 \ -g 240 \ -pix_fmt yuv420p10le \ -c:a libopus \ -b:a 192k \ -svtav1-params tune=0:film-grain=${grain} \ preview_grain_${grain}.mkv # Create a side by side comparison to see the differences ffmpeg -i original_segment.mkv -i preview_grain_${grain}.mkv \ -filter_complex \ "[0:v][1:v]hstack=inputs=2[v]" \ -map "[v]" \ -c:v libx264 \ side_by_side_comparison_original_vs_grain_${grain}.mkv # Log file size size=$(du -h preview_grain_${grain}.mkv | cut -f1) echo "grain $grain: $size" >>size_comparison.log # Measure PSNR and SSIM ffmpeg -i original_segment.mkv -i preview_grain_${grain}.mkv \ -filter_complex "[0:v][1:v]psnr=stats_file=psnr_${grain}.log;[0:v][1:v]ssim=stats_file=ssim_${grain}.log" -f null - psnr_value=$(grep "psnr_avg:" psnr_${grain}.log | awk -F'psnr_avg:' '{sum += $2; count++} END {if (count > 0) print sum / count; else print "N/A"}') ssim_value=$(grep "All:" ssim_${grain}.log | awk -F'All:' '{sum += $2; count++} END {if (count > 0) print sum / count; else print "N/A"}') # Log the results echo "grain $grain:" >>quality_metrics.log echo " PSNR: ${psnr_value:-N/A}" >>quality_metrics.log echo " SSIM: ${ssim_value:-N/A}" >>quality_metrics.log echo "-------------------" >>quality_metrics.log done ffmpeg -i preview_grain_${grains[1]}.mkv -i preview_grain_${grains[-1]}.mkv \ -filter_complex \ "[0:v][1:v]hstack=inputs=2[v]" \ -map "[v]" \ -c:v libx264 \ side_by_side_comparison_grain_${grains[1]}_vs_grain_${grains[-1]}.mkv ffmpeg -i preview_grain_${grains[1]}.mkv -i preview_grain_${grains[-1]}.mkv \ -filter_complex "[0:v][1:v]psnr=stats_file=psnr_grains_max_difference.log;[0:v][1:v]ssim=stats_file=ssim_grains_max_difference.log" -f null - psnr_value=$(grep "psnr_avg:" psnr_grains_max_difference.log | awk -F'psnr_avg:' '{sum += $2; count++} END {if (count > 0) print sum / count; else print "N/A"}') ssim_value=$(grep "All:" ssim_grains_max_difference.log | awk -F'All:' '{sum += $2; count++} END {if (count > 0) print sum / count; else print "N/A"}') echo "grain ${grains[1]} vs grain ${grains[-1]}:" >>quality_metrics.log echo " PSNR: ${psnr_value:-N/A}" >>quality_metrics.log echo " SSIM: ${ssim_value:-N/A}" >>quality_metrics.log echo "-------------------" >>quality_metrics.log cat size_comparison.log cat quality_metrics.log ``` *Old Anime movie* The quality results give: ``` Grain Quality Metrics Comparison: ------------------- grain 0: PSNR: 34.6503 SSIM: 0.902562 ------------------- grain 4: PSNR: 34.586 SSIM: 0.900882 ------------------- grain 8: PSNR: 34.446 SSIM: 0.897354 ------------------- grain 12: PSNR: 34.2961 SSIM: 0.893525 ------------------- grain 4 vs grain 12: PSNR: 52.005 SSIM: 0.994478 ------------------- ``` The quality metrics show that with more grain the output file is less similar than the original, but the side by side comparison shows that even a grain of 12 is less noise than the original. It can be because the movie is old. `grain == 0` ![](anime-old-grain-0.jpg) `grain == 8` ![](anime-old-grain-8.jpg) And I'd say that grain 8 looks better than 0. *Old movie with low quality* ``` Grain Quality Metrics Comparison: ------------------- grain 0: PSNR: 35.3513 SSIM: 0.957167 ------------------- grain 4: PSNR: 35.3161 SSIM: 0.956516 ------------------- grain 8: PSNR: 35.275 SSIM: 0.955738 ------------------- grain 12: PSNR: 35.2481 SSIM: 0.955299 ------------------- grain 4 vs grain 12: PSNR: 59.7537 SSIM: 0.999178 ------------------- ``` With the increase of grain also the metrics differ from the original, but less drastically than the anime movie. I'm not able to see any notable difference in the side by side comparison at any grain level. It can be either because the low quality makes it undetectable or that the scenes of the sample don't represent well the noise contrast. **Conclusion** Given that I don't notice any notable change by tunning the parameter, I'll go with the suggested `film-grain=8`. **`pix_fmt` parameter** The `pix_fmt` parameter can be used to force encoding to 10 or 8 bit color depth. By default SVT-AV1 will encode 10-bit sources to 10-bit outputs and 8-bit to 8-bit. AV1 includes 10-bit support in its Main profile. Thus content can be encoded in 10-bit without having to worry about incompatible hardware decoders. To utilize 10-bit in the Main profile, use `-pix_fmt yuv420p10le`. For 10-bit with 4:4:4 chroma subsampling (requires the High profile), use `-pix_fmt yuv444p10le`. 12-bit is also supported, but requires the Professional profile. See ffmpeg -help encoder=libaom-av1 for the supported pixel formats. The [dummies guide](https://wiki.x266.mov/blog/av1-for-dummies) suggests to always use 10-bit color, even with an 8-bit source. AV1's internal workings are much more suited to 10-bit color, and you are almost always guaranteed quality improvements with zero compatibility penalty as 10-bit color is part of AV1's baseline profile. The AOMediaCodec people say that encoding with 10-bit depth results in more accurate colors and fewer artifacts with minimal increase in file size, though the resulting file may be somewhat more computationally intensive to decode for a given bitrate. If higher decoding performance is required, using 10-bit YCbCr encoding will increase efficiency, so a lower average bitrate can be used, which in turn improves decoding performance. In addition, passing the parameter `fast-decode=1` can help (this parameter does not have an effect for all presets, so check the parameter description for your preset). Last, for a given bitrate, 8-bit yuv420p can sometimes be faster to encode, albeit at the cost of some fidelity. I'll then use `-pix_fmt yuv420p10le` **[Tune parameter](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/CommonQuestions.md#options-that-give-the-best-encoding-bang-for-buck)** This parameter changes some encoder settings to produce a result that is optimized for subjective quality (tune=0) or PSNR (tune=1). Tuning for subjective quality can result in a sharper image and higher psycho-visual fidelity. This is invoked with `-svtav1-params tune=0`. The default value is 1. The use of subjective mode (--tune=0) often results in an image with greater sharpness and is intended to produce a result that appears to humans to be of high quality (as opposed to doing well on basic objective measures, such as PSNR). So I'll use it **[Multipass encoding](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/CommonQuestions.md#multi-pass-encoding)** PSY people suggest not to encode the same video multiple times. This is a common mistake made by people new to video encoding. Every time you encode a video, you lose additional quality due to generation loss. This is because video codecs are lossy, and every time you encode a video, you lose more information. This is why it is important to keep the original video file if you frequently re-encode it. AV1 people says some encoder features benefit from or require the use of a multi-pass encoding approach. In SVT-AV1, in general, multi-pass encoding is useful for achieving a target bitrate when using VBR (variable bit rate) encoding, although both one-pass and multi-pass modes are supported. When using CRF (constant visual rate factor) mode, multi-pass encoding is designed to improve quality for corner case videos--it is particularly helpful in videos with high motion because it can adjust the prediction structure (to use closer references, for example). Multi-pass encoding, therefore, can be said to have an impact on quality in CRF mode, but is not critical in most situations. In general, multi-pass encoding is not as important for SVT-AV1 in CRF mode than it is for some other encoders. CBR (constant bit rate) encoding is always one-pass. I won't use multipass encoding then. **[Select the audio codec](https://jellyfin.org/docs/general/clients/codec-support/#audio-compatibility)** If the audio codec is unsupported or incompatible (such as playing a 5.1 channel stream on a stereo device), the audio codec must be transcoded. This is not nearly as intensive as video transcoding. When comparing audio encodings from a **compatibility** and **open-source** perspective, here are the key aspects to consider: **MP3 (MPEG-1 Audio Layer III)** *Compatibility* - **Highly Compatible**: Supported on virtually all devices and platforms, including legacy systems. - **Wide Adoption**: Default choice for audio streaming, portable devices, and browsers. *Open Source* - **Patented (Previously)**: MP3 was heavily patented until 2017. After patent expiration, it is now open for unrestricted use. - **Decoders/Encoders**: Open-source implementations exist (e.g., `LAME`), but the format's history with patents may make some projects hesitant. **AAC (Advanced Audio Codec)** *Compatibility* - **Widely Compatible**: Supported on most modern devices and platforms, including smartphones, streaming services, and browsers. - **Less Legacy Support**: Older devices may not support AAC compared to MP3. *Open Source* - **Partially Proprietary**: AAC is still patent-encumbered, requiring licensing for certain use cases. - **Limited Open Implementations**: While open-source decoders like `FAAD` exist, licensing concerns can restrict adoption. **Opus** *Compatibility* - **Growing Adoption**: Supported by major browsers (via WebRTC), VoIP platforms (e.g., Zoom, Discord), and some hardware devices. - **Not Universally Supported**: Fewer consumer devices support Opus natively compared to MP3/AAC. - But jellyfin's compatible table shows that it does have good compatibility already *Open Source* - **Fully Open Source**: Created by the Xiph.Org Foundation and standardized by IETF as an open format. - **Royalty-Free**: No patent restrictions, making it ideal for open-source projects and licensing-sensitive environments. **Vorbis** *Compatibility* - **Limited Adoption**: Compatible with platforms that support Ogg containers, such as many Linux-based systems, but lacks broad support on consumer devices (e.g., smartphones, car stereos). - **Niche Use**: Often used in gaming and certain open-source projects. *Open Source* - **Fully Open Source**: Also by Xiph.Org, Vorbis is royalty-free and patent-unencumbered. - **Less Modern**: Lacks the efficiency and versatility of Opus. **FLAC (Free Lossless Audio Codec)** *Compatibility* - **Good Adoption**: Supported on most modern devices, but not universally (e.g., some older car stereos or basic devices). - **Lossless Focus**: Typically used in archival and audiophile applications, rather than streaming or portable audio. *Open Source* - **Fully Open Source**: Another Xiph.Org project, FLAC is royalty-free and widely used in open-source ecosystems. - **High Integrity**: Preferred for open-source projects requiring exact replication of audio data. **Summary Table** | Format | Compatibility | Open Source Status | Notes | |---------|----------------------------|--------------------------------|---------------------------------------------| | **MP3** | Ubiquitous | Open after 2017 | Excellent legacy and modern support. | | **AAC** | Broad (modern only) | Partially proprietary | Better efficiency than MP3; patent-encumbered. | | **Opus**| Growing (modern) | Fully open source | Best for VoIP, streaming; highly efficient. | | **Vorbis** | Limited (niche) | Fully open source | Predecessor of Opus; less efficient. | | **FLAC** | Good (lossless niche) | Fully open source | Ideal for archival and audiophile use. | **Conclusion** I doubted between flac and opus, but given that I want to reduce disk space I'd go with opus. `-c:a libopus` **Select the audio bitrate** The Opus codec is highly efficient and flexible, with settings that can be adjusted depending on your specific use case (e.g., speech, music, or general-purpose audio). Bitrate (`-b:a`) suggested values are: - **Speech**: 16–32 kbps. - **Music**: 64–128 kbps. - **General-purpose**: 48–96 kbps. - For high-quality music or critical listening: 128–256 kbps. Typical values are 128 or 192 kbps. The file size will change, but the difference might not be as dramatic as you might expect, especially with Opus. So, for a **1-minute audio file**: - At **128 kbps**, the file size would be around **960 KB**. - At **192 kbps**, the file size would be around **1.44 MB**. This means the file size increases by about **50%** when you increase from 128 kbps to 192 kbps. For a 3h movie it would be 259MB at 192 and 173MB at 128, so there is not much difference - **128 kbps** will still provide a good balance of quality for most use cases, particularly for spoken audio or general movie soundtracks where the main focus is not the high-fidelity music or sound effects. - **192 kbps** will offer a noticeable increase in quality, especially for music and sound effects in movies, but the file size increase is moderate compared to the improvement in audio quality. So, if you are looking for better quality and are okay with the slightly larger file size, 192 kbps is a good choice and the increase in size is not that noticeable. I'll then use `-b:a 192k`. Be careful to set it because `ffmpeg` default value is 96kbps which is way too low. **Select the video container** **Decide whether to use mkv or mp4** MP4 (MPEG-4 Part 14): 1. Characteristics - Closed sourced - Developed by MPEG group - Widely supported across devices - Smaller file size - Preferred for streaming platforms - Standard for web and mobile video - Not truly open source - Controlled by MPEG LA (Licensing Administration) - Requires patent licensing for commercial use - Royalty-based format - Closed technical specifications - Limited by patent restrictions 2. Technical Details - Limited to specific codecs - Better compression - Simpler metadata support - Lower overhead - Maximum file size of 4GB MKV (Matroska Video): 1. Characteristics - Open-source container format - Highly flexible - Supports virtually unlimited tracks - No practical file size limitations - Better for complex multimedia content - Fully open-source standard - Free and open-source software (FOSS) - No licensing fees - Open technical specifications - Community-driven development - Uses Creative Commons licensing - Maintained by the Matroska Open Source project - Completely royalty-free 2. Technical Details - Supports multiple audio/subtitle tracks - Can include chapters - Supports virtually any codec - More metadata capabilities - Larger file sizes - Lossless audio/video preservation Comparison Points: From an open-source perspective, MKV is significantly more aligned with open-source principles and provides maximum flexibility for developers and users. Compatibility: - MP4: Highest device/platform support - MKV: Less universal, requires specific players Codec Support: - MP4: Limited (H.264, AAC primarily) - MKV: Virtually unlimited Use Cases: - MP4: Streaming, mobile, web - MKV: Archiving, high-quality collections, complex multimedia Recommended Usage: - MP4: Sharing, streaming, compatibility - MKV: Archival, preservation, complex multimedia projects Performance: - MP4: Faster processing, smaller size - MKV: More flexible, potentially larger size **MKV vs TS** **TS (Transport Stream)** and **MKV (Matroska)** are two different video container formats, each designed for specific use cases. Here’s a detailed comparison: TS is one of the primary containers for streaming for Jellyfin. *Purpose and Use Case* | **Aspect** | **TS** | **MKV** | |--------------------------|-----------------------------------------|------------------------------------------| | **Primary Use** | Designed for broadcasting and streaming (e.g., live TV, IPTV). | Versatile container for storage and playback of multimedia files. | | **Streaming** | Optimized for real-time streaming; handles packet loss well. | Less optimized for live streaming, better for local storage and playback. | | **Editing/Archiving** | Less suitable for editing or archiving. | Popular for editing, archiving, and general media distribution. | *Technical Differences* | **Aspect** | **TS** | **MKV** | |--------------------------|-----------------------------------------|------------------------------------------| | **Structure** | Packet-based (fixed 188-byte packets). | Flexible and extensible structure. | | **Codec Support** | Limited (commonly MPEG-2, H.264). | Broad codec support (H.264, H.265, VP9, AV1, FLAC, etc.). | | **Error Resilience** | Designed to handle errors in transmission (e.g., packet loss). | No native error handling for streaming. | | **Metadata Support** | Limited. | Rich metadata support (subtitles, chapters, tags). | *Features* | **Aspect** | **TS** | **MKV** | |--------------------------|-----------------------------------------|------------------------------------------| | **File Size Overhead** | Slightly larger due to packetized structure. | Efficient, with minimal overhead. | | **Subtitles** | Limited (basic support for teletext or DVB subtitles). | Comprehensive (supports SRT, ASS, PGS, etc.). | | **Chapters** | No native support. | Full support for chapter markers. | | **Compatibility** | Widely supported in streaming and broadcast systems. | Widely supported in media players. | *TS (Transport Stream)* Pros: - Ideal for **real-time streaming** (e.g., live TV, IPTV). - Handles **packet loss** effectively. - Simple and efficient for broadcast systems. Cons: - Limited codec and metadata support. - Less efficient for storage (higher overhead). - Poor support for advanced features like subtitles and chapters. *MKV (Matroska)* Pros: - Highly **versatile** and feature-rich. - Supports almost any modern codec and **advanced features** like chapters, subtitles, and rich metadata. - Efficient for **storage and playback**. Cons: - Not optimized for real-time streaming. - Slightly more complex structure, which might increase processing overhead. When to Use Which? - **Use TS**: - For **live streaming**, broadcast applications, or situations where error resilience is critical. - When the source content is already in TS format (e.g., recorded TV streams). - **Use MKV**: - For **local storage**, playback, or archiving of multimedia files. - When advanced features like **subtitles, chapters, and multiple audio tracks** are needed. - For transcoding or converting video into a more flexible and efficient format. **Conclusion** I'll use mkv although there is a [compatibility issue with most common browsers](https://jellyfin.org/docs/general/clients/codec-support/#container-compatibility) as neither Chrome nor Firefox nor Safari supports it, this will result in remuxing. The video and audio codec will remain intact but wrapped in a supported container. This is the least intensive process. Most video containers will be remuxed to use the HLS streaming protocol and TS containers. Remuxing shouldn't be a concern even for an RPi3. It makes then sense to store it in mkv and let jellyfin remux it to TS. **[Select the subtitle format](https://jellyfin.org/docs/general/clients/codec-support/#container-compatibility)** Subtitles can be a subtle issue for transcoding. Containers have a limited number of subtitles that are supported. If subtitles need to be transcoded, it will happen one of two ways: they can be converted into another format that is supported, or burned into the video due to the subtitle transcoding not being supported. Burning in subtitles is the most intensive method of transcoding. This is due to two transcodings happening at once; applying the subtitle layer on top of the video layer. **Decide whether to use SRT or ASS for your subtitles** Here's a comparison of ASS (Advanced SubStation Alpha) and SRT (SubRip Text) subtitle formats: ASS: Advanced formatting capabilities - Complex styling options - Supports multiple text colors within same subtitle - Allows advanced positioning - Supports animations and special effects - Can include font styles, sizes, and colors - Supports karaoke-style text highlighting SRT: Simple, basic formatting - Plain text subtitles - Limited styling options - Basic positioning - Primarily used for text translation - Widely compatible across media players - Simple structure with timecodes and text Technical Differences: - ASS: More complex XML-like file structure - SRT: Simple comma-separated text format Usage Scenarios: - ASS: Anime, complex video subtitles, professional translations - SRT: General video subtitles, simple translations, broad compatibility File Size: - ASS: Larger due to extensive formatting information - SRT: Smaller, more compact Compatibility: - ASS: Limited to specific media players - SRT: Near-universal support across platforms Recommendation: - Use SRT for simplicity and compatibility - Use ASS for advanced styling and professional subtitle work **Decide whether to extract the subtitles from the video file** The choice between embedding subtitles within the file or keeping them as external `.srt` files depends on your specific needs, including convenience, compatibility, and flexibility. Here’s a breakdown of the advantages and disadvantages of each approach: Embedded Subtitles: Subtitles are included directly in the container file (e.g., MKV) as a separate track. Advantages: 1. **Convenience**: - All components (video, audio, subtitles) are stored in a single file, reducing the risk of losing or misplacing subtitle files. 2. **Portability**: - Easier to share or move files without worrying about transferring separate subtitle files. 3. **Compatibility**: - Modern media players (e.g., VLC, MPV, Plex) handle embedded subtitles well, ensuring smooth playback. 4. **Advanced Features**: - Supports advanced formats (e.g., ASS, SSA) with styled text, positioning, and effects. 5. **Preservation**: - Archival purposes benefit from keeping subtitles alongside the video for long-term consistency. Disadvantages: 1. **Flexibility**: - Harder to edit or replace subtitles without remuxing the file. 2. **Compatibility Issues**: - Some older or less capable devices might not support embedded subtitles. 3. **File Size**: - May slightly increase the file size, though the impact is usually minimal. External Subtitles: Subtitles are stored as separate `.srt`, `.ass`, or other subtitle files alongside the video file. Advantages: 1. **Flexibility**: - Easy to edit, replace, or update subtitles without altering the video file. 2. **Device Compatibility**: - Some players and devices may prefer or require external subtitle files. 3. **Smaller File Size**: - The video file remains slightly smaller without the subtitle track. 4. **Multilingual Support**: - Easier to provide multiple subtitle files in different languages without duplicating the video file. Disadvantages: 1. **Organization**: - Managing separate files can be cumbersome, especially with large libraries. 2. **Risk of Loss**: - Subtitles may become separated or lost over time if not managed properly. 3. **Limited Features**: - Basic formats like `.srt` lack advanced styling and formatting options. Which Is Better? Use embedded subtitles if: - You want a **single, portable file** for simplicity and sharing. - You are archiving your media for **long-term use** and want to preserve all components together. - The subtitles use advanced formatting (e.g., ASS, SSA) or are graphical (e.g., PGS from Blu-rays). Use external subtitles if: - You need to **edit, replace, or add subtitles** frequently. - You want to support multiple subtitle languages for the same video. - Compatibility with older devices or specific use cases requires it. **Conclusion** I'll use SRT as the subtitles format as it's the simplest and most widely supported subtitle format. They won't be embedded into the video file for easier post-processing with Bazarr. So I'll configure the unmanic conversion from ASS to SRT and subtitle extraction steps. Even if TS doesn't support SRT I think that jellyfin handles this well. As I'm going to extract the subtitles with unmanic in a posterior step, I'm going to copy the subtitles streams directly in the transcoding `-c:s copy`. I saw that if you don't set it by default ffmpeg will convert embedded srt to ass, that would mean that in the transcoding I'll convert srt to ass and then in the unmanic post step it will move back to srt, which doesn't make sense. Read more at [1](https://www.reddit.com/r/jellyfin/comments/qvb5k6/which_is_the_best_format_for_subtitles/). If you want to extract some subtitles from the mkv you can use [this script](https://gist.github.com/majora2007/724354d081627cfd96c24b8eefef4ec3) **Decide whether to use HDR or SDR** When the source video is in HDR, it will need to be tone-mapped to SDR when transcoding, as [Jellyfin currently doesn't support HDR to HDR tone-mapping](https://jellyfin.org/docs/general/server/transcoding/#hdr-to-sdr-tone-mapping), or passing through HDR metadata. While this can be done in software, it is very slow, and you may encounter situations where no modern consumer CPUs can transcode in real time. Therefore, a GPU is always recommended, where even a basic Intel iGPU can handle as much load as a Ryzen 5800X for this usecase. To check if my library contains many files that use HDR I've used this script: ```python import os import subprocess import sys VIDEO_EXTENSIONS = {".mkv", ".mp4", ".avi", ".mov", ".wmv", ".flv"} def process_directory(root_path): total_files = 0 hdr_files = [] # Function to check if a file has HDR metadata def check_hdr(file_path): try: # Run ffprobe and capture output result = subprocess.run( ["ffprobe", "-i", file_path, "-hide_banner"], stderr=subprocess.PIPE, stdout=subprocess.PIPE, text=True, ) # Search for HDR-related metadata output = result.stderr + result.stdout if any( keyword in output for keyword in [ "color_primaries", "transfer_characteristics", "HDR_metadata", ] ): return True except Exception as e: print(f"Error checking file {file_path}: {e}") return False # Walk through all directories and subdirectories for root, _, files in os.walk(root_path): for file in files: # Check if the file has a valid video extension if os.path.splitext(file)[1].lower() in VIDEO_EXTENSIONS: total_files += 1 file_path = os.path.join(root, file) print(f"Checking {file_path}") # Check for HDR metadata if check_hdr(file_path): hdr_files.append(file_path) # Display results hdr_count = len(hdr_files) if total_files > 0: hdr_percentage = (hdr_count / total_files) * 100 else: hdr_percentage = 0 print("\nSummary for:", root_path) print(f"Total video files checked: {total_files}") print(f"Files with HDR metadata: {hdr_count}") print(f"Percentage of HDR files: {hdr_percentage:.2f}%") # List all HDR files if hdr_files: print("\nHDR Files:") for hdr_file in hdr_files: print(hdr_file) if __name__ == "__main__": if len(sys.argv) < 2: print("Usage: python script.py [ ...]") sys.exit(1) for path in sys.argv[1:]: if os.path.exists(path) and os.path.isdir(path): process_directory(path) else: print(f"Invalid path: {path}") ``` In my library I had no file that matched the HDR check above, so I guess I don't need it **Decide the number of workers** I've seen that with just one worker my 16 CPU threads are fully utilised, so it looks that it makes no sense to increase the worker numbers, but [people suggest](https://www.reddit.com/r/Tdarr/comments/1cv1826/optimal_amount_of_workers/) to use at least two because even if it halves the fps, as there's an efficiency gain because after a transcode completes, it has to move it off the temp cache area, load in the next file, etc. The parallel transcode will just increase in usage until the first worker is transcoding again, and vice versa. [Unmanic documentation](https://docs.unmanic.app/docs/configuration/workers_settings/) suggest to start with one worker initially, and then increase this value slowly until you find the right balance of system resource use and task processing speed. They also say that for most people, there is no benefit to running more than 3-5 workers. Depending on the type of tasks you carry out, you may find diminishing returns increasing this value beyond 5. You can set schedules to pause and resume workers. This can be interesting if you want to only do transcoding when electricity is cheaper, or stop it when you need the CPU for example if you give service to other users and they have spikes in the resource consumption. In my case I'm going to use 3 workers the 24h until I solve the space issue I'm currently facing, and afterwards I'll only do it when the electricity is cheap. feat(transcoding#Transcoding tools comparison): Transcoding tools comparison - [Unmanic](unmanic.md): open source - Tdarr: closed sourced - Handbrake: ([home](https://handbrake.fr/), [source](https://github.com/HandBrake/HandBrake)) - [ab-av1](https://github.com/alexheretic/ab-av1) - [FileFlows](https://fileflows.com/) I ended up using [unmanic](unmanic.md). Read more about the comparison of tools on [1](https://wiki.x266.mov/blog/av1-for-dummies), [2](https://www.reddit.com/r/opensource/comments/1aoxloh/comment/kr4ehvc/) feat(transcoding#Troubleshooting): Troubleshooting **Input channel layout 5.1(side) detected, side channels will be mapped to back channels.** Don't worry you won't loose the 5.1, it will just transform from 5.1(side) to 5.1 feat(transcoding#References): References - [AV1 for dummies](https://wiki.x266.mov/blog/av1-for-dummies) - [AOMediaCodec guide](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/Ffmpeg.md) - [AV1 FAQ](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/CommonQuestions.md#what-presets-do) - [Analysis on parameters for animation](https://wiki.x266.mov/blog/svt-av1-deep-dive#early-tldr-on-parameters-results) - [Jellyfin megathread on AV1 configuration](https://forum.jellyfin.org/t-encoding-discussion-megathread-ffmpeg-handbrake-av1-etc) - [SVT-AV1 parameter reference](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/Parameters.md) - [ffmpeg AV1 configuration reference](https://trac.ffmpeg.org/wiki/Encode/AV1) - [Video encoding guide to AV1](https://forum.level1techs.com/t/video-encoding-to-av1-guide-wip/199694) - [Comparison between x265 and AV1](https://www.free-codecs.com/guides/is-av1-better-than-h-265.htm) feat(unmanic): Introduce Unmanic [Unmanic](https://github.com/Unmanic/unmanic) is a simple tool for optimising your file library. You can use it to convert your files into a single, uniform format, manage file movements based on timestamps, or execute custom commands against a file based on its file size. Simply configure Unmanic pointing it at your library and let it automatically manage that library for you. Unmanic provides you with the following main functions: - A scheduler built in to scan your whole library for files that do not conform to your configured file presets. Files found requiring processing are then queued. - A file/directory monitor. When a file is modified, or a new file is added in your library, Unmanic is able to again test that against your configured file presets. Like the first function, if this file requires processing, it is added to a queue for processing. - A handler to manage running multiple file manipulation tasks at a time. - A Web UI to easily configure, manage and monitor the progress of your library optimisation. You choose how you want your library to be. Some examples of how you may use Unmanic: - Transcode video or audio files into a uniform format using FFmpeg. - Identify (and remove if desired) commercials in DVR recordings shortly after they have completed being recorded. - Move files from one location to another after a configured period of time. - Automatically execute FileBot rename files in your library as they are added. - Compress files older than a specified age. - Run any custom command against files matching a certain extension or above a configured file size. **[Installation](https://docs.unmanic.app/docs/installation/docker)** **Prioritise the bigger files** Transcoding of big files yields better results, so it makes sense to prioritise the bigger files. A way to do it is to define different libraries pointing to the same path but using different priorities. For example I'm using: - Huge movies: - path: `/libraries/movies` - exclude: - files smaller than 10GB - priority: 1000 - Big movies: - path: `/libraries/movies` - exclude: - files smaller than 5GB - files bigger than 10GB - priority: 100 - Small movies: - path: `/libraries/movies` - exclude: - files bigger than 5GB - priority: 1 **Troubleshooting** **[Data panels don't have any data](https://github.com/Unmanic/unmanic/issues/318)** You need to add the plugin to the worker process **[Data Panels give a DataTables warning](https://github.com/Unmanic/unmanic/issues/474)** If when you open the Data Panel you get this pop up message that says "DataTables warning: table id=history_completed_tasks_table - Invalid JSON response. For more information about this error, please see https://datatables.net/tn/1" uninstall and reinstall the plugin. **References** - [Source](https://github.com/Unmanic/unmanic) - [Docs](https://docs.unmanic.app/docs/) - [API reference](https://unmanic.internal-services.duckdns.org/unmanic/swagger#/) feat(vim#Disable autoformat for some buffers): Disable autoformat for some buffers If you want to disable autoformat for a certain buffer, then set `vim.b.autoformat = false` for that buffer. ```lua -- Disable autoformat for lua files vim.api.nvim_create_autocmd({ "FileType" }, { pattern = { "lua" }, callback = function() vim.b.autoformat = false end, }) ``` If you change your mind you can do uf to enable autoformat anyway for that buffer. feat(vim#Debugging with prints): Debugging with prints Add `echom` statements. For example: ```vim function! himalaya#domain#email#list_with(account, folder, page, query) abort echom "Account: " . a:account echom "Folder: " . a:folder echom "Page: " . a:page echom "Query: " . a:query call himalaya#request#plain({ \ 'cmd': 'envelope list --folder %s --account %s --max-width %d --page-size %d --page %d %s', \ 'args': [shellescape(a:folder), shellescape(a:account), s:bufwidth(), winheight(0) - 1, a:page, a:query], \ 'msg': printf('Fetching %s envelopes', a:folder), \ 'on_data': {data -> s:list_with(a:folder, a:page, data)} \}) endfunction ``` feat(vim_autosave#Disable for specific filetypes): Disable for specific filetypes The `condition` field of the configuration allows the user to exclude **auto-save** from saving specific buffers. This can be useful for example if you have a broken LSP that is making editing the markdown files an absolute hell. Here is an example that disables auto-save for specified file types: ```lua { condition = function(buf) local filetype = vim.fn.getbufvar(buf, "&filetype") -- don't save for `sql` file types if vim.list_contains({ "markdown" }, filetype) then return false end return true end } ``` You may also exclude `special-buffers` see (`:h buftype` and `:h special-buffers`): ```lua { condition = function(buf) -- don't save for special-buffers if vim.fn.getbufvar(buf, "&buftype") ~= '' then return false end return true end } ``` Buffers that are `nomodifiable` are not saved by default. feat(vim_completion#blink): Introduce blink [blink](https://github.com/saghen/blink.cmp) is a completion plugin with support for LSPs and external sources that updates on every keystroke with minimal overhead (0.5-4ms async). Features - Works out of the box with no additional configuration - Updates on every keystroke (0.5-4ms async, single core) - Typo resistant fuzzy with frecency and proximity bonus - Extensive LSP support (tracker) - Native vim.snippet support (including friendly-snippets) - External sources support (compatibility layer for nvim-cmp sources) - Auto-bracket support based on semantic tokens - Signature help (experimental, opt-in) - Command line completion - Comparison with nvim-cmp **[Installation](https://cmp.saghen.dev/)** **References** - [Docs]( https://cmp.saghen.dev/) feat(vim_formatters#Whether to use conform.nvim or none-ls.nvim): Whether to use conform.nvim or none-ls.nvim Lazyvim doesn't install it by default since [10.x](https://www.lazyvim.org/news#10x) - conform.nvim is now the default formatter - nvim-lint is now the default linter **AI answer** I recommend conform.nvim over none-ls.nvim for code formatting for several key reasons: 1. conform.nvim is actively maintained and has a clearer future, while none-ls.nvim (formerly null-ls) is in maintenance mode since its original author stepped down 2. conform.nvim has better performance because it: - Uses Neovim's built-in LSP client - Runs formatters in parallel - Formats code asynchronously 3. conform.nvim has simpler configuration since it focuses solely on formatting, while none-ls handles multiple concerns (formatting, diagnostics, code actions) 4. It works seamlessly with LSP formatting and allows you to chain multiple formatters together However, if you specifically need diagnostics or code actions that aren't available through regular LSP servers, none-ls.nvim might still be useful as part of your setup. But for pure formatting needs, conform.nvim is the better choice. feat(zfs_storage_planning): PMR is the same as CMR https://en.m.wikipedia.org/wiki/Perpendicular_recording feat(zfs_storage_planning#Data disk gas): Data disk gas problem Manufacturers have adopted helium as the internal gas for mechanical hard drives with capacities of 4TB and above in a 3.5-inch format. While this change improves energy efficiency by reducing aerodynamic drag, it also introduces a long-term reliability concern. Over time (typically around 10 years), helium atoms gradually escape through even perfectly hermetic metal enclosures due to their small size. This causes: 1. Decreasing internal helium pressure 2. Increased likelihood of head-platter contact and erosion 3. Potential data loss External air cannot re-enter the drive to refill these gaps, as air atoms are too large to pass through metal. Consequently, heads require sufficient helium pressure to fly above platters without touching them. Once the internal helium pressure drops too low, heads will land on platters, causing erosion and eventual failure. Hard drive manufacturers offer limited warranties (typically 5 years) for helium-sealed drives, acknowledging this gradual performance degradation. While under warranty, these issues are unlikely to manifest; however, all units will eventually succumb to helium escape and increased head-disk interference. You can read more of this issue in [1](https://www.truenas.com/community/threads/helium-drives-long-term-use.96649/), [2](https://linustechtips.com/topic/1359644-helium-hdd-health-update-after-5-years/), [3](https://foro.noticias3d.com/vbulletin/showthread.php?t=468562), [4](https://blog.westerndigital.com/helium-hard-drives-explained/) feat(zfs_storage_planning#Western Digital): analyse the WD Ultrastar HC520 12 TB disk | Specs | WD Red | WD Red Plus | WD Red Pro | WD Ultrastar HC520 | | ---------------------- | --------- | ------------------ | --------------- | --- | | Technology | SMR | CMR | CMR | PMR | | Bays | 1-8 | 1-8 | 1-24 | | | Capacity | 2-6TB | 1-14TB | 2-18TB | 12TB | | Speed | 5,400 RPM | 5,400 RPM (1-4TB) | 7200 RPM | 7200 RPM | | Speed | 5,400 RPM | 5,640 RPM (6-8TB) | 7200 RPM | 7200 RPM | | Speed | 5,400 RPM | 7,200 RPM (8-14TB) | 7200 RPM | 7200 RPM | | Speed | ? | 210MB/s | 235MB/s | 255 MB/s | | Cache | 256MB | 16MB (1TB) | | 256 MB | | Cache | 256MB | 64MB (1TB) | 64MB (2TB) | 256 MB | | Cache | 256MB | 128MB (2-8TB) | 256MB (4-12TB) | 256 MB | | Cache | 256MB | 256MB (8-12TB) | 512MB (14-18TB) | 256 MB | | Cache | 256MB | 512MB (14TB) | | 256 MB | | Workload | 180TB/yr | 180TB/yr | 300TB/yr | | | MTBF | 1 million | 1 million | 1 million | 2.5 M | | Warranty | 3 years | 3 years | 5 years | 5 years | | Power Consumption | ? | ? | 8.8 W | 5.0 W | | Power Consumption Rest | ? | ? | 4.6 W | 6.9 W | | Price | From $50 | From $45 | From $78 | | --- docs/aleph.md | 14 + docs/ccc.md | 95 ++ docs/devops/kubectl/kubectl_commands.md | 6 + docs/himalaya.md | 85 +- docs/img/anime-old-grain-0.jpg | Bin 0 -> 140115 bytes docs/img/anime-old-grain-8.jpg | Bin 0 -> 135824 bytes docs/jellyfin.md | 54 + docs/life_review.md | 109 -- docs/linux/nodejs.md | 20 +- docs/linux_snippets.md | 53 +- docs/ombi.md | 1 + docs/orgzly.md | 9 +- docs/parkour.md | 18 + docs/roadmap_adjustment.md | 114 +- docs/transcoding.md | 1335 +++++++++++++++++++++++ docs/unmanic.md | 62 ++ docs/vim.md | 36 + docs/vim_autosave.md | 36 + docs/vim_completion.md | 22 + docs/vim_formatters.md | 25 + docs/vim_plugin_development.md | 2 + docs/zfs_storage_planning.md | 57 +- mkdocs.yml | 10 +- 23 files changed, 2008 insertions(+), 155 deletions(-) create mode 100644 docs/ccc.md create mode 100644 docs/img/anime-old-grain-0.jpg create mode 100644 docs/img/anime-old-grain-8.jpg delete mode 100644 docs/life_review.md create mode 100644 docs/transcoding.md create mode 100644 docs/unmanic.md create mode 100644 docs/vim_completion.md create mode 100644 docs/vim_formatters.md diff --git a/docs/aleph.md b/docs/aleph.md index 3f9373ecf83..fa547b75908 100644 --- a/docs/aleph.md +++ b/docs/aleph.md @@ -559,11 +559,25 @@ If you’d like to import data into an existing investigation and do not know it ## [Prometheus metrics](https://github.com/alephdata/aleph/pull/3216) Aleph now exposes prometheus metrics on the port 9100. +# Available datasets +OpenSanctions helps investigators find leads, allows companies to manage risk and enables technologists to build data-driven products. + +You can check [their datasets](https://www.opensanctions.org/datasets/). # Other tools for the ecosystem ## [Investigraph](https://investigativedata.github.io/investigraph/) investigraph is an ETL framework that allows research teams to build their own data catalog themselves as easily and reproducable as possible. The investigraph framework provides logic for extracting, transforming and loading any data source into followthemoney entities. For most common data source formats, this process is possible without programming knowledge, by means of an easy yaml specification interface. However, if it turns out that a specific dataset can not be parsed with the built-in logic, a developer can plug in custom python scripts at specific places within the pipeline to fulfill even the most edge cases in data processing. +## [offshore-graph](https://github.com/opensanctions/offshore-graph) + +It contains scripts that will merge the OpenSanctions Due Diligence dataset with the ICIJ OffshoreLeaks database in order create a combined graph for analysis. + +The result is a Cypher script to load the full graph into the Neo4J database and then browse it using the Linkurious investigation platform. + +Based on name-based entity matching between the datasets, an analyst can use this graph to find offshore holdings linked to politically exposed and sanctioned individuals. + +As a general alternative, you can easily export and convert entities from an Aleph instance to visualize them in Neo4j or Gephi using the ftm CLI: https://docs.aleph.occrp.org/developers/how-to/data/export-network-graphs/ + # Troubleshooting ## Debug ingestion errors Assuming that you've [set up Loki to ingest your logs](https://github.com/alephdata/aleph/issues/2124) I've so far encountered the next ingest issues: diff --git a/docs/ccc.md b/docs/ccc.md new file mode 100644 index 00000000000..16fd2d79677 --- /dev/null +++ b/docs/ccc.md @@ -0,0 +1,95 @@ +[Chaos Communication Congress](https://events.ccc.de/en/) is the best gathering of hacktivism in europe. + +# Prepare yourself for the congress + +You can follow [MacLemon's checklist](https://github.com/MacLemon/CongressChecklist) +## [Install the useful apps](https://events.ccc.de/congress/2024/hub/de/wiki/apps/) + +### The schedule app + +You can use either the Fahrplan app or giggity, I've been using the second for a while, so is the one I use + +### The navigation app + +`c3nav` is an application to get around the congress. The official F-droid is outdated, so add [their repository](https://f-droid.c3nav.de/fdroid/repo/?fingerprint=C1EC2D062F67A43F87CCF95B8096630285E1B2577DC803A0826539DF6FB4C95D) to get the latest version. + +# [Angel's system](https://angelguide.c3heaven.de/) + +Angels are participants who volunteer to make the event happen. They are neither getting paid for their work nor do they get free admission. + +## [Expectation](https://angelguide.c3heaven.de/#_expectations) + +Helping at our events also comes with some simple, but important expectations of you: + +- Be on time for your shift or give Heaven early notice. +- Be well rested, sober and not hungry. +- Be open-minded and friendly in attitude. +- Live our moral values: + - Be excellent to each other. + - All creatures are welcome. + +## [Quickstart](https://angelguide.c3heaven.de/#_quick_start) + +- Create yourself an [Engelsystem account](https://engel.events.ccc.de/) +- Arrive at the venue +- Find [the Heaven](https://c3nav.de/) and go there. + - Talk to a welcome angel or a shift coordinator to get your angel badge and get marked as arrived. + - If you have any questions, you can always ask the shift coordinators behind the counter. +- Attend an angel meeting + - Announced in the Engelsystem news +- Click yourself an interesting shift + - Read shift descriptions first +- Participate in your shift + - Use the navigation to find the right place. + - Arrive a little bit early at the meeting point +- Rest for at least one hour + - Repeat from step 5 + +And always, have a lot of fun. + +To get more insights read [this article](https://jascha.wtf/angels-at-chaos-about-volunteering-and-fitting-in/) +## [The engelsystem](https://angelguide.c3heaven.de/#_the_engelsystem) +The [Engelsystem](https://engel.events.ccc.de/) is the central place to distribute the work to all the helping angels. It can be a bit overwhelming at the beginning but you will get used to it and find your way around. + +As you might have seen there are many different shifts and roles for angels — some sounding more appealing than others. There are shifts where you need to have some knowledge before you can take them. This knowledge is given in introduction meetings or by taking an unrestricted shift in the team and getting trained on the job. These introduction meetings are announced in the Engelsystem under the tab "Meetings". Heaven and the teams try to make sure that there are only restrictions for shifts in place where they are absolutely needed. + +Most restrictions really only need a meeting or some unrestricted shifts at the team to get lifted. Harder restrictions are in place where volunteers need to have special certification, get access to certain systems with a huge amount of data (e.g. mail-queues with emails from participants) or handling big piles of money. Usually the requirements for joining an angeltype are included in the description of the angeltype. + +Especially the restricted shifts are tempting because after all we want to get the event running, aren’t we? From our personal experience what gets the event running are the most common things: Guarding a door, collecting bottle/trash, washing dishes in the angel kitchen, being on standby to hop in when spontaneous help is needed or check the wrist band at the entrance. + +If there are any further questions about angeltypes, the description of the angeltype usually includes contact data such as a DECT number or an e-mail address that can be used. Alternatively, you can also ask one of the persons of the respective angeltype mentioned under "Supporter". + +## [Teams](https://angelguide.c3heaven.de/#_teams) + +Congress is organized from different teams, each with its own area of expertise. + +All teams are self-organized and provide their own set of services to the event. + +Teams spawn into existence by a need not fulfilled. They are seldom created by an authority. + +Check out the [different teams](https://angelguide.c3heaven.de/#_teams) to see which one suits you best. + + +[Some poeple](https://jascha.wtf/angels-at-chaos-about-volunteering-and-fitting-in/) suggest not to try to fit into special roles at your first event. The roles will find you – not the other way around. Our com­mu­ni­ty is not about per­so­nal gro­wing but about con­tri­bu­ting to each other and gro­wing by doing this. + +## Perks + +Being an angel also comes with some perks. While we hope that participation is reward enough, here is a list of things that are exclusive to angels: + +- Community acknowledgement +- Hanging out in Heaven and the angel hack center with its chill out area +- Free coffee and (sparkling) water +- Warm drinks or similar to make the cold night shifts more bearable + +## Rewards + +If you have contributed a certain amount of time, you may receive access to: + +- Fantastic hot vegan and vegetarian meals +- The famous limited™ angel T-shirt in Congress design +- Maybe some other perks + +# Reference +- [Home](https://events.ccc.de/en/ +- [Engelsystem](https://engel.events.ccc.de/) +- [Angel FAQ](https://engel.events.ccc.de/faq) diff --git a/docs/devops/kubectl/kubectl_commands.md b/docs/devops/kubectl/kubectl_commands.md index 6580e7164a3..84b10d2123e 100644 --- a/docs/devops/kubectl/kubectl_commands.md +++ b/docs/devops/kubectl/kubectl_commands.md @@ -70,6 +70,12 @@ kubectl delete pod,service {{ pod_names }} {{ service_names }} kubectl delete pod,services -l {{ label_name }}={{ label_value }} ``` +## Delete pods that are stuck in terminating state for a while + +```bash +kubectl delete pod --grace-period=0 --force +``` + ## Delete all pods and services in namespace ```bash diff --git a/docs/himalaya.md b/docs/himalaya.md index 7bc37c8a584..9383e255295 100644 --- a/docs/himalaya.md +++ b/docs/himalaya.md @@ -32,7 +32,7 @@ Himalaya CLI `v1.0.0` can be installed with a pre-built binary. Find the latest Himalaya CLI `v1.0.0` can also be installed with [cargo](https://doc.rust-lang.org/cargo/): ```bash -$ cargo install --git https://github.com/pimalaya/himalaya.git --force himalaya +cargo install --git https://github.com/pimalaya/himalaya.git --force himalaya ``` # [Configuration](https://github.com/pimalaya/himalaya?tab=readme-ov-file#configuration) @@ -90,16 +90,14 @@ You can then run `:Himalaya account_name` and it will open himalaya in your edit The default bindings conflict with my git bindings, and to make them similar to orgmode agenda I'm changing the next and previous page: ```lua -return { - { - "pimalaya/himalaya-vim", - keys = { - { "b", "(himalaya-folder-select-previous-page)", desc = "Go to the previous email page" }, - { "f", "(himalaya-folder-select-next-page)", desc = "Go to the next email page" }, - }, - }, -} - + vim.api.nvim_create_autocmd("FileType", { + group = "HimalayaCustomBindings", + pattern = "himalaya-email-listing", + callback = function() + vim.api.nvim_buf_set_keymap(0, "n", "b", "(himalaya-folder-select-previous-page)", { noremap = true, silent = true }) + vim.api.nvim_buf_set_keymap(0, "n", "f", "(himalaya-folder-select-next-page)", { noremap = true, silent = true }) + end, + }) ``` ### Configure the account bindings @@ -149,6 +147,16 @@ return { -- Bindings to delete emails vim.api.nvim_buf_set_keymap(0, "n", "dd", "(himalaya-email-delete)", { noremap = true, silent = true }) vim.api.nvim_buf_set_keymap(0, "x", "d", "(himalaya-email-delete)", { noremap = true, silent = true }) + -- Refresh emails + vim.api.nvim_buf_set_keymap(0, "n", "r", ":lua FetchEmails()", { noremap = true, silent = true }) + -- Email list view bindings + vim.api.nvim_buf_set_keymap(0, "n", "b", "(himalaya-folder-select-previous-page)", { noremap = true, silent = true }) + vim.api.nvim_buf_set_keymap(0, "n", "f", "(himalaya-folder-select-next-page)", { noremap = true, silent = true }) + vim.api.nvim_buf_set_keymap(0, "n", "R", "(himalaya-email-reply-all)", { noremap = true, silent = true }) + vim.api.nvim_buf_set_keymap(0, "n", "F", "(himalaya-email-forward)", { noremap = true, silent = true }) + vim.api.nvim_buf_set_keymap(0, "n", "m", "(himalaya-folder-select)", { noremap = true, silent = true }) + vim.api.nvim_buf_set_keymap(0, "n", "M", "(himalaya-email-move)", { noremap = true, silent = true }) + vim.api.nvim_buf_set_keymap(0, "n", "w", "(himalaya-email-write)", { noremap = true, silent = true }) -- Bind `q` to close the window vim.api.nvim_buf_set_keymap(0, "n", "q", ":bd", { noremap = true, silent = true }) end, @@ -226,14 +234,64 @@ return { ## Show notifications when emails arrive You can set up [mirador](mirador.md) to get those notifications. +# Usage + +## Searching emails + +You can use the `g/` binding from within nvim to search for emails. The query syntax supports filtering and sorting query. + +I've tried changing it to `/` without success :'( + +### Filters + +A filter query is composed of operators and conditions. There is 3 operators and 8 conditions: + +- `not `: filter envelopes that do not match the condition +- ` and `: filter envelopes that match both conditions +- ` or `: filter envelopes that match one of the conditions +- `date `: filter envelopes that match the given date +- `before `: filter envelopes with date strictly before the given one +- `after `: filter envelopes with date stricly after the given one +- `from `: filter envelopes with senders matching the given pattern +- `to `: filter envelopes with recipients matching the given pattern +- `subject `: filter envelopes with subject matching the given pattern +- `body `: filter envelopes with text bodies matching the given pattern +- `flag `: filter envelopes matching the given flag + +### Sorting +A sort query starts by "order by", and is composed of kinds and orders. There is 4 kinds and 2 orders: + +- `date [order]`: sort envelopes by date +- `from [order]`: sort envelopes by sender +- `to [order]`: sort envelopes by recipient +- `subject [order]`: sort envelopes by subject +- ` asc`: sort envelopes by the given kind in ascending order +- ` desc`: sort envelopes by the given kind in descending order + +### Examples + +`subject foo and body bar`: filter envelopes containing "foo" in their subject and "bar" in their text bodies +`order by date desc subject`: sort envelopes by descending date (most recent first), then by ascending subject +`subject foo and body bar order by date desc subject`: combination of the 2 previous examples + # Not there yet +- [Replying an email doesn't mark it as replied](https://github.com/pimalaya/himalaya-vim/issues/14) - [With the vim plugin you can't switch accounts](https://github.com/pimalaya/himalaya-vim/issues/8) - [Let the user delete emails without confirmation](https://github.com/pimalaya/himalaya-vim/issues/12) -- [Fetching emails from within vim](https://github.com/pimalaya/himalaya-vim/issues/13) - # Troubleshooting +## Cannot install + +Sometimes [the installation steps fail](https://github.com/pimalaya/himalaya/issues/513) as it's still not in stable. A workaround is to download the binary created by the [pre-release CI](https://github.com/pimalaya/himalaya/actions/workflows/pre-releases.yml). You can do it by: + +- Click on the latest job +- Click on jobs +- Click on the job of your architecture +- Click on "Upload release" +- Search for "Artifact download URL" and download the file +- Unpack it and add it somewhere in your `$PATH` + ## Emails are shown with different timezones Set the account configuration `envelope.list.datetime-local-tz = true` @@ -252,3 +310,4 @@ That's because the `Trash` directory does not follow the Maildir structure. I ha # References - [Source](https://github.com/pimalaya/himalaya) - [Vim plugin source](https://github.com/pimalaya/himalaya-vim) +- [Home](https://pimalaya.org/) diff --git a/docs/img/anime-old-grain-0.jpg b/docs/img/anime-old-grain-0.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a9a9df92b660fb8615ca42692f2bf0d5f8b67e1c GIT binary patch literal 140115 zcmeEtWl&sQw`Su6f?IIy;3Nds;2PX%BtX!H#$AGI8fn~JgF`pa2_yt}cXxM5fP@U+ ze7A1ZR87^?%$*_&Pkr5HSV0=MEOG{5r zPeQ@O!bHbHLq|{duSrmz{)&Z(g^!JmPe)2bO80-={(c7#VWW{?eMCcH0-zG1pb??` z?FP{NYnd4TTJC=~6jU_yr&VGvPFo+p>F{QOg zm@HheNZ*7c6*9|cH*`*r@r6!qoKx@%TDm1SlC#L_=)x|rr+`-OVMPLRO+Q{1zxd#h z@-!{=lRQ+k|5fOdm?xo6gW^O0RMdY-#XvL-7z;m>xsfo~t0B-?ze9*rDI9YzfV`L4-itD%A zqNdxo<1?lDHutdKjmv)l`sQgwMEbf!L;yKC6e2=&IjMhc|DW~&REzyMtsS&>Pt*L_ zvy*-?R%7WeKsGfasN^GCi^h%Bo$UW!6Ytiv&C~e)7zG*1$s1|@qlEve1wvYxAGDMo zKJL3s*36-QbYOq${0Cp(;y&qj(aPJIgdKdL$7%hbzI&=CHTC`lEXIz_Kj}$7l`l{^ z$Z+h&`p$xg%v$=NC*i;N8o)rVC!EN$p8N$A4ym-55dEnr`Sa~s#3<@e@iNZi>Amwd zMR@H&%jkiA-{DD7)PDgEoNulE;2GMTZ+rZ)@bi3U-inH<$KKwUFE;!LWx#1s*Rq$EQnpp5 zPM}5>ip3_Gn2D#B5{P4@;}8W~i2cTCL{H3scT3p;n*xMkbJk6ojR?HUvOOxGK zu_ALHD8n#IXIG5+E_QK#)eq_`^M{9?cNK$X`igog{AKxRce;jBSEoIvInx}}-pyd` zZ+SR*W#$ODd}I85+IU_q($G32R(q=MI?WZ$gm)%pPNq`|rd(xOGG0t29-dsne_j}S zXFWhS+nkezRxZ%%3KdWNsz_S0nkGzTICOfHzqgKLcR0O8tV}v?sx`)cmN(T>)6qTC z_Js-Nw4D@koN(=ZN#ciDzVrqK&Z-)vmVX&4J6tw0{xRihG0a)ghJd649S7yX$&zW9 zS+4BCUTO7Sy8MNc?URbGuOK0 zd}7#zb^yWkWzdD;%oU3I?{0H&ME~Zpja6$T!y2DkV5dEB%S1*Q+k-IU-Z1O}*(P1o zLMhp&fAGxn@=E*Ji2si9SH}52f$wamnaj(3I(+$@2An^;EF%404zG?HQ9Y>4W@CoI zkyl2d?1p8ZvfQSqy~mAIt=fQJ^1uet0y-QY94C6`mB^cFrGM)$L?D`!(A{X#U-1Y% zGx`?CTpf@1|Ut>ld`mMqGx({&IKP1(+CZa`YBO0xph7-Ub@JgRE8PO7h3*(Q? zQCiY2=2$tnQ;y?$s4=xgU>dT+R{Q$_x`IN>BAP$X=V*H>>LVh2FPEdu)~{{>3NTp~ z-kA3cCf02Z2bTTi)B-!SwV!xnCZ}7Mk<2rTEAOB&1){7`^AMcxS#<=}vwp6mIct=L zi7|}H`}B+TdFHVrO>D&+4lS~L8MmLlM(;N6ZxfHvnRZ2l=%^`xi;j0~6v1^GKn41! zA&uz1>l$uw^pzIfu146)uOB2@GhK`_%J^Qqax$S!e zx<{Y&a2G8}KLA?iMs(_isze@gl|b5GVMT76915x1s{IHl)LzSCbTn0BiSy8!>*03t zP(fc_s_EFq>e{aC2xo`PAzdPZ{Y$093Vsz}>5}6=R5nn7t4a=a2lR`6ia8cI zI9qrE{sMqXY}_zzXF!;nE=f_a3cd<_`bI+lYc)LIEsJRYeMt}fvQ0WLMaWH>y%hIL!3} zd0(e`RbmM}I=Ol~sT+e4m*;+roDs7%jJR#kJYLw!>b9oI zFh3$kk~#tLPEGmgQ*7-Bn3tCO2h2wm%{a@Sf;tUaf%wtNPaAB+-S#ci1Qxs>Fj1~! z%@$%cqbs;yaPpIVXERmKh`dey3!P>G}6*;ymbfDQz@7FwbfgkwWS^sTfeu3UwaQqn1ShBJ-+V=Cd980_yX;e%G%L zzJTqd(~5x@c*rf+F=+Ovt3Ow|dL-oD2`schJM>LWZt5Fg9hE;`7%um0Uu}yIPBbHm zyp;)EErihb5zUjSh+!L;{IB9R_@BWCY9};LWYOy-r>bx7wvM>ZXBT5VBcXv&_W-+%$LXkM$mi)7{9K9RAoH*?C1{rFJ(rB#Gp2cCh=ctaAg z(R(NB+8*oE$ZYeh?FJsf+<2Er;l9XPiMBR__3f>Q&pW}CAs&6sA98xO=DxOj~AuTIxQ`yA<&%> z3$8V%wB2`~$OCG?ZKg}9Uf(~}+A-Yd_i;jBoOJBr36=zt*OAol%SVih9DC1VSxtDf zuDpn>$oLZ#*V5^l0fjKjYwqev(~Rflr^`?%5U)_nbL$it=_%@;upHO5`sfai4{yF9 zkb%$OcU4KdQ`uWf2-xdtQ)Sfl2C{X8JCH8qXnBdwVWp`I5jyJ6JrmjWgj15mxHK4` zmEjY$7n{=y_(vUVm#0A{6%Z^L`BebEe)D+TVU~dsC%2Oc>RXFrKtfa0= z3??Fklo;Wp=WV6hW)(hmwGTb}UA^y-uvh;Vp!?D7n7)$gFF;5yZgmewxCaw8Wj>^r{s4e!ORc>*}b%pCICWf)|ob^JZp2;Kw} zyn3BOtW)`N@s6<`ME(V1AV71uTu*cXh1z|) z1d7+cdPo}VR4%|qce9@bd*LIP+-TFdo3!^iE@7K|k3LqZqWp90q%t*bnA!~*C~ydC z;+m(cRWM#CI|Pu_4Q=v{T7?HVcfZLJnviB@Am+bK=;%r`7nxHKh3Xdk0ZHZ;I^$%XP*AVn}M9) zGdzrldh#~ceJp`qElYTF>hp@+NlEc=K_10RQ1zu{Q}=QKozx$*&-%vC*p~vx`!rL0 zOwy`Ks=FJznR%tQKBLtt9crw%2-^_O8)becxdj#A3P#3@8lq7Rwc?sB&ss^lck$V< zN&$3trWH6LlB=79$==L3d5JV*?vUPn>dj)3t~^V}<`a>#&r%?)pZueMj<6n+(DwuA z3BXQ=F0Pd1#yfd_hsuf}OD6wx@?qpQ;IUU9jy(8a~nbd?Nly2g}vFSwi5jmQJ38^NZAv}4RCRX-eFMS`9? zBW+!^$Ru>aArRN5EcK|(TDjS&-uaC2S-jAR^DlIBYFSl9wzxsfyDdo|qpUr%)1MKg z!c(R53(&cY+Ttev5Ao_w%+^0NVzj&>`FITY7kkR)Ov7GmX(hrJ6p&B~+<2Gv0J6pb zawGQT)1y<2y4ugS>eHq#)QrhUNy(01p~MT_Ziy!B_1K$+51{`AC`v{w|LBRYD#|Ko zk7qm)4dwq?eKt7^6B4-~0(Ml6r#3EHyXsm`O}|M~=si$$Sp7OP=!;VGo@Y6^P7kX7 z`l|xp((o@1!7tH`1)VSHqq~UGn=wc2;mt_dNLyCB{%#0IW3oR#SNV_kk-`IQUga9G zy|w7Gy|Y(VIqXE1>sYkEC2xxX*AUWBxnS4u>eb}5qhKTe8z#LHKPnPHao=Z zHbVKvO&W(Mttk!2-)18h(rH76Y!?zoJXGM_tSy%ZV#%X}XGDL1%ba+uD86D@wkt>)vMj0S$U1VG(%K{~(2$U^ zw=7mYEdXU1vdX_@sH7OyjgOEal}AEKQ2F1IGT=dq(+-tU0LW}S0sqEwp=0F~i&8`gIOGa8QuU-N zSO6f>x6`ChlaMJ=v-ig(cmnULzSyP6PdNAW0DxUR`heB0AA^Zv>%S^&Tux&r^sLE^ zNV`+ybS(Rs4!NotODP4_QjAo>Eyv|Gb;~W4>;%uK^QwGF)s+$%iAae>IQF-QXXHts zVXIUcnfje8w(GjJ)x8x5Mqis6f|n|_gtQ#TsM=TpnIosz`Iw21)*PSw320 zS^4Fx(_2CbRCYaG!nLtfFZ(3;GIjxy(I&Jv(-j{{r^aG>F!Bn>PSWe%hyLEOVmmzd3>x!_z4r}Zm<1KmaiQV8E$~JR1vl>AjxWHw+AM zxBz3XAZ||4_P@~CVhG4@3&YV8(9x6yGDfQAEG4zip~bn3(0ICu+%)zst$a_iIOFt= zb(JuEcXlHvn8yTJh5Swz)4}B^hZ#qS8hl;p?7gph@|DM2V8=sTo##>$_PaSy+^h}o zL+HUTdW^D&skwT-ubZ>{;6!}m8hH%nd}fRCavt%l-r8@Nr4Ta8vWg^Vo>fMRbd0%&+bV4Fc(%<-)CN=csHPT&m}4aF1Y8YDtf0$kztgf!Ch9wO zSqYWVURMHr8G7Bx`e_si@)h4L(RM8%j~puE8KX2*_R=UpsU`8?F*7sAX@V=|r;AWgwErdd$v`<24%PdyfY`)~h0qXWC8`ks zM@pfprYMWIG2S8bt^OH9t&tAv;mS5S-<{FK0sWZ8W5wfsn;N9&+n9jngpS62$nPsX zM@Shx2gl*JvAxH(pyR|!w4f^Aa)D%iz>+5w+KhOMwCipmG0ONs6_lssnhi5g#egAl zaghy~ZQ30{Wxj?)$IJ;0E4|Uij2z_Q@znYdvR(E&1?*3p%|N&QIi_vf(R*eTMXM6m zqN^S!$1gJf{oVYtD?vkbkmZ66+i6xp+v$9SHP5rI21Vw){v~QFis@{EyrCi9VHFdz zw#J~EhA*v4cmPrJ9)AooJhd1de!afjhUUoTIOFxW1hUSHSI;#!5H|sLIU8qNz;j8?m(0Qp&U*kLpE4n9^> z`w?S#-(sgP)R`9TM#OngdRqLWW@yPK+D0a1D-=eB;y7R5KbLt|pDDX+`T|XQdd2@$TyV`CgQpLiBXgV zL$AMYSyCFbLBZ4#LharHL=^l%d>+%bpwk%L2TQ0gC?tHjK&%)|YlEF5hX9V|*jkpC^bQeYU_vZ}I%>k?k29?A|W6-w`UP$7bL+$O^8!{zS z)`e}7T3W#|Vr11hiiar+uNDoXmTE>)eablTxemSh`=s0nFXznFjeqMqL8$H>GQ@h7 zBDI42Jb!UdBdT7TWWCq$5jO6zwa^~nVOH-;m#ALcTcED-V&yY3=aX_ddonpYEM?9F z1OV@6Wh_Dtnk&0_tS-d+Ju;CWM0LJFg4;3io17dgYIq>uaC5-|qw{;-m4;q^bjUp7 zw!^CNU|(b~bMWxn;J^z((QG$l$R5%@kTiR>&$ZAj`~t|byw8sVIu0iO4)vHTG6!KW zq=VS&+fyJ}z`jltET`#Hzx^yck<#BpC|0G%X;ZRi(qph-wd3HVq9}&|QmFHLQv1n% z%pBP4vx*6f(O48b(aMer%*y&XIhK&RHYHXN@KH&?sa7*s1j!D^eDs!bY%@f&G48)MoeL?&r@Djh)zdU>Y9WgzZ{C zweRQ0Z_=+Lm_Y>ooEZ~^Z$o!>4(DAR#Gjew2EJ7o%h%Xa_=ZJLME&rUjJH)HWMrDi z)66{dKtV-iVlan>Zo!+u$sYs2(YBz-ouM?}F&{JmFquxF@UHp&GsT~6apbvbiV;cOMqX^s>$Ylc)6SmE<(CMMh` zP)v-D#zv;%Xu@y~0x72iKSNz^k+)Vu*N^+G=O#0APWxUt8ax$Ic$hK`%ek1npm|3-%qH&o2?34bQGr(+uqTVeA>2zznR8^L#OOe8AWBO!s%M zbbDJZqlm$!mEd8RVJ6iPAwbllag*gcJNv~vyZzbx9w5|{>QS|G|CZDFi)2#%PKg&+ z+3_NmtnrAW2ridsbU`4^ZvFF!vW+2owxJbxmdb|k64miR)jJ4nj#T7F-^HcfnjbkU zDQXo}A|^WIrG*tR;e+s|H*>DzzMh5|-n4U_V%dk+BhbFW`ny`Qg6V;qq2-Ir-k(4# zM4m#nu;{iqMAepsbVjv4bZP!JkD}K+R$x;>NSFfS3(+s`^Q2E@X(ABS+d+fWd+}(2 zDczYFWo3B{+YXt{+153M`0`6rE*j6M9JTQ-m7mSVqlrYW!x6pH_SD(ubC}nxs>$B+ zM)GLyoO6pTitE~E!=hXB;w$$simcVtWY_9!iI_%SZa!KCroUh0@XLyyNjZ7rgEuSh zgsywVdkp;~@&-n2>B(}m3#o`#l0O9}bJteVnL;%;Nl8&FukQ@^43lcjCF6`#Ucx4A zxXC*{Pc;NUq6lJD3>x4hR(;yU-S;>h@{aCdxf6)uKgIC=02|MCQ3>z*BP!zIsxP69M@1U z*VOce^b)Q8XV?>26D$)vkcv)l@E-2XQSz99=smQ#ca@dO*I0EQ1OU=AOp0T^@66(Wn1Y+SGi zru5nBLt-mUpVfttdQKBx-bM;OICN9;)$3{OEods2i|8}%l&8e5Pto@9hf(7Wwyl~h zVca!r-{A`pXSkoVy)V8cCW822(*F>Am6SJrPDczEa^ zGpP%sPB*JpR&SrVdV0h|MzPL}^wwje%nS53NOiQPl6d3a-MZ7Qs3FPJS^wDH${byf z<>t_R86`NiEMhvzQ^L?LMMW*8NvU}9iLs-fZ5RHV-bMwGR?4xIXC*hNs}RCc85UF+ zNl}>?8DAB}Kcz?uVo_5V7^I3}lw@wYOS(9|j3{Ir1>s3fxHtV_?FYu4D*7rZRhSDB)=rK+0i+ z(z`VS_bnW494vo8slJl>9)54H=08@wZSx|S7P9&aNHtvQ)Y7<*{0k7Dv0W+32&kz0 z{PAu6{mw(Z00ovIG)?#w7Q{~+uVNv#fyAKy)Oc!ns-vf zmzNZN*3`kq4Op9zW}21M<8_b&cPwv zgSTw~ls5W1=E7WZvQ_>rq0~lQC8@e>i`jUA{eZ3Hlfs0(Y7?$!%cDVtE1g8NWhzfZ z-Nz4m#Kw46zBgty(DR|!!>C2Z?5hJWhIUz=e}{-4H?*P!S6YX+Cc8d= zdlkF9_8i==_uT*Ml=x~`q;RBH4>uid8`P) zN%#B4KPIk_9aCg#BKOChXMyDRj(d_o5BK+iZ)9`R2Piq^f-yq|PboMpbV4L1)BE_) zp0(nWx3pVHMm3U?Oo?=s|ybt&YAnv@$cS z$Q~UcIR7vwXEq1BP262_-ECkkjJZUX33+(}tnuNUS9CiqFDhzr>Xvu*HWs5l_{P#r z1picb_4nmqw?8VV{WLgW{KHY10@qu>$wN!Y9Gw_mbov}vJ2iS3-N5F+zJ(9Hkd$7* zXu(=-)K^j3yU3E2kS&YvHtSy6u5;LIYhZ`KqmOb&EFW2gDnGt@+gYts-mVhNvjwhG@^LdQMnNZ5 zC|Y78pVKb-4)#C?DE%S>q|GPva9g8+7WTzHgPxK~;@+AA-BTqBz&hp-c*^&pY-U&jl4Wt=;FPgEe*4|AW z0g)`uli0E8fW(!;?l{jOR=ux(68S#7QLDa4Nr)YTo+R2@g+*z$fwems(rTf};tmAW zHj?WG@=?!}eid_O*$#R1{ZiraegH`MkUTj}3L5xWeAgJ(Bai^-k6GL?aZY zTMpyNy=Hy~KQ=17w7t*@1z-;;DTD&NLqWccH(1AYD?K#d@?88~Qq&iT{P1(1*Fn!C z3d5C|We4EUu}g|fKbvkewn+L6Q6m;G^p4*=Keq#S(RHauYS!iy1&oiFJR10wjaORT zv*X43B9LV~k`num7FOLWfpy+7FIy3B+sQ4cEODs#WdieghAFi%&Fay~j5gj(H9bRY zV`jo=Z^tpK8;{~T*@QFj_})uiT-PTa9%obZXRysw0YT9~=YScjC>d91`@%P*2qec0 zB087SMHT-k2Uy(~Wn>9ei%9mLN5_Jh9Fv9=juWky&|c&4(@C*_!QP_~!5i`O!yfyjUQEng_eyK9$ z_G*6`qaPqcTHiqXlAhtWw)pIn2WzH}^evzy=P`F{F6 z8r9>CnInvuSD1O0U3wqfgjQY%w|NN|mJ{rTG*8#Ok(m=&FxgoCrrvR*j`rhnb{4@* zWW|i|{_3=Gsdug}xGYPVfS)DHm`KP4fe5s$wyTF`o;R^WtL+yTQ)?bK>#iuPF_tZFF1xK8R5fSim^icT zpPLBSjaU7!*xS1#fjE@F#0U!O$CC87`U2Gl4e~5+b#}~ zFtm_X<2ySji*r`Qh>f?6yU8TzW2Y0_oaGmh^7rtRTX*){>=S`GgV$xcKkhR176sZM zva_S*q*cNE(>jXGChI6Mw=Jzzu2lOhq1wwM0gh+zkp`nB%cSAyjmel8yEU!5nl%D} zqzyfu6XSC#wUO&{V{g-62x-RWt?z~AxgVKHXt6)hjlOY8MdCg>^uN+Z{K0F%or(P< zaU6K<6;}8dbR*mZNUEjjNi}@;uDmp!?K@)oh9gIJWq4;D+5YxZ^rmOTBW(s-^q2BP zY$8IE0U0JhbWS3=ZV_t9b^-f#a48WX*;7Dn2=}yPaN}=Z0$|*T`BtQ)=ru0;>?EDU zB5XMLn$f)ZeN#z=UoxAZr+U83V&aeG^~0y%ARN zSpq+Mqxz0)+h6T{7Ly~;LJ}XRVBL$MX6Rg;_QzUrrDBR2eZ;KD#_+49PaK5^HBF(JSjLh-)aPt)6uni1`RSV;V7y1YMf0KKfEwzE2>RJnh)ght!DYSZz>?nnzt&+^^a`_J~{vncQ#7 znrWI}=wy@7KQ54b-FW0U(v7IOAN~ut;rsYVS@IX~Ywn)B-J2+Gi4;a~K~8dktmQIi zy@^$cj?!-t3t}{`E-9~$YpVDp?k3)sWV~xpSB!sb^G0!?E@^~$RmfoTkaBBP-@#@d zsq6&}!n-!Cc|P_$zU<9beS7Q>I+078pHYRqE&8~?rSR#%7sY@%HMFixaG0uWWbo-1 zKa)p(C%A3u+yQx(N3!af`7a)HIgqV*96Qy2@I!!{Btp{4?NY+fRB_m#47zqX%t&bh zm4TIiw`{SH88+`SgVKG0bfBg$^|2RhPx}VDek+~f@4$O^M90IvH8otL1~JD)FKdU6 z=128T%MdJI538q9(MVF+fl>t0TK6f&R+C-Xs(xjWE7~^ZwwY+~Wvrc>{psOxr`z3S z1^d1t-FnUe%}@h>#1?y<9I2)KuQopz>j#)ibflXXb8A~>7fEk-hi(t4%gY5CCTYKJu#GmnzdcTRGL`} zew>}`q)ULOn}BjA#s9O;>6$a5F*|a^3pAkr08==&7o_*Q5Ih@vs4MzIhrO{ug$bBQ z%OS>IysyRT7V)xA30&Ckpz1EIOvx`2^qg$g?W1O4Xlb{G920oTwJ&Ge7tOUbsTu$L znm8x6D25T!{Z;05RW#N6cn44t@0czBWs5ntLA1t*mwz9%t|NHU+Sv-IDitpxCe=s1 zd}JBW(zxR~rX0Wz8`tr7ZuFEs7kLCl`b6q_Pt#%mpP~46^CDv|- zgKL%_Y|C3xF?my&vos0^w!BcoYQnd`5y-t|*lyqDV~dVjW@Q)iQgQ#8pi}U#74t41 zz8GGd*1f8pg1oYCTr-vy*GaAX!Am|i65`FEd^s9SA1@;4T;wMi!$!H`mgA7+qp@`E zS2OSZs>M0Gooh=G%*K5bw#i>seT2p#jzJE6neqa}77+uv-|$@|aYKd|`{a*2=l*yU zFI+;p#wUPMXcWGO8Tm^mh;lZUyFcG}qt&TTgmwhV;u zP``71#<@IxSAzES#K{7Ta%!aZDUxubd==X2>rQ1_bLz_(?~1zHyOdqy?cC;?0Mby^ zqLw>xcEIwyo%uZGQx;nWYep1qj-9;@bMZ9Qm+1CUp!(@`;3QpA`|vnE-g>)(s>LZw`_o#yfGa(PG{1Z7-5X`w_lXCVUROrrdQ-gB(IPF>08f)z z+HfJ-ErcdQ@&4;1?2Z}n33V?$@{w~gQ#x#&tgh?_+d>Avpb?PA*Sq5{U`&2Im08Eq zVWHRZCU?^T$o(lBk87r)o0oh_0Z;ft_}TiG02BQ!ZT&tC73<35=)w6RW4vgpToF&h zuLM8%GlIxn@!5*MCZz8hKeY0LvK8O*>m6ES^;rcA%=}8^l||e6sI=gE0m@;<>UOiO zC?&GL?KFj3Rpjb07DhD42JORZPPgG_Y5JqGS#BVIE}E6eH=nB0a*`Bi#?8~)pVCsL zTPBj?ve@p&{t5)etg_iobJ8UKW*6L8g*ZL$-USfEE1C#Hp6c#vc}i@a3O*;-Tfah3 z`4)(Vm7UvcwDqhA4MgMikLWtRsp(F01`iyVNoVk5F6A~?sv*s-EG1SxIW|9J85sTo zJWPVj$q?l>_%9p3kXG=xbL>C7flPv2icxY?3FT?NV<~vpFE3@7suq4oCjgtQG$y&| z#}WOgL~jXcPg;|4Y*g=8$)y@LfA*mf>F~y1=ERCsc4xwolBBq+T`xF25;Rt~T05cL z9&VG^)&*KB8~QMq@t}UCVC#YNTQ!co{~+z$&-KtbT(ld&&vEndMiWgv>dJVLOG=15 zPz*0vG!DFrXw4*+yF-J#a@lDsfn8WBzO9gNe_|Rjo2k))tmMdPpRte5%C-rbLFs5B zuUPC#5@<=%776qG*rnp5&UFIuLPPn5wo6dJq*7t;oh+(?g~+!{PFytS=`qkFp`Hth zV)HK%b8@s0O+sgIo`aMYc=ev$o@#}NC9Jd>Co(b2YC;|v*e}BhN^GdF@-o;`J9(Js z#=TrpG(7mZw%n-RXQ~%Zmvp>I{Tg+04*p|R-&jH!UY<%DAN69$fVTf|+t*60#{I0o zZbgrz#68|-2XN-sdih1x7B*^h!;aW%TQra;6nO{q( zK2;^}C@RVlpO~V|;0~yrTW?Z|nx8p8E`&$E()7}Hd}hZp;e|H@Za_FQS`R4-RVNsQ zKHEq|F25G0_H10*@JT)tYn0|R!5I4V0qt_e``*hM1nd&`Hkuq5>wyX!jXmP!&8;3d zVTPcLrwWR>$2K=mq-{cs<%L77C9DJkeu5lD@v zICU^s31N-_02gH&8V^cQEf$ZHK`pMYuQG&*0UlsA|Cz z@_qdE;>TIJ>g81_(n5l4{LZ>GH&V`RIN0PkAh)v*cA;xMDv6}*XxhQfE(Lg8xiX+m zC86!Ie!RV+Tur;T0%9Hu%II++Ej_Qs$*}ae7qHp43ya;}hNe@eD&00~F64-1;-s3H zli@PKQm~`3@ld)$EWIx@J@nW#lVD!j(Xlc(soJ5D`Z7$67)sIMsd8N`(Dzhr-!ZQ9 zpIJ0)7;kvy!5`0898WxHxtp;kO`evhyBn^WrZ+HRqKg zrh~zdsmK(I72CJCwg3vggQ-{!;16n51$r_8*)Y02e)w2@d(DI|0ltMm#waf)ts*7N zDEB?qE3%26STUz2qn7y_{d=j+4xaRB;g1CTgv)|OMX#-S1$q}^>Ia1`ElJ4~r!XB2MM%|awyNysH{p_1UWlLYFCF^iYnjGD zxRqX5F+%u1DvEPcVerO5N$0~ND+sNGN#^jT>aU&n)(LhOrcn(TX*)6F<<<^; z?)}yEtl-rL0q!(y$2W1!bS00f3B3-?L~202CsYI{_}=ogZnt=}=74PS0%FeJOPfbc zt1a|s4$!SAJ$i#sOi40Mdrn@Vr6C{Ek|&&Tr>s)p$(xZjliC6$+g_TN&V`avCo|rp z0)!h4lFvC}u@C0A7NYoJug*ZwduG!fo;^H}{^}C9?#g5Q)H-=NVK1!)J0WjGF#g3Z zGKl#{gSZveiOZn~@asCohXIR<$%nWr+@c??AEVA`L@_NrKBW`A4r9*29eDXb8=9&# zpgLrmCg=K2UFzOJ8Awf%&KbliKe_%(Pxs9m zH+fKY;HS;w)}ISK1>VxztsRn`ftE!au?n`ikE@7ro|WnmN+Ccsmr9CmH9;uI+5Z(&SXfS@GNq~Tn?u*)2K$co3ew~K=i#JIhy#?B;JS)q=EEfKT zM}})4vZx=E0`oK?Zc+S%XJV;{Qfq&8Z<6kvG^RQ2H02Colpr&(y~@2qD~tc-7cnW9 zT`c)8d1=qKn0zuBE~vSm&s$NldvdPO#?Q4HF?`9o2y1H%hm`pS078#)jj^t-Kn@71 zFv3Aus)w(4oY%af6t@Mdi$vDRKsmZPh9N8PK6$S|r`%dbe|eaIxZ55pPpQ?W-=KJE z2TeEnu@4KV=u31`ZrNfYl2+m`;KkNW#3SWX2#QBU;dA+PRO8=l-gc#)n{EM)Oavne z2Wj|rq*L#z0XW2EUW z>Xs>3s|D*_{OBXMC@S~nSCKLUXw=lXt^r-|KU=tGdp|EP5Yj-l}g&Ap@nw<;>0!?482sVyi!U1k68+;4#0pp@Q1@TvyU+?}LPQMXU>Y88Q&6Ni6 zaOA>fBKZ#E$O@xx^`LkYjjLPT?x5FRZTvessg%nt#wI~|TxGHv;!$q9V$!D|cx`oU zR^}}XI%aV{?8CgSWmY$4 zI$B=5WPhR;V{9_ma!-UOJ2tkwpehqf zxXy=01`#$rJW?YRMiGVy5k??etV}4j*~Y#?q^KEHpwz5!Ifd{wniNHJozJ!S!+8oF zAR*Jl>$TKd7=Pjo+9Q0YToi;I&LiCiS)qgH^>drZN`GbDE zIeuzgp~ri|{guGx1_RW(=jEw+O{5L;hDKeskeX&Af4Yn_S~}`FtEJ4hZdybhqlEvn z&=P}tMJ6%$vj-I$byZ3zS58V1p>}ME435HKi5$w8sx~&rp)UiPCkN)Cz5)ZJRE80Q zBU2)Zqqf5LRP1iIDt~Y^U+K}G;70N18@s-TFM)pner@2;%HqfBwU4jJyz{yBHSe@) zX7Ydi{tK9U^^obXJT3AiUZqHYfsu;3dIWtCFa@qyE2=@B4M?G9gG@uiSgb9Cts$I- ziz+YPHHq0kgAX-;&g5NHE{g|jpP7#LJ}r#2&o%k+Zp^M5@*N${OF+DAgRnYA3aR+~^!HTi}0^H{UIOA89ABoEQ8f-0IfX&`y zem`x_x2pwB9P2LYCHxNn@<0v0VjrbyWT~j5%6k^YXxn~yw)bzk!QtUe~87103s1KpkNzQo@^S3irt6UVEBu98|x zSiOMfWjpU-&0B zPg7TjOPJh^NpaLGuxVZHW-e>7wu#Y7;^#T;*St?P(P7*TPsCVbDj}|xmF;n81)#KR z)A+7tosVQ~VC@P1=-qnX4AxIk990dZG<0o*M%Z1 zs`aWCPO*dSt+A1f>5ha_t$q2se z*U2s@%ED{prG@>Q8dy(sIBr%xAZqav<0Pid7i%qGO3Um(Eg48?*jZO2Lt0wUG&dS6 z5=g6>qlc}kk{O*Fd#-D>>Zp$vb6z`e*D!CTmir&VA5~P@plAf1{rUK=2Z*rwomgY- zpBv-umXW8L#m3zi;@X!6_1NGwZZz(N%p0_wRt_nN&r&TOSQU7Q$J@Ys|V0I zuFGSkhPTyVx|&go#~^7eFK@X-7c@+t4U>e`8b(Ok{@JCYQtfUp%jC9C?4%8p7v|(u zRrIZ%C&eQH1b;RwQxu|xt(3DoIy-ksI=6im^M{A{H7|c9nvbH#VUey5bI1+@TWe*} zPAx{@KpJSd%Ibc?zqV<-Ztpbs?{A9U$9k+ak~sI;-b2R9bn>jK%5{-%46E6g;GY1a zTWFToVw(>i0=-H+2-d_MlVPp)Qkw&&>H;C!DAeCkbvC`ifG=_Qr36K+)gbMnlfLRL zq5-)>wT-k*E&Nk^-3cPZ-A{rGlWzq8>vTX9bkL_;4bz&03S2A=))om}OG}GQQBx>j zY*uL8l1SKYbPFc7MmC-Kj=4(E;lN8-Q8+DgKn-c>)pI(mzk=iLcm5y7-lKo9($?`E zOvnEKhrrm|v3$bk+y~-Tt@T)>#P;~4pmc~epK!W?Z+fCJMCqpeBPLJ)?1o|i(APzPixZHK{%b?kiZdgrqcUGP9qWyK>fk$oHd9E0 zE}I|5Al9NdDwsL8?04k0^c+b+Jc2o2B{YuNlD94Vj>qD;-*Tcz`&Y6C#oD?2tTyYa z#lkGkGm`Z-98mE3>jDV2mRcIinr8u}$OQOYU0SIxg6yYpjK=cP$LawbygkbvuBo%o zPaE$HfrRg;xU7^bu|`L3*}V>HT3lUV2Bej)#AU0dBBq>)qBhLJd36PA=_#>?`qn!i8!AOEFGU>izMbX(*E-vPI)b*NrpZ@a8j{!H`FATe5J=%y9MHimS?*pk zoVOn?tEOv%m>e_&Tm_AUu(FIX;F8x6R#+NqW$5&{d?+Pnit0MQ)a7leulFRXb+VmE zxjdBHQnrqHPl66!B`tkCRX}KbJQMIPOo_Umm>AKyPt$wYphN5K@~1aqv|E@aUk84Uf4%MFXAG4{J** zyaJ}yJ1k2f+|0j%q^j(og<+{>1yf~Rlx0IC$`pa3t0-9*RRu;PUlkQA3+0u;pmgzA z%1SEPoD-8#UD=U>@b)W=vUxD-S4`MN-fjoDUvuEKk7;9zTr5U}FQ9PxNH|}G*#ry^ za{vxIXL;PO3C3G&R;I$=NbkLJdVf=Tyz_!yRoL!z9+b3Nd~viV*XImuDzBc~8zF`Dob7E|MUwZfM z62j?lt{kGn=$`XW3@r>UHzaRzd`Y_GtTD%pFIIX7mAg6KDdFxA#%28tUjUw}Mx3G` zOW_An>x~(()U6i-`Z|k)Dl4j?nYFV{8ps^+l(m+*2c^$WKrZ?kIvg@7SxE?tyq7)X z=6lalPNiuv?0O0~-5h1pPiuB@>g)2qMKEn~=wj*iH8t2iAzdzPR}&&1`83ySZRh!{ zt{jI5j-E-dX2BrLSY>Z`+-@&&xaznoDyk;L@rwTdRf*RQ21^FFr%NmN7AeAfH#J1K zWb@DKc5~RmOkni_*11?Fr+Z5ss#bT5iSBSRy51`wSR9OP?6fd(P8U{5j(4%5*3TIi z@Eump8kRl~`1B`M<^*rmSK&|Cjp-AJVidGZ{{VQEjU;H>>Q|TX*AdBEiAe-?ZWOHm z1~BM)-^FD5Nc|y9^H#!N1lJC5-G`@=^O_FYpcj(gYS#wjt*kn2uXKzaMEe`Me^-5r z!`#!#%czsloH&k3*l~$t5;Qo6Gd1t7hWl&cv={`!mlvm~l9o!Q#{2d|>mEzjFq!H^ zFMV4}dq=tKVLGrAqgKVgLYY!E_y!9X4e;FbkjUwr=NFg1nKmB{7M@VpnQLq`@mu_E zv8ESB;bEaB+AR$%Ua={a*D-^l$_dr8Un5PK(BhR*Q8o}6n%W$@1*XK}shO{%G>Fb+RIalRn*pIyrqqH zmTsCYbuJ%Q1;Zt4LF=lyH63nK^sGJ#$m5E4Lve#987qg-&m=^1x~mL=zKSPBmYwV_ zzHG!2t8G1WQg?|r-p56g4{CIHvE_XhO$1%1tIc*u(#L>KR~`Jitrc@Bswy8f9Hrs9 zmNnKPZ6*Qo#?xZqdv)1k;572XT`+rX+~1b!aYuBh#%`6Du=@B!4319FO6O(D;i|tg zWA8bJ*@mF(t>RdFYOL@wy}E}D)*TH)C+(>xaP1r2%sH*M9h@5f05h`B585nNdUl(} zZb2Svd5Di=RnJk0C@W58>em707eQXY2#|emg1@J_%#MFnU*V);A_Y?PXNoCBQgT32 zh=>9rAPNeUKvJYBL;*-ph)H6!+MWEaESx`z(NN*?c8@Qa@{%KrUD^OW+bn!mb_i@< z(PML}*5L8lj7aZlLSN@|qT_XWClwRa{5g%ON@nu29K@%%r4iCI>b$o*{{SKLSP!Vg zWjC7?t0()83?Bd#5Jl{FpqQLR&efTYn(8v`Yc2vw9fkS+*P7MU zR8><{2xW`bppadz&^UM=MPi&c7n%uSds{0U>$C%Gr*J{>Rno_b2g40yFVVyY9mSh_ zc#W3SbeSz$H7C??wD!qbHdrI%in;N2QZ_Pl%+fSJ$y?wwR8xzO3LT2L*D2(oNK!%&Qi`NP3RHzCfFdd6hD0DmJdl8gWeRy9Avq#) zC<;+ZSwI1MC!$$rgN5UB39*&qzy;%DU6;A~IiobZF;5fsb90gAxL*)WEizwo(R?=+ z^)3C4hA)J>6{I24jO=!N&KldMi=7y4Jv?q`Imz6fYqO1o@lOmzqC*+WbIp1863;C? zLtv+=C4sz;)&%AU$buJ=$8VF{U2u8zRB}+`b#ThyEb>^^>~F8!wep+Di?eCztEkuO8xrQ)IIA2aq8Y*#JO7DY97s z3R}7Wr2#0MlnvC7RH0A35CDh*kP&iY*o1C{R03H|3l~AU0jjFVh_Vq#Q)IF%r4?4u zQh=cDRS)(Z{PR~2HADXZR`2JUu74{!eINPkKh+=H%%T^iZoPi;uG@7*18+vpf8MVa z+jFOa${#8;y1V}XLM zxW)Ed{{W%bVkadd*hY`gfzf!Mq*gFu@xD9uZjQkC0#~i$b@8@mN80zIjJek4KQ-i> zZHQCiZ=|ZF9mlZV;>3{cSC;5$tyEh3{>QTG_4+B_+xIzgHSkadgu{I5Hwp`s4`6#F!^0iUr#emQppkUurlv(e=+t$furA+Q$`*dlGL4=a_^MT6mzV64L(OdU@Td953RuD>#}oZ|>> zhXiA#%QO$f@VW{J8%a#=#EY;Il;q5HH`iUlRqMkyjNxz^U*NnH#IGlH(?J3HAc_ck~- zFNtwRB{dj=IB8(9k=>@Yx#iE~7SA4~z_5q|iy?}lXLnve4tWDx`-0#w{x^>b#j9CQ zN@j|8wSY3gpd;k z7dkvM2&axb)()BE^XM$1UT(;U5 zjxD8&5o}Td1CFFSWxs~53dulgz-zsq60xFOT3nLd9ht)oTtZ~l!G#ytV#n`QNEo-T%TN`361Uc=@UFFFYh^Odjq{Hg94Gjb4we^uyQnbEC z$zjd9kBZ5LvlqL&u}#Q~y8M+`v=h55uV@!&y8*qAHEMK9a!-?&{W+3C*T73}Z4T>g zgH-9> zX}@*flDCFpvrSs~C5J4r`$TPP{ratrBZ$*f!w`aS?5?|;eMe0eu6lFZ8tQOaD+hll zwqfF;Hl3l}a&&S!Hnd3M14+=4ZA#-fo=)2lGeY5J47&4OT^r)6r(l<7v>c~le+7Yz zV7cQmK+xy0*?@8Oh4l++S$s(Fjd;Uj?rZRAq^rT|A5=w|`n&Tze+9L{WiG=dW}VxO zxql^d^>x)W&tz|9*t7=CsXa>klkO8sLEEQJWLDI-U&T%M^3%q88J*Gf6 zEWWDd9AR}ieK>1ldz|0^wXRCcuP&;cw6xLovb+!)KOTW*;QS}*^sJ7yvPm+JVm|2j z?tV+nbxB4!JD%s^_~e!sasKAD(l86Tz*~EeteU!AL7A5w3hW@j@VHK9VemU$OWTY|L@+a9!h~jlhE&PPcS&^KjM_;CndagZ}`h zAs;Q4zORPsBPG;zt&|U`Gc0~1@>wj1#p9AWn)b>bWvDGOO6<V4Q(hbmov$@&d=yDjPn_Le-@i=8ze!EXz1 zdoE*#A(CpKTmWo9GAYr3n#*YQF$*#(q=sRLidN!w*3LQsQoWj%$I+jF9GsL-*o_3Wj_@JSldJQDFa=$8l|u9LQw-`AOn7%H9vZbUiT;n7u4vM3ZULv zDdl7$$}O-}5H{u2NCaIhE{It`Zt3q=19Z_+2Qa3EkVlbTzv!ugJ{)9+M;8(==l=kO zEH_;p`Yj9W$byUi7jzLe}yC z?k=>RigAob9Gbfg#p-6PaD+)5vXbWj4x={w`L18mjQ+94wZsrw*9H%8vg>^h)3%QF zB-%>05bZvwIuDo4aByJ$2Me0B*JaM5kz4NQy~Y?UZGiTGPUiQRJXZ^X$(BlrW4*IC z-F4q_#a(4RbEIr#&3QR4G_czCTvbyW7AH+w8I;NTz&T$rgmkOG!~H&QKf6t2WsK^6){u0^f_tPZ+`O@_e&AOzEx zRRA^6sA%001X)OE3Vp~1wn1cR(MbZ<(E!rKDuB?SAOzEU@;46CtCQ!9fHn?XB#oHs0t;WugyM z0FnjOPDbA2O^U^qWBHMosUcmkRFJbY?6g9QE0#+HvTU|O^v^=LJ74QK#I4o8MHTw) zO7n(*TpMlI&^#|d%qs$>rj9(Jv4T%m9m?W$?N@`R*t^Sv(tI_fS@ka??H}LJr-+=# zQy8Tk){NI3c`pXXqjY%9TMsEu-o1y2@v3TiS?i>EbS;oE)*kJ;FD2qq*W;CMXc=80 zE!UFed^;AiOY#2zly<%-uhU2K{{V(+KuapnuV8pvCs(hEn|r7TILbgO_!$Q@H-a5YcS|)pG;iN&$VE?nolsitAI#v70{Eg zc|Rh(a;n-2?>q2e4q409Qlrj8F-l#nx>0Lm@bZPzY&9Nn|hV}yG% zON8T`MZ`F?0=8iV6pwaj;qGVwJMV5wYsQ$)6~fpZqzq%`xsDcS>23UtO1&E}&KPSO zRM%AE66na-+qmn{ijJ@tX zk2uEh8tx{1Q&%yxw2U{7orLTC=N@aZ!Eh`e4y1;s8kya-Lj&pQV`*`<#fi6Gi*bc; z4ILTnE9wnYjdqM^%F+3*haRDZT62g&7Fy_HA_*D+Ao(3Rsg_i#G2s&wlH}7?W0-X< zVU9*IjBbvQ*Z_Q%9zVtul#sX7vQ|03zcg>VK=C8U=(xvl&Lt&5tj45s?)&8~%unPN zRb-SHeG{DKM9$5pD*zWhOR0`AoKr_GZ)B;P{unh}O#sBPDBBe|C9GpzeAYVY$ymoF z!0@^KN|eD&=$Z@I+W^pZT%Qhc#apOi!KiS_DyjodU@7(HP22#!i(Q6N;y8XXF??GA ztHfMf=g(&~%*}l-miD(orq%LG$7_SpIAj{S*s38V(KOt+gKu^BU6gmRzRS$#^rJ%z zF3p5Y9?@pD_8wb(%T*VpOn$blu~6YuF|>km%I6!}`y1||+w>8J)6^dD`P^M+f^C-9 z7F0mS=d)TG&~#`Ej>9;w603XO{2+9^FB~37q!Tsx-gVkoclAF3`KFo9wbHwb{(*u$l^%%K&hKX)IgGr@TmlTn$Xp!&>@?i2?7;WHhOO>@{n#&DDn0O({6gi~a)0-j10MG#pQP^z|y06}8P6?~Kc zg2=L2Rb;XYC_t)2B$!)yS~`{QxHE+|4+sZQ7+wuW{c0oq@%OK6shCsXPnyyadmxv&>pm7sc1QR;gVJ9eVzpT5rNXPHrGlB(YvFNgp6+Ck%aZB%CRuoogjrEm z;%cFp@xDuYM|=3_SC7k{TIZeK_t<%oy}y8%D0p&QHWz-V<{D~TM*jOQbHTR_rP%a- zGVxSjc5xhWhD899X2+gUVCU~;ro!bD;jJH9Cl(*UbXfgeQ)^_UmLlNiS^1mQbJURv zTI#xHf*9ZneaHB%&Y3qHh|}u$x9R4-#p@snpoA}6eDcat%AgSlvYRE9NDzxDvH+{H zStwZ+ODO?LP_mE|*-8!6f-IyBRH6_pmPH`}04V`VkcK26RUlDdiz-M}*+JO?Em=_~ zuVW0Zt{{V9!?`22|qoDCopg+ZCbI^`6EP^IBonA;O~07t!j z6&@JLa7ZW~17ma{l7YK{8jrzvHw;q>z9FEd%bPsx1a%kx0LuC=Ml!z3W zC$#udF0xPXY4Kc1kxa}Yn1M8n$OClKp!X}7784a5&zfS?H16%C4gKL{; ze}Z6?*u8fO(Mw+Ahq`Y3kil@~w41aS9YMECe3oAg;1k1BSzU~}3c8u)4q$6;*ucKT zi{DkS;w)bb!l)#cvZ5Mlb`4zjTIZnVPk>fUZsIGFxV^r%U@|6Bz}k4ri&`yr665hY zs}f4+?g43BRWGER8oSmDqpGIt+ zUBLW91x-dJiO%V!to?K2cAw$$T7!a9QMJ#MftPSd7F)PnF)kTIvCktc;269V+*s^y z^n4(8U7S&t0vPU3+d>xAmZ*E`i=QjxaV{_3>qk{vg?6#BDu`M^zK28aT|NUtUx+|O zB^#{9{;=r6eEF%!_dUqB5>Qmkc`1X~dqy_hNL*$$94y4&94`j;xxS4nsII~Bd08Zt zhEmpF=-6_Ld2Uv+7^&L-0Hda1KjFH!92!>HT;`?1GO(O_I(mj&I!5Kn;KmY9h+Qi< zmVjM_(>CJ7Iflh^jg&_bXoxlbIxI=)q^kh2vpL;k1xu#NTrA&+usXSJ+NVV4JJ}}M z`_{&)cTvR!JsjCy&@4u$!E#iXd*fzFL*zW%;bOP6a?1=1Y;m_h1+BG~DaA4+j&;Mc ztZq9Yr)wr-pCBFQj(+8XJnX8H?`v(yIBc+?n>%jyWH;EV#%B^6ez&r{tkZ#Z05sQi zr^GO-dF6A+0nXg*s@chkQp!ED*WZx8&0BlgZo=9vs!!03sa=;bO6ch( ziLz5l=pVez)G)2117wJcgK?JjxU$B5Fm(j9(mvwG#OZE(tv3$h?v|+1JTz(DAoN>v zRPWr>t4_TQn`l_*q=IOg=C#DK{woWGY7hIy9bg#)vol?Fxg+EEt*YJYKc#jlr)C%5vBd`R(&lRYob=c4WxF*<8_U1MpN@*RcxY&D`%bNFCh@^*Gm& zA3n<~$tU+I>Y02lsyk>(TU#v3%0RZZzeLoHl~&fuJQNdT27oS>RR-IBY5@NL%904? zn{UlkZv-tR$}AC-0Dvh2bQ_&gff_6-`i#Fr5H6A00MT-M0YVBU=x$ zJQe&$7sKcQ^_rO2NYQ}Z=iC<~#T;QH;+CHYyBTd~BE-I?!q zv`voXd3i=z8=T*B-$HQ14-XpQ9fP>Cp5(_vR`GouVB7pkq7E;me9nqW8m2e^O`09= z(5x&Q3aG^A?4!!Yk7>?21=Mh62}u*N2TB`IML~(Av|h~sADz`RlpvXIKNBNJ*VFMv z6D)!=RAMCm0L5W%&tLA4}$7{7)5LW|s+=vNbkaeYlKPpaZk8HK-D8w*}M+H~8Z z>nJPfE28abr);ggjkg{IEF}huA(k`jW!t-B_bd!k2B5Eu_SDfi13x%@v8nvdwJ?<7A~PM&Lj6pWF9 z(Z~oq!t{E5Of$yfcztGzE|Obk{-9ddRT~XS7E;!N)8K#$?Qpg#jXNmxD5JnVp`)>HLWR`5}4Tp+TLI;OgwO0lKFf(?$^sR@*w2I>X!~MY@iIqR9bGOqR35@fqlZ8TUb}5CRmXuB0YG z3)TG})CTZ}X(L=(!a=icPP~BMb>%=@crQ})a^^RLfOWK$*T1=Nej)x-`=ikOGXDU^ ze`a`R6Hn_H?M&|uW1TC_j`z%WUXAGfK`kX5>}bp*$Qnm6rPVlJqiJ#6Ub?=zvN$N+ zJee6EdPfZBQ}$PL!k8});SoLxNavBUGQrb3P)WVUgH^E^wTmRF4*IqG=) zJxrImO|NwUw%_2Y0BiRtwwms*IrdY@2q2XpsVAuZNU7++1>N2G0J;AFMZ7%B zKMZamQ5f}^#qNHqc?G`5Y3gUB5>t@bGhDZs3&VBIV$|o`9?|{Jr2IXgmX}SsUFFaA z^gPqjCuE&M-2;q|@N0ZbpXpQk{{ZZw-4ew~P`zp3?1WN?EQAAfQ&1=} zM*Gp!9Lvc?Vk8_Y3@2l6n}V6LCxC@gEUR^(lKJ=pPG1Zk4}wY3nP0Ow>z3Nb}jlteWk6*q_O5@N7N| zK9t81&6wtMk20|McMUWQecBr&Q4y@GkjBP>*y1KOU&h*> zd08AYfzx4FZ969s&r-(yB-sEY+@1Hgw?yn*cD_{7QZ2|ZMQtv7~e=(MAS^FV5$;3czZHSed9%~tFGfNC5A}w zdKTgIuLZrlrq8kI$RBxDLj(T+F^iLZinzkJ*Q#n`r^IQgXdr#0m68JDZK(e0;iSfJ zDqO;vo%n>BjPhy^j=z%1s^F|g4W$%ShEp3Ip2YV}_daV4_ zH0sjGi381TX2Dr6@xAxEb?9>QaZQ`g%pe&FO#RB zp~5AoYw7DVI1ob%fIdrO79~>#D&JL@WNGgUUgMZtoh>nBt#OQ(G~VQNTiEI*Yg=eT zy4!UTaP=a1=kI4vQH{1n+p!??TJNEq?t9wOd_u;J*_(5wn{-vc9%KgEE1V-%jWs8H znK@gtKnle~8QMt~vYN`11%p`9;yJ8F;-$AUF@e4Y%T>)T4ZL`y)uNZc(!-{QMWL_3 zspO6NmNW~J7V-7;lN(0!du%}p%k3jeLxx^uL>(8kX9DU8qN&RZ^EA4_z*@m{7+^7F zY_1Onb8CCmID}1tz2S#JVy?i^QJ`^Y8AKR^8;ZJ)T6rLT@x9uK0P$NY z$VEjfm^a;PxP+Ln=G5q41A%SMu4xW84jXE$ z#IGbuGfVg~Z`qS%vaLe(NcsJg*(|EESxGifin}Pcf`MfrO_bS9lEsuFuF4X{l&P|m z^Gg;*hPv#qCGBf!TTM-=JkG#%J_>4QmU-JtNW%FXb{#sO1-6Xg{5^-4)lSgoYUiEa z?Q{e1T#ljC78SA`&qvXEL)1&f%fwNz!>MASrEC!k0jrNU9%QU6Lx^y?S2>QKwUmFu zgl0c2mlKY0Ep{ne6+9*M)NgoenAdlnFUh;)zQmaB(08~Ho4c_xDUB? zct;P>yM?Lgp4RrSiLQKrZsIPhlY~ogtg|(ATtkG_oUztM*L|5gg#1?0G925qf)6mc z3}=VxX(wzF!r26b_I4M|ZS1vuo+E`wJx-=*9N+j>F9%<;r(%7KR$0g9N1|Ir3zWfl z#tCl?d~S{HAa<+{EIxe~QBOQ`#w3aDdkDB7+!c$9MbXI__A4xF#hs|>WuwPa1Mok1mb67v(H?I9Xk)^)!XxuUJ7t7YPUcy80UTZ~@~ zWn&yeK$Dk><16T7r>Hqgp^>{dbMsxDA5)Y#mniccOQ7S+bH~FvGNEd)+*G;Znzqc8 zXdTJRZqcUe(BjP;t8`i8H9BmXd2Psu0W7Mr0IoHPLX}b|7ExrfuF4dPDX~BmX_P1h z1prkRpl*nPLMpPU4M0<50aauH0J4Qukq{`d0IIiwkQ9?-!QGjT=-|Cmj4OR#fah?I zN4{Ee)`qm~M&$Af%Gxy^Yt}f1KUm;-A#Jn1iz_a9<< zg;3x!KAIVYi6PF_#0@s*vgN&G7CB?}XQWz5OEhx(S;6rKuNqg&K4Rl z?{f=AYq#IYcHBXaLhLS~kOiZx(4s?nRQyY?fA8MUiB(kd{j#$g){YlFCrBES6FN zn;^2ABAY1z0ZNr9fPkeGgcbsn3T&XngbF}J1CpnbsXgfuJzf%7I zciyp=%Fdri{(lekNB2fu1^rQ;{{XzJ{3?{HWCG{{Zt0{{Yu7`Q-hUQ5;NZd)mg{+M8WhTREkq%*JML765Zx-aS<6+$dfbFvlm- zo>$d;&n8!wBa`mkpIyU=V#c7mB}WbEVydSUngNGKCyA1V$OpAx4Uf+M00qW6n8YSB zHqr|Nee^4TTO5z#AuTmaSk|x!qc`u1n-Ss`rx12|WpjbvfvU=Q)T4dgP|uGtdySXAOQQ^KPBol+21Q09EGg} zIplNjUL)chx2dP-kD`1ri~J?8R?C*obg)?uYjOe1Ep=6OH54zNqIN_s24@=q?_BmH z#cUiuiDIa&>tZee1r|jwaVYP;*Z>_nrAn`{0BorY3pfXe56=Ld*1hc zOSg3=VNN?1!x#hxwW7@e`uvtZ=~!Cv6i#S)8(&|7!^ErSnu+iUL|4$gqrAD()hlYv zjgprvs}aR8%2$?ERW-+B5E+U04VQ{~Z5S(QX+{<&?cFn+^5NYL18eVlmA=LCY&Q>a zimI`p_x3M$pKx3h^wQ$Ev+L_4bEyOG93+q&+w-yUTRK?DwI{+d%%K?6UA9{EeZoz~ zUTd)#dm0Fc%ubp7FUfk8yjOwYv_h7V&y|r3tr0fEO#sz-rXz~hxcaO9ikdAWr(nv) zd%3JeR>bb>vj=%;b<*3vxuNo%y-yb!xf^Oo<70Ov#F9Kt%bKE|d_rkVG;%=F^JfMe zq!Xb9ZMYwYze-|s^)+v6s3LZ0pgYOXd45a1;u?xbTF4sD`C@sgI z(qWQ`qJ2X%GWv_H(bRdcB(U5*liR&-{vW=oXi1-})srs52&45)y*!r7Wv z9ZiT-S4jDWR=AKX28$u)q(t|eppJ`IV~=BT?3(iq3YeD+1xGP;aWRD^j zhquAYfT_f)>1Ql$h$HJZ>utjLlPd8DqN#IWwT<&zF}{Ij|aMc8ep zfm+@UeD0FANvC|FuFBHqXhyn))(D#BkkSUL9MLitUN$v=o1CK8Jyy4lnsK9HVri*a zi(7|9RT(!dls3V`b<0r-__2v7CdmA)&6?YeMRpR%VGiv9$_4aXrF}#V#C>(sWnm*L zya-p|?ayMooc1?0ZUT}>h|K2>^@k`dU4*juEv^se6P8)rmUr?bA>fSUikDmb_HejY;13p zhT3bc#c(_=BciUzHGGY>hi-p@?woB#>yR!09MzZ>`6O%VpN9!G>|hW9xEDYM%67e! zG-+bJO5=ol^2h^aAZyafb-l`vH09)i%61%(0b`}^svzssDs82}OBO-YrH55ExYKo2 zv>PH8Q^^LGQUaS41vVt;7A_-H+IWb+ddl@w!WbOmxf(4y>Y${D^qp|d;(y&@BicV~ z_~{lm7s!?qsq`Tp~8&Sg(4a->HCV=Kla69!r_Vv8udQQ`}zN>uF0KZR~N2u4_LEULNHtgO|NYvI~jjY1|07p$(QrMmP*ERj; zj$-5+3#zEFEH;)*@xh)@E!xWB_vzwR()!;;AQJ0b4r&yd;TckVvyjAi8wr-4rb=i* zu9oCWJdZu&%-F6@KS$Ws858QF#VK1OF7D8|;?~!tm#qzTHY%4k;NIt!>p10-E0!3( zX!0BbjKiihn5%4B?4qVI+&+C5XAG^8jeKqoYle;n;DyQhN5X2UaiLX9MGZ9+&asuJ zxa0li+d_T|Ux!uJVQvnkcWD>afyYDSc`Mu$)uNc>aCIZTB;5Sfin?g(Vsj*I{CX@* z8yKU+qxu)+nWMiGw0nKaXL1jRlBbl-l~P9uicuO`gB#m+yTd}TDd(ue$#hwt4g1W# zqse!eof9hQ+{3sX)6sF2FiB4{qLgY4mgWrdgWVU&&DH5)mM$|^nYzR4psavC7Ym)+ zeU<&n_V#9Y)3w;pm8jujeY0=J}R$kOK-A^8{7p1Sp-_f*GqH(OExNPac*~0 z=q#q%TK7=VZfda7N%^SDVs3)UNU>9E>_P^2u9va4=t^X7p&BW+_EiD=G*CCy5d;Bd zlmgA&Rkp(FIryNmiv>^{*-fLOjalN^bYx|ZpL!o3hW7rSX{{X__u{b1}s#jG@RZ#55D~T-)@&iD;j9}kp zd&(xG52<6#JdJR0(ZuRJ?zoOP!e58G)>|W89L}>wTNaQO?+b$+tHfN-UaNIG8cXAq z#E$`U<7Le86&@oKXEg$MwjxN>kS=$(CDFjPx@^|V$yNACMyu6y%$u>acyEX??aLW^qB)y{>+wDy_)?zy4B;Y^PEz6*lhKS8jK|BzC?E3A!jE`*c*WS?aPhHX3zQgWn1ZG51DV zA}q~BMV8Bju;*fU{VgCD4tOr|8kMeIh3Hof5@Hn?lgH|SV?Fz=O?H0+PdWP|f2L`_ zQ>unPx$00x*kELB05z=u3oU*pT@5Rq`JM(*cDI>VF`DTqNMvxAoz9v7xjrtK%Oh$; zZfgv8Xgt@>BJH+)Wyfkf=Zl+PTg1}Th;z~y^DAvA2S zm97?pZ3EE0$2bV?KPDO_Iu_ zOBPdQ7FB?!DhoYd(1sdf!|L%jSoY2lFk6##KX_h>8(?m@-$QKd_)9ai51sBGAi8qr zx~=jTp3DrbX#2|f=UB_TS3CS4Qs`KA=%HTLWz#S^LP@X+zO5Vg!a=zAo>70oq^qXzXRZSml4*~30qNGS!X(+5?bTY&pgx7#|zTp+)qzW zTxE47%jIi9?~!w2M!>J2Y5hY9qh$pwG1J1pGQ}G#0QW7)${3?at~Q;~q~T5t!*Hlu z{^<L-mPG5M@eD&#H)IZv%$At-vJ0oLnCgsOd z?$j>V9^wo>80LZr+dWoN*2fm0JI2~>xg0Kq^wLR)RYKajv)+tJa@HRJclWK`ELwY{ zMx$=su;ku)J>gm`ItcOHa#qIe9Sa|&ylu>`vlZifIwlC|nLOlqHKlo#W-C`yE2XTJ z^2xQ_b{zmzMN=H+%nr;>#4YWcxn_@JsK$7k)+lOZbtFI**^z>Ea@Jw+)mA_xWjv8I z{Z}_H-n$P*{5u>n$%^78DyKPv)mR0@U0i>?$!sy&nt3W-$e0}Mi-%tYoaE7;?(gNX)xO8EPKEwe7npmcEZfL$>b>C%~!u_Y{ zczb6(&v-65&Ccs{Ei`h*TIPo|ixJ4HO{eU|m;eJ{IVvTUN;GUo8&1t$HH3DsK3YjT zIk($K6{q33DyNOkm@sy4$ax(%T@`IhVyAyB$yeam$aj(BePn&E9lt`{xE*kPwW zu}sX6%V7461^TVIMf}FHlKD=inrJGc4~^nToOcIBa;`BIHc)N}(&tsoaBSt#z7RXD zcBcJD@Le5k`!-!{=+^A9Iekt~9-ee!1hOfz^oNGBnCZ?S8Rgj@b8SZ=>|j)XT)5%8bgaPK$>jd=U{>h&*0GHfiX30nu^Q^|dwi z2BNZ4BhJ^@c@9d+E_0mslII;sJk$Yw7o4WuzUQ?~B%>Y@A+K|4>H8+Qjyit9l8ZgjoUd^4cK-l1w&sbsqBf&~;y*`}lhHPx1Q5|Yp8St{$s?fDkCNxB zxN92WIu~LQVsx!*EDU*^L;Ng7uDx|wtfr2p2_lh->u88gyQFiD8xWINa2gbg@#zd(p%kT+%wQ^!t{67mZe7wq)V; zbhow1yW<~&^N zUBr>+m6Wz~p_!x*bUP5Lpu}XNaEhe4@SPg|o@=ScaM4i{ris5uIdxp4n_}j@z62G& zrqs_9xU-S1&|}XR38SHcSm$7TP7Y}b=nIsJqHHU%=Rl2FN3n{W$Rb;Y&nL!$$ zRoO+7#gSzk)k7223$C6IF9xPwU7NPd%9=(^83Ywg zmb-?XnvQs{?6^F66|=UB*61g{3O;|R;qO^@P4wbvi%u_V63ADWN{I zBabZ!*c+~AS=4wsNqzV?J{{9|`q;nvc{kXeF^AGNNos0hjtHA~xz4Z)ivIv;C98_8 zQbfm4PU7h17t~#IKAbD$!}xq*vpgD_sYYubsx>F$Wr^tZjXVz*XIAl0=RMtte&aFa z?z-@h#aQ>hbLr7*e$zpWVq#o+vId7XRygHwHZ~h0C3KX{%yl+CHnQDM9Swa`nC3>> zwgT3;FkIMP-d<}^SU?8gjkFyXqv)>kB}bq5hm9n^{pwH#r|+As-VI6ezz5<1<{9hn{WxR&<_$y)Xk6A;&_8Ys-D@ZDgz;iJccsn!{EFJ zSHkmaX4hnWPvQ5oL5}|b{mJT;l+^VtYpN-upD8Y2aJU6qs)9MF-A^l6V?ENs0cjT6 z-4&W>-$6kPQ&mYjqi(NxxhCs{^smKp;gqzjqLZ2m=bGkX#OAj89d_y2 zyQ`msI7&lVP}nJ|B>=Z83yz;;4VEtyaRe2(7q8M(vM3w_qjt`4^4{ys@hYw<;tV31 zw-{q!!XYLSr(s|(Yi7?WxX^em?xwPehX-u42;zl| zy@uWZ0J$Czr<;p-^iEjlp<{%Ox73N73;5_f%E}OoZd6S2Iq-KJHR#KR;i7`7s*YK! z9NWz4oJn(!UoDo;8sQ8vp|e8xsbgrdYqf8k?z;PomKqPLurXRHY(fJ~RSRZ~+qCSt z^T{c{GcJSh`yOqMVSGJDMB!fQc?8|hp=(_4h`C&)9|l2G=gWe|YM9Gr+&#Wv{tMP= zI75{466N0*ydO{ zheKtQ(<8B$;x$nd6M!L?<_4GW(RyApgi&HGX`QZXnhl)8WARwhG7KjVERwD!(FWyk zstqj-=dPa27@VOv+%b8CToaZziLntHWxgTG1Tze>GlE>OT(eqnz+SQn}?}T(5Zxk5C z9UdszB4ubM3V>a!@_<_7<6~>CYCIlC0(({vH8#~{!-z!rFI$GoD=oBjA&25xR$K9U z2z&InB+=Ln>ob$r>Vfwxl#=4ecx3saj6Q|&kjR)xBv^G@3{wonX>i$b2{8FvLe1rK zhg&Q*afF#%C@|JW>sY>LYCmLtYg36=R^m_3UsWW)8;I{_H_4+#ba6?PJgFwA$F0O5 zs(^@~&RRcM=UJ`y^H#Wdw1U1m`nr~ObneX1MGbaT~nkX!z<@o~w%S%8_PC1u*Fxd5^`{T2O;^Ty&V%b!CrJ zHY@S`QSQq6+UZE;5X<)f7M`kl+4P^*B7kZO<<|c5WwMf?(YS*Xj-;XT4n=p zwAxdQi9WRCbMM?>VEE zrFr!}A;egnn*`Mlzczru@zHN^ZW@@(DzQp~B!k&tc{V<4vkgJev^&C_G2P3Fj# z*>cXAzIPT<1@yncBVcQCwAcY35#m73=fO(6hWi)@xme9nzsM69W+e`}>Q3@@1f0C$sp>y^c; zWW+0-Q6<0~*xP*?-a&7%Jj~%)Wo55DURPV}w%`x{02}+)EWEC(Gs~5?>B00}2AVp3 zJYv0hU=ykY7EPA9wsc;NnK0s3yVfb7U>~fU18?rP`^NtOdiMYv1@0_8>%;vQ#RvOg zO`eg}4t4DN=^3@|eZa3|ZY54}HsRsf>I7y-0B@860J-XJwR78M_Lh`cn$cnIQZJVG z7UZZ0Z^c)8U%WKxwXEA95?yXXZ4`~o?ch*pbk~v4c&GsEp&Mg!aphzrX3&duQjj?= zJ;&&1DWt>k8VToY@RJeAc1Z8Den;KVuQkCZnrd5ALinEDvkk{3-ugqXps&LvrGm0J zs_7;L(aPI9dmCTQ`Yu(}RdGTb_?+`?ax|O!mhKd`*{L+#nW4uYB{m^TQBNzQkX&YI zvHo{mZw&EdRe5Q#7d9H50CnuyKO(u>>L}`n&reXvMvZxi!rvvLewSm#oDH?nX5yvX zrA|n4r^@?|PbGJ}N&huUNEr!Qg8Oj4* z1;dvmS5GB8u4IEzu~y@sv8|I0aQhK}<4!O2db@`=OD>)#GD!0^z_hL^wvDwc%sY~| z*>G8$If}~^j-;x-W{?Q$;um{EuifOxc@D49_OBNTI-o70k>sh3&3F!JxH_ta<#rci z$?|{~xY0lsy_G<26b((3r$8G6uQdai>Z&0?vD)f67DIsKRAs&PDxqLC3K}o50HP+y z0^5Z-Z`D-Y6b#y_Au5E%id#n|79f=AD3EXW}_6u#e>S9|@+V zl3#<5!NI1dsH&-u2pOm@*jrLoy0WfX$GV~@V~R2^8bQqA)Z1=f1$z|2F$pPZBd3=n z4LQJYCq7eqTKw#^km3~&bWO`oNaDcf_RqVG#rv%W{{R)`)N)EIY3>t(leTTRQxb~5 z4|~XouVk)aXgZ4>E*3sH6Q_n|hFasI)Ox*jBrKAQ=4kIo_A@AXxz@*BthbnbSLq5D zG2k{p&>UKNt=K0XS*beoJeL`Tn0_@EVj9wH@&}&wTe(0Fa2pb^c+QNBUTGtlueO1@ zU7#$QH;HH=mziK5@u%Ru4@sY$$K3M&01)EcflYccuq>b_JF0*;UGv2dFKsy>%mvhr zh~|vQ5l))iC>nU`tFYu$4=bT0UvxJLT6Y~(q9CVSqpFJ#HdO)43!oZnq7sNBrN)Rh zuvJ?8)jM-QO_99svYiKtA|l26y%1Zi)Pc=O9e(5@$QtvysPAn(!2r`u6GC-TK(O;t zEo~H88gxErfl1d@OF%BrT~%v~T&Ro?;ciP3%ze?4R4EDui!)luvh}}26jD-PGS<{Q zwmDy!fbs*H@~U?BlSa!Enbxpg?JYF%;B-`Yd||QnLos%Ntpjg8SD*NYKFvDE{{UD1 z4^{B4m&DXdFa1CHF}Rb6aJniPq^qihu9oeMh1M=4Y!@SpV-I&W^N`?lx6NnI1q`&(RnZ19;n}2XTVQT?^H>r##1a6$ zx-VJL8ggfm_@e&+PQN7xszvC}22zToKt+^^(iW>9NK8Bhja$gVz0E)5hw82htXTK;>ew@tO)uLMF#s6jL)xhk$M3 zJ}2U@RMh&pH*s+`7U$-?kJ1+z;*?xcX)u``b~&vPwSmS*I1cFt&dR)ad|FSjvgNkf z+cSuGLxv}A6-@Zyn7b>Q))GsJ(=)B&v_6ormciM`>Wc>p7^63FD~rZp#b1iYiSapX zQr)>CiJ%_st^WX(y5ZXTD%?=^)G(PWJ2LZ_lX0fM6|(TA`0Q5}*Cn6Q__>NI3_6NR zN{WXy?vdTsxLZq}Lq(5+;n?>O*0zrm#buJ2^5rno$(v4P#>=YW+-jQ&r7~Hsox;$^ z)cyfm^c#fDJ!M8aId^8jV{b=2+n;dz(MCAnrqd^v%^f<$|^%WJGE?#H@Nrey>gR>FlttYvJ)Y1H@g1) zEVgWpIH7Dzj50QhHLch!oOvE7)$#W$n^_&#Cy`*a6%-M^KF!W+zOO>8(>P(2Q_EFx zA+c-8(SrQEO7xsZ0K=+l#ap{raQ$Jk-}2CW){b}0Q8AjTX(}Z@UPoMyE{f>llV-fKs-qhds*Y<)$om0(Uhiq% zO2`{%GkQAA@9WD)mnW;6P=mtX?IsM zRceA=kynWQS(Aowbxt2o*fFfAu@)Vny}Dk@vBN9k$8fnDJvfby1QzGHzdlQWeO(X- zEG$2=7BrP{Tj-%{4^S+#jjjw_k?42^9S#*Uq7#`6#_hXpvf9@lWxV%ZMHO{qa<*9N zrem6Wq&(^5vd0tS4eq-Tdx-l@2k=*ErmE?Nwr0(K$3$u$*^1m#2_dK?J1T^t(c@_I3b!1Woh!)a0 zwndW4Y?f0*Sr$toB?|#jJc1~k^UGyg*JIK;Ds1Ch0&V0LGJ8{Hm}9wNAxtwSjlr#(zUN9(dGJSEv@(VMfxvHpV*(luE z8I+oWba3cC1$qV>h*Q^@{ax9c42C@8XA!-=D^D-X&W@ktMp)fesZ(*)QjLNTDYB1p zfJso7R_Y~e5I$!I7O|zq!sf$uAoEX2yh%$nGw|kN^&h0E>HukTEtA9%dxAMF1uU+b zow7ZKH#ln2HY-y-zF0Jd7sa1-*`x zO(|QGIruReye}P^N=XYv+Dk9paPbS!xPOQ#FK6rxQA8OfOi;?n z8|?!dhHr}2MLCK_%M^w=8gADEVhWi-NWwFgHhVsVY_vG$5L`_3?HybK&|q9`EFeRQ z#OWEJ6EJJ<3$>!HrLKpzq@9yT_L^?B>A{;Dp^+Rb+FDCoELOfqXQGwWG(`1uf0FI- ztRPK!ps;Fl4SF?KZL8crQVs)~t(c`<^GOba#gG;#?c6DL|&nqk+R_vMDcfq-G@T4JR*#>mwSW#OYZDY>qOrH;BYK zlagO(j50dfk5-&Hwsh1rQB>h^&k&4<#0{8k z0k)xX{8311U@ej`SV_3DmPv@=^+D`m^<3Fn(mSAE!)3RvF;?N-wqYA`l670S?k1e5 z@?0YIxWHIv~tAyJV;O4Hdcvl=Qqz)zK{UpZ9&v8P10v+#PPoo;rTLu zVvhwNB9OZWmKHWpszoGOLXonYC6HMbQDs*o0Rc(?s2 zQlu=1Dz=HqLIfdjLES==x-3adq^mUp=pW=h^?37Esz0kg-S?~{{H*HqZ|Cs;091c- zCk`L(O!wd7Rp2f*0QoCea6Y9UO@8vS4Xj7ttcS{tKCk}(FwgyR{{Xp_(Lm~onBi#E z?+v$ISG>^F(cu_9EgYsc$QlD9noH*WkDmP|){K9TYS_?yTA9W$NZjAO z^U-(MRZ}D3tUnFxL_L&kChW>h#rIr26&@pBi{eae8|99gd8ep*nQJr>;tA`f%fH8Q z+$#`*149!U+>B&ki)n2vxfzr2;{M(t_vn7l7&wchA!Z=Mw8*xndrZXezD5zWmnsgFBaKJeM%z1TNY)^`KZW*MjjjksiJ#w&EB~Hfw0?kFiIG%JTmtuDN`=-yQIe^ zW*LRXT*^{Ru4RK7ZD8LUYPq^h8nz0EUYF3-LHI^>7D|{EEa8?C19ttAF0~;%x zURu+0uT#}q;*n293!3_qOxXrT%64fW?s|FkR4miowIbOlrEKEhq{cYM7xi|qQ_w)* z9^>rCeFylDD=%N+9vh(H%sa594l+q&ERPzvjfa5nTt^DxoHN1{H8NN6H649bL2Hau z&l3ALu(NNjyw%)u(%um4EXzo~5p*&l8*8*pu^LG-A9*#Q3zYeM6fYU7%-eW`X_|i!OqLkNB#W35O4d z^js~8xkQ4Tx#rx>-D~@mamNTobRU=(#{1G z&w~u5ti*#f60xE<-Q?$LehbYp+;1MoSlF?AUV55lxDfzjSs6YdpkLm#bx_qj2Gh+P zEw=eC?{_6L$q8_TamjMeNSD&ZL*1tjx8GT)^RpKl=>v#yek_VAV+<6Ojdo|oB`z;K zu52`1?098k0lp_I&GgJaC7VkO@UXIZyHXDJ+w)PrIM(P_`!$y$M)zdJaR%@6) zr$^dv66|s*(zpyS0g~HqqM=V8MLPg8%|!s|B|y1WYv`n;Y0f)pZ?;9te8=Lf!wo(2GA0iY0=h}b zTwnWHY$oT}wDz)T-qyHXn@brad1?jKw!O@MWixE)7N`OZoTD2sTuKp@Itctg@G5Cc+C%!%l8cAOJ=5aSvBAPL_ z#kJWv-4RIu>g_bTX{g;SqRSLXa++F*dJ}b=Yp^p|;;`^UO z=-D%Bbm>ktUcToqhtO7H5@n;Obe1~5W{)zud^3aC&?LlW?OnfT8MAz^zudZdXkmge z98tBAjer&bQ;Eu8pq_T_#u5#$uw2)Xz7gMsmN8cOFra-rQ!+b+}|m< z)DW?%=_%@IolP`Md_-l+M#ICRt;R3V%VgJPY`@$5A(T#`AtB7*-LK@QY*0~~ z=FLq@rN(%gu3=V z=-j({xEU)5Hq5jYFgh2Tiz}lmHK&OtQ$vnpbREh2D)@%P_g+6WRws_()zIgWlG9W* zy0S*w=d!cQUTTuYkXk@D~P<@Zmm_*iP?LWIBM68!n-96Gl{$` z2G%9L)ACj%qN!m20ClT)BkIZCZ|0>cDR|$hpM>KQ(mk}b?XV`ylx%+`(=tXpUN;91 z1;9G0p@Xo*X@*j4UJrF`cw({5sxZShX$Wu)JBuI5cC;GVH{s8d$@Pwp2*u{b$GSSj z1bEp^j%)Qnsj($?Q#^>&oot|KzKU&PY!gc<7ec@bl9_e7TTRet+w7nKd7-_oESB6A zKUZV~SlE>Trq@+BP=Ht-YDg(P6o&6~zPCDr0G^0RzVv@gDmbc@qyp9w^L|zf)NxE) z)8hh#$1FlCxyS8(0?UK+OAvlNEQGWcLP)vs0d-te{{ZtI6FmkP=S5YWt!#tj;N z`x` zR4uL2+U>HI>2)YsO|Ey-bRZsj-A=wpLH8&GH$X=;v9{yIPg^MjfK!49w?0KR+jMBq z>t#^CH6Vr!E~fV-NN$>2MHW(wM#pfL*6MAy-lPpQ_}K#@z^Efrbx{`Bs3PhDWfrkL z5uVsSDnPh8d(or4YySW@P+JG)Mngu00PAI1jJH{uruTrTU0uX<(dEq6oX!Vr7q4+1 zJ3&W>)#rF|hMmrMVZK3Q`7UqK#|}>h0WDsB#-^>E#{sKb$c~D?NEkd=f1}Jvuts}# zQ;=RYbF?=n-F4x5)}d$AQhY8Cru;jk{Wg&~cb7lZ@HPJZuglG1AA$XzFfKNqQaZRTcR(0|yv&6=P$NxILhY-%BlNe`yqMBG+o^v6&zG zHPXf!8f-N?bzJRDvov&Q3()i?X zvwV@4FuPvk0XM%we&wCVIBXc@ei??s37lQ>xu@8TWpPb)77K%Rb#8{1jgg9YyGMW> zdjd~|m(22I-wmtPzufyaICybigUcJ~7a6a@YF=aPevq(KHXSWubUOkT%h8Sj8z|)C z9A?j+a9;tG-?L}iJ}2(;SQzFnfYi}Xf?+^b$t-3lV5E$?#@Y}-wTAnx)9~IYn}jK_ z+QviM$o4U@Mr<0ve`?xkV7BE^kC%d^+@B_wiD~OG+)_+Vo;kfx+BlqAPHSm!Hy0|_ z8BJM&I$FxQ7d`B6(CeTlnJd)r{4O|XVTxkV=0+MsdH`+7a-35X6U+KF__P>vi?bKb z@Wv6ZGi63B(v-H>1(H!n)o`Z@Vmwz~F)Ut3!A$pe4qo%xIW%%;>b;K+p`^la=;-NK zBBzD6Xdij%R}F^orwH)A5le?R82u+C0JYAgVVl|{lX0cB>a@IV=~0z*q7ELRt9-iV zmUcEa+rSb@K4DRrM+PHexi+mnL?LSOQJ1QnF{b^Wp^$M7q22C2o<>}u+C3US>Y6wUyQK#`6Af`7l{=t7kNOLtwA&m<94c2um4NCL`H zNE#q0RxuiW-kHs{>=sRx63EEdT=!T75>}|n5^<7ixz1v3ZXtsRpQUadEo1fL>OKK- zro(e()ztQwl|}Hl3!cMn+V*35->;I`VB9Z7Noi^r+KPg2ayzZ^3(0Du3^^K$w0$$D zyxOcWmPpe%Tq^{`aRMD2J)9^0B$^L!=DM6WhA`S7XRSW6=8Kaijc>Vh3~hzE4VIsb zCNW`sm?U2%N9O5nUvXMTM9qsDb-%OCV&Yh3CL`JU z)Oou%2Q-cRyp}r?8)S|1c>4itl-cHRhIZeyEh8bmfx~g;wz#e`DR7gC(n0I+ux5W^ z@qE0<>u!sR!?2oaS{72dteK2)EY925T#z;MSKUPrjpCiprE`H9p>|#Rjf#ztA#bC6 z?k}OA3YM~suI=MzY3lQi&F*hIUwtpN);Z%E8R%b;m6X!DB4c~$-1dS-hV29pv^2O> zM-GmTxH6|8AUVzD%gaTZOHCC#LMU2V#)~vxWeXfhikyu%4Z$r#ja@_Ilr`=w%>iTM zaXNr{YPZ3>kX$Laxz}ZFnZgPxiX@4S79ncuu(%{?v~BoZZN{ffRRjy}rY(s{9gxLHRJ|&6awNeRTcVt|9&5&gvsJA5!iZ`~;V;np}$7-_+ZBc2Zu5H@p zxOD|%&rbHq+tRxvqi}Y2n!4;hn_P@B9;`W4iD0jW=ANOlkFzM(;ucYEF40`^sizq( z4ekkzHgYMdhh;NGwL95v!310oM^L=~0M^+h;;x9(NYQZebiaXJFALSlH9J`MX9N>} zBW2&v>mE-eyPhko^qAoOE-v22?GZ@bbk8_JM)XxUXsG}xAu>tBp?r)i?_@HK3o0=|(-;x}Z$LOJ~UxZ5J*C zfEK6GW8}sp$A%Y?vv1?By%&Y*v)!wb zXVbbCJ(?JO&BJ>N#ypxb>yQpxi)>2RUCLRc#&Gx{W2A!Z?LMvaSrm@#X=9LVTW@;ORvb!}M!{719^x-& zJ2lqV0)A>2w~%&VI$d@8ZcVvT_c*<84~wLi+mkBDr5B_}fua!+K>-mE1VOr~NGU}r zWE4UvvLK=Yl_=fTKn>Mu6sRJ=OK5}5N|Fj}oRrxP$^tF8YE`PA>hJe`>hiNy{a#OZ z-m8~pb$T=Z0OTk$4FT%0u-p2RJ^uiCTaFu`lN83OXrpd! z(m{Kj19vMWB@BC?u}4$J@^viGk9RqL+|Om;3MXOQBS^r|W_vqV4;O9nvfha^eGB!t z?+dJInPaA;`W&us0jwV-gHemaLq;dAo+y9B>kE^h)qLMkpT*57zgB%aO@qP19Ba`c z&M6dFb{{;{v~W%u3#4aJ%$}$3USq^k(^rWf9W->aW)5j!0lHt{yZl^MVl?H{_3weh z>Hspk+_)@irmmfmi5l4@U?%smHok>1E@>M#Nwb>ar`A5F6Q!P^^Ru(e$F}5rehS-z znM(+80pJ_iSAgPi*GXM3W+9lyZpNEh^X6;Hx=L{6r{ zDJ98WR0V^8wqOs)4t`f&r(Gb!u$IRY9PY`Dji3$1t;@-CyfIM>_;mGcFYP3nOwDlB zwsEi{mXH=@lREvUajtd94zVCuYp&k~=6pxQ*ryWZZD0GP z2)0^C&W`bU`rcc8=_J=OWsz6HJ1!>lkxvYdrs4QmT_DlbGF(94@Y`4Wh#o7?F^TK( zs<%{Q6_ZuFLL+g@6K&ChPsLK!v}wq6QosfLda53J`FJgkFMdiQf;KZGY-?IJ09XZ6 z2Q5A7v$4~eQDJ>`R5>@?wQy5w0^R&noi;Y|QV1JqWH+_c5{0{?UAIy7PRV{ig*u(N zpd#8RHn)nZz=31S;DYVGqhtjp&D}_~wchGQwYI7@2nc&~G_;Gf^;$eeiPU$RFgphu zxuAO{b+IV>(DjOJ)Q zYnYlhMJwZYvzm2XeSp&1a?xryikM|>Lv;GC{1*O?D~s6uPIpk!Z^ysY8bk<-ta;Fi zKu~}S>WB~>RDgjmq9|w)Z4~m=6mmjMjt`Ai;cof|=ZKwRey#osv%+|%4XSHdJN;Hu zxPP*J{{WqrojuukTos)b6N$>uW5ep4*9(FoBrS|OoS68JDACpEH2K!)@csK9rxcOA z2Qlq<>J8PxHPdgoaJ)amn8=s3bk3n?*6$qTc@M>R5VI^zVR3K(499cgy7)57BDqG7 zDXi0D!77CJ6&qambWnYf(HblixPT4xSEET5YNw8#6C=%l`K>f&zZ-CLPBgTa(f02@ z{3EA|xf4z=iO9(sO)LZljf36EzFf-aV_;y)0B9D_Y`8r`sI=ZZf86&y2cX5lXU?zL z7`SF1O+g1|1Z`=(+;?-2QdVf%*8x7Mu{TEZHe43lJ)~lysRMFstYTygE~K~vXq}-K z8!4%(j-D*?TIARPsd4BBHD?)lI6YH7i1ri9Q-FaQ!7UHX946O9E`T6a6BK%IsC%L=OvhN^DT zS!OmC$|ND9+!kopstc3TRX0pDn&j2L0>e&%ow>Q5Wnfm|lEl(!XQ^X(HM2Rtis<=( zcJStfqppEvx{BT?v~j1`qPT7$RKhtI2LbT~Q2B8e0h+2gK-0e+jl9C@s_0>;X}fjm zwDmY_v9;NCXjVo^l*%2;0WkeEOf4>aeWM?oZk6ByGim!)s~x7K_q9bvp3=vL{dih^D*JT^ivr) zyG9a(GA9`;Mr|fNELmBILK$lg)-iV9spz*f^F=&DNMvi;b}cKKuy8jTD=cL6vYDtQ zF*y57-LCg8rk|-wJY?kaTJMJO%{giKe%^;+@ZCxG-s??;<8e&!1z7cY`X6NZ6}AL! z({bRtII}|{xVt=tqf3`hEx991s@k8DTx^3-0p_5A%SBI2j_1)_L{-*RI9aSRZbb-#W zyGgz6xbj{jtINdHN=ws&>754?#iD|Ky#D~HwZg@F04{{V<*uXYpL(o}k@z`ct>aUT9_N5gb5vkj70mp-Ct zT{GVEdy;x=J;8HfQC?%QR&lPT&5Y3gm&2rvntaTNIsMTl;`Zvc9A^~txLK@+C=puu zTc~cs+!srYz9=xsrjf04VjZV=TwHDQvgPrfEx{W^VW|?zWRJfNU2I0i`g7{GvB}G^ zRFxy1r^9P1_D~Y>c zkU0^_VR0oBBWuKwhHJ{-AH8itP7I}`B}N=>4h76Rpw-389)-v0V|JuI1CH<3EOLY5Dm!CCZ}Z}+QA4XL3IaVwyD1)7RpeBNxqgM%9DPmm*k+7Q?{tx2-Nr~ zJ6qnNy+GMJqd0uX%R7LwaH>~U;&jxE)zZk;4|!PYvh+)bddCntzCb$~M&`fwj)U=4 z>T@hOrIGq0Ef$^XH4wzTS?iHA)u4t58ZtBn`2ZAEM-^-jj%Eil#AtfmV%OC@j$}{< zxz0B?Yy@lrb(M(L z&|#F1uf!@MriH!JBh9_Tuae{V!;Hrc%TG%b9x#r>a(95$&nP>q;-5l=^DDLJU9hAX`(j*s-d@#__do4H($wc z(^LA@L8`BkTFQcMWS!;b-F*kSUbU4=UFLt~;JP@H<&*|A3jt*ySyYOvY_ox2h>8GE zr4SH^hyo4K5Ekkoj(E&+usNry(N6>EChTN(W}RbyUk^3Vt2K1&sf5P=05Exj)nAJ) z&L3c#i?nFqWRujko)(8l=9deb3l9~UE*ms487eC1VgO#oZT?FFSOIa0W&-A$8;kqZ zEP@tlBVavjwxt<2<#qjysJTm%0~DrhTrQd+ce3CS^@7kY$N;&lW}mREBnvhD;JTVD z*W_m(sp)DyBL3zQA})!;3REJJ0wO3RA|j9x5kNP%9~0J40Tn|{Ogyf8&GIX-!tvZP zzRilEtdss+o!5UKa`Px#B(n&kjn8@ZLq+bhnS$caaA?D7z44GfC2e5T<%bKDb9J3N zO_!N@U%Bd63T(Na8NjhRM>a~j*GCxFuw%*B$CBy;Y~2@M4COf6RC!%a7-F8-PjMDY zm0LxI>cw2`f(O0C3k7Y_L{pQbV`4arR8eMjuDydsPyLH@@J9qqjwUsX zXs~NVfLDMj6+>mnJwo6uPZGrx(Nae{SSXU%hK2!Ko#XzH>D0Cgi?CN5f^X3ZN_yhLi4U zrND6aTt^Nw=k zcnM!K1PR(gTOM_NwYFK`jjl^}0 z*}saaEJBse$=ZfH?7U?^HI(6QN{7W9jmso$a6LuVMSY6F4i~sh789_@+H+G&Bo64; zXnn~a=@@~|*s4eOd#?HDfXSK|=4MG)*SDbx-6*S|c4{esZ~VCh#kyT1s$sus*TP2m z#lC9zAd9qu7I2)P?kuY=40&U=YSFTy#~_f1>ey+d{`azcirX-P1A(~e7b_zhBMV;8 z;CT?DmU_%R_oZ=`FZoY)-bHn^{Z01Bd3|@oai=Xi{>NN)QDN0!VYsa=Xv)|2a*t{^ z=t9oA>%$~wt}OC-aOA@$42qc8sk(x0p=MxLan&w5su4+z72GLQ1v!vVanU}lkl7ds zZ~$KAK?zyud>sQB!4DM@h?z5s!>?-qe}d^SHbGGU?45Yn1&3Se3ga<$bh5>V9a&+Z~@NDJpX0adFB+eAk~;R9A}MRdoTLM>o3YADNmP5po9K1=;b@#0)Kp8p9nt zpt4As8*_gh_Epi*Q`1n>#~W?g#u#qmPJ^jbL8Pslm1h;hw6Xr2tctdg%*3O#v6s6r z$aDp^(?YPg*_G6_bnK>)u^OEk`v5ZzN5rnfh$|q&<))~TFkJU`O(DJO9l$>Y$MI(q zaQ$r~sGiyCtl;40H!fEWV3oB8xS~ppb}fZX9vMSZQ476iR?H2LBd9(rPe&<&vS_4k zR@&`83%9~%rLVwaj*PlS7G<;FnZWcnT+TC0$m%ltFR{zv;I{B&aGGYmY%3%jU#J=c zR8qgRr)!)DIY1!w8>+(g80EeyUgyknV|cPk57C4~St6i_h=C(@C)p|n>P@V5L_q^| zJD}YT=z<{;NJ2`RvT{&0)l{-DA-k%%DtW0w0t7@Lb3%#~5>v@qs{XAfyYE*{y4_l; z{;emw?^sW>I-M8!{6Ezn-52oh>Hzyd1iw-H{_?xuMO743wUzVE=eA)^L`9KIT-R>JFNox1<&faBacNS-*rbzPlj1K_C}S|ivTeA%c?G+h@^!#j2TPk5@~cJ&7Eb z6)jA4kD3b1gE4n_9oJcoOGynCOeRqq%tQd!S;X6YJlBh3^?|sv7-}41Z*|!XvOB0F zpNihW1(%M-wBFuLgDII!SnD$@#%#r>LPngF)i^$4M}lFIx;keEOzHDo{iD9M)h{=Z z+g*D8m4{+yiTImP4Etiu9jDG%^-fSGz_KB4^%y;JN)%KZB&nFR|6=ntvZ#jy1*K z`W>Dt4Am73iIpwvi*7?(sMOx);isDCu`G87p~D}DOH&jy{a);)z;qn+0@mL}x8nF) zQ^MGtJ6jv2l031nyteP;4UNt1w>`P90^<5f-HKAdSy1U^jxi+h+Rca`Vmop+)Qf4| z>bw>j@cDcr>XJ_QD8?}=o*=}{eM6igVLq!1zu~m~Vm{GUo6Pd(Weo=A)&vDTPmjH6 zMlL4@Z%#u+-rn<1h+1|K=G=2#BWyv}QnVG3m}}&W0g>JId-wVM z>u*mhP9>P7wqKIny4w9hvsnn9nem^j-TYQfFs6}?boIiVhg&aV=ab{2v`afnLm`!x zzH=F7zC^8v%B4&8W$sau+Wk&Af(@Oa=7D5lOziO)*|&QC03Cl7j=c^!Zi;7)%?+6) zA7Ftl2)b!|U1V24Dde1#AVXCOuX2Eh1ssyfd=!#8uDgJ7uKxh&x!wqO>PbBQ%H%xx ztc)B&%vzpFUg+8$JI&k`o*a_LG|@(<1T*23CVKG#`XCnAg-CI8LCt&f>X#hIy7X3j z{ic~V(!d>hEG%YmOF<;J2PnS3a?3gk8`)}jlo_ewrp!lcBU^tr4gPAZ(%Fr_v9+Sb z;^%}t*`34GzN?1B!rRFI0Hk@hGpgAFZO|WjrXgnK7SLH&rkbCM@h(=|XV|etLMkiJ zj(1p<)r_WVSkPsa=F!GCar^-4n1yFymMB_esDJ9%KJ(Bh!|8h>>F1NSsdyQrw!@(4 z6ea3QlYAnYIzrixFUvkK``Kvf+z8?jSotu8(ulKHX z3m(PM>{2)KSQS)~MJwwl+}_pStc?3F)BRp6KX)Be_1P|jm6+5OaaF_GFt|OWwd`=S zntBkgjY`49D5Nra)f2=uKz_`Fqlep${r@W8m$RERjDapk=e{)ujc0Hej#Mb1LGt) zx+`PFWLI4BV~FY_2PEO`aaLm!+)nB%pl@5X@w1-B+=FnA`vda^=vs+W7$Ek+giqX+fS5sEP zC8m@-9$d$mSuQzA)GkIUNFsJe#U2J_-SDGi5&G5YU zKMH((&Z_3e&wi*4_bZ!aZX(ZSusHt!ejtA9D%px+EpabxEUoAo=AVwMVm(g_?`Dkt z9M(s*KkjroY2c#T9qhERJs`TXA;~0=-TxaO~1}rx{e09+iXA zI!p!_E*jF!Y<9W)mqXjrz0~Ze%Gc#CYfY`)BHQ_btkF}LsUeBGWov!{%FaDi4J(~9 z`!?knb2~r+`Sy3>O`loQ$8I#f$c$E|Im_UDjya9Hy4WplBH820$VNtuG}Fmq(P9*p zwFR)q9@kulwCSfWlG(`9VoTeU0pf0|lsyrA9@lKsGI`70Pbo4oL6yvKF1Xoq7{3Ke zRM%B9p^cf>CO0(Lo|nD;OQyoBJ9_%g(T)ww85~alJ533+*LQ6vr2>0(Z*6x>@uW!FgZgpCc96dG@29Z*o}IeDlTvXRq82KE~u zCr~}ENO$B^0H0dgT>(%d!^uG;>;|cAP-uw~8@8&ZhV#)<+mKa9P&ZPHStEPuY%G9j zbQiX#L>i$T$+B5FZ*@GZh9x#jUu8D4wK^%&WHLpg(?Wcdw^t5INYhJvQJ?}1)EUFN zGVZ-6fvRa?;Nc7`mDN(z681HOmvr|pHjR#Rn#KZL<6-8#D*-X^?jH-E4APf-ZDVe3 zc?HDyha_XB*!#A64}~zwdbg1-68+4%F^Z}xr~1p|i#ZLApgKp$f4gnZD*#rng*{rQ z7sM-H+KR?FwZ>)^xHO#wjjgilqKrz`O-#o?+g#sQ8~w`&VUT+JtIgXfZJYr1z}n~H zyk0j)(WK3OHB~J=4DM@#h;D|~3ysAa4kLxV<*gF4y_BD5a~}oJ@vQWpqeEk;vzaB{ z(Cq-V$UK*l3WHOKPYbJF$H;9QjU~4l_ekmBxAgeDPqD3%TM@dTjgYayjV)tcpyaJM z+>)}$ETk9Q1%|zsO~kR|K7a8hcRcZr*dik6o^T=}ghC6_y$jJ6!(UwOE?X0R^Y||{ z1ETiNM|3Wt;Rd}6ymE*oB!|+@w;wfX6t>6lH8u6I8?QzI0m!#Th>S(av(XC_ZBb=Pq zCnHV9Y`br6@!OW=c!fk!NsZOjHlWn8uQA6dy`67q!@!%{!_9c;w4u5BA4YL)(Nm1| z6>?Wr%4e&aStLIoIsmIgT2q^wwrs{KDuN;^%z`SFC;}oN2#A0pA^?bp0$C9Os>Wc- z=G2Z|*ZFck&sBhST@2B-Se+Y%!-b0H26)=`yj}5<2p$W21h+=Li?GU_6$P&12y@YP zmbr}I+;>}Slwt(3!>Akrt@Z_o5^!pQ;M=TtD z&P@<(mjiX^7blNuodBnjTqVI86_ErYA^?bp5JW`)2Nn?E;?fPl9E$XQ55>kQL6$;2 zVjUl@{*Ps8D7a8!<1jT?*g`Txg2sT^)x!3o*A^#Z@T3kh!p)&sksG7 zJ<_{}iAaIE({TZG?uv!C`ge%Q9ERm?1=g=GZN$*GTSFV)w><#+)~2?89tkt6(Qx?M z$VK~`nt0nBZDR$R&;T9*Tt=z$UOf8BL@XMLx5+W2qao6tZRB@j9zH$_n!2f{mGpFH zyx-Qz%0CYi_bjR!XsKcB;vQt~Tg8<1PTESFxBNCX`B`TKSDIT=N1&)X6)FzOv}_{N znjF&70S8T1z08vg1?&!zlj|^QWAPpfWTe{4Ok}L085t~XdmJ3s3xXA3YPB;#QHMR% z6bv##P35P*&7M9S)_o0JRdDvOyg9eA9NKyj$f+@mpJrs8l@>h|hj}UFR3gHWx~)|!+&7j9!Ohi@EHdwx_&HBCs zDoa{Li$PYOPXobgpp1jRa4Ya?CxzTurLE9n)x&N@{ryg+DPxu<$s5|{xM)FD-Ewe1 z$OWJ;h;(DiN64$JlBu4>WkBlxeEE4+~Q}}mV9?3uMZ&7L)jsb4gigx(1!QY5inT_G* z+2oQh{-kbb`0TEZuME3L(#g{Gc>Zi`*sPo`Gc9~kfDPOpo=vSr1FVw;^Ua0gqp^>#T^+Bz1iR83(JAP|s+KO>eQ2fp9 zV>w0brNz(Srk*~|KtR!g`mG)}iPF$W{@wA#n^zYQE_}JK0VTbkRf42msC-p*4Q_Wh z#!Ibk={;7qz4bk_z$L8Zs=I^KMN;PwTr%mQ_J>t-5RvrM(#-H>Ed{}mi=T3?P;JsJ zgtm7y)dGA%h4ha(h}Dj8_IVwAuDL94fvO>Eq@<{hetBFn5I!dBx4@_Eu+|5(Ni%_Q z7ux!OPhEn*rN(`iFosU? zZ#@CI(5#$S2!0(XnuxlhhD~lw%xA~JdTlI}($hH8x;L?>X7W3(D~?|`tDjLOEYHhO z(aon;n{w1yY+{?2b6#;#>~oZ|7F4=2MoD|kC+%|!G%OkxJKW3RXa^yC)=W%0d{B z-PK%?IUxih4vKjoDdeG4H$%-wV2f(qSM_K6zV&rls{XA10C(Q7pJsJ>H}m*^sz16m z{1-rREJB8e3yEK6cnh1adzJ`jC|eXUF`xj}v<-*;7nJ%Br4wS_u;$!D6Rdg?@BFV^ znar5yb?wUQ$o2frStEMw$$Pg4;r{@lcxsxGz)D-1Ub&8>eZhG@qxx1>aa|J}(B`$-%TGH3 ze+BLA1(5&_XI{jwBk?|^r5r2QliYkGq+WeP{2Y%NVYJk5n~E!^GQ)?!W{Q==x+Q2f zaW}C&1-C20A(En@(pA;T+SOD%%`?8!oNw~Im$3SFtn4^aDgf-#*VQsD_Fy^P{)>Cp zk+RurPOHmGPi1?a-YVoaCf^XNz3y%ek2OfOf_+=VTYY!`_DW7Yd=PZKd}_3U<1S zDfUf>OWbq(kPv;9Hq_Yb$t+1B2sbzB)kr{Vp-Y=u!s($GO+YC?UfK=TvmcChQPebR z8?1bepM93kYuK!8LN3;dXxcYnx1S|uDQ%i$KE{w+eyTv;$3;Xg&l6pJ!m9SaMZfBA z#oSXl?jUAb{KM-sEo*_>PZhc1R*@tpz=fqJzB*ZU^s@dEJg&YqsFBp*m~>E6wpkb* zGsVdx+3*V{u7Z+qM3FM*>j7f2qp@h()>{la1;nu`dFP^~e9^+&ypBt0?TWT}7n3eb zt;X-{dEIR}rK)@mH_CK9MRMT0&fQXdi6={5>sN_4w8f~H53?wB zyn~9_jffu=tfVfe;upH$G6r0q6QKKwuU|cwBwx^RJet^7rzZFd>uYkl!NjZmUG0Vz z394lFBLn7o4;5~D=_+M)HX0iv+HEA~R!8}t1$z&mikmaDI$58rlD}6w_;@cRRowcE zZd^oR^dg+TXUw~qme=x7Ss2oy-9&;IB%R*OY%V198?P>W?y40t z$!yX{=N(sf#&t#v7DfYSOyL`BY<0c=m5H}t-Q>R}$DH~ku zjv5dRkdniojzHk%2YIXtoGv$9vh8;uwv8Z-&>ptes8XiUi-LX5W@;H>2KPQI8N(?d z!F9$kTd4OeY3QSnoduPVpSerL>~noap+@=*md2+IdqHzKZDoS!WMLuA*;uHl#iE4- ze2^gL(F{P==R~mU?m^&&=s_H;nx?94;D{F89BwBw8b^poqU?w;Ni0MgjFLIJ`--n& zvRz7T7(8*8baYr}9PwQdX&9qw8qr|Nh(pJ`=ugF9@dpy)INf_E#Gf3nwCM~)#?kS* z)$&VR?yK1z^i3U~4{?4IM^g(Yq^qTggF}!=FXLl#@LhlVX~U90=_AG|LyoPELRv?- zfLD&&bq-@5EarkdLapG7>}2iwojjFwIOZi+S5YL)r!UJ+*1WJ5{jCkjI&QX{JqN1e zUArMKYvSx|A8TuS`2FjEY!Sxn@VW3i?L^|!@>?uF8OA7Gcq*fqSXfj<9k$wn3W;KC zob{82^ix(&|O zN+1t+!3LU}?40u3RXX$3B?}~PU&B*?NU(iITDc%e0HS&AqL%>~e=b`?=j$i0gTtT~m$lxIT^W?ww)LMf%H=UtL~c%NrqkGXeo~J+B|+tu*95 zneD{`NDlh0BQWF+za`hmVli52TOLu&kHv7jZYQmbNrkw?=pF;|*}_n`&{X@Lfjc>V zEbOb}lA4Yo6k&z7uopa+nbO51IP4Kk3z#o++B07@=#=o{AET>eo|bIv7i)>!bpxvB zBdrzHmZ*X`9L9@0jYhlquAY(8q*0nLZJ8B1L1lymg3YQUE?cZM?KErnN6dQUuU6Nx zL?R;GIROzA17X9sbeN_yPem9ud&Xn-Tg>}{_qMUI!peA?-D?9{2SB{j(A^l8roO1R zRyC{#rOnUWy*PujMYP>`e~C3NdDbsT{_OfU!g@uIO!B_+{gLH9lWAMSSS?hnt$f&? zF)*f%QY>MB+_|k6Hn0a?WR8o>;$V$|jTQh{4vV+++gs~AUq^>E*}Y1X$o~NGNObu( z=D4N7%PNXTtAe)KQX(n~3Q99+icwUe$D$aJifno)Py!+#2#BNvL_ijg z6=07L&B|6^-amzw@oRDBeFSpb*pOey>G>=4?x#UIX`0YHl<1(83vnCtsN`x{+0@9- zvf@5!DWY`sOo^t7kAO23POF&VGSgYs2y^}kEQo2mPX@8Wx)j~A={9Oqt^bkuZI z^ze3UjlLv{mwBvgM+v8zCpswF$#(^!*YjI3&1Xr2VsYVZ#NA5qNaLh{U0mE(bIjt& zno@F&wt1_8Yl}#+2(oc@2=OVJ-Lv20s>WEJf-iJby}}|T5)ly)3grb%l$FrW8%c8> z2m_yjwu~jO4g`V?!5on~6q=@b7$-AcD!H2coluuT+a#d6DwHSD%Xb8fo44I zC-Ge*Hub#wF(??4KVvJd%=6ar`UQ%{Y zJk%K_NYe3*QKZ1WtIVQ*vuu^Y74o#c6nZ z{{YnRm6(W1qCZfVpNns!p+(Ly32h)zg|3RHWQM`E0iiY&Sq+-_LX ze3nH8MO_5#o`$lfnpS%*jzg!rWp2l!SoB#bG^rTM5pLQ#x*teZ)q2!q=Vw zaqn%Gk(kw0Ml9<5VWzg`G&anoKH;XNfJ!y1cAet*o*1r7n#D@AiJsOo&#%r9E1;s z%Wa17E;omUhB}(45Bba?-xiVgD3&=T!70(}kBTV1X zxERg$`_;pviowEX64N!n-s7UoXd$}X>!Dr#nUN_to?GG^JFu*a(5mPPg&}tA@w7@J zApsE(1RJ6R1fn9y65Z8T3WY7*2rCLzHyu=hgc6DYQ^^1usVbK4q@XD_*;%X>rGLBc zSGlWIpVg%Ied`(gtm$-L`Gz0rkM56B^bbs1g;do!x;fcF@+U>;F}MBTdqlh^4SKLys)wC8h;u20E)`>AGmby9xZf2Rl2*&o(>6=*_qz1+|xDwyRX)2V&hcCDNR%o<$3m_Cr59sit?Tx{fshm3N5*|g5Dgp zSf_iHcso4<9lnG3s|DTf1@5|c(LQPM2lI9I{{Y!h-sArODlQZfR69<4E#rqoo8H&m zK-$+%x}oMqh$!p56WDP^Y`x~d{G{?;#?nhePP%KN@*hL&F5*cX4uS#=`dlw!YYuSG z(nYO%uM6=nI+gf7kMO4&H~D9Z`gW-j?`V|XE!R}Pu7w0+K8BX5)dTe|A~Gq&E5 zNG>MS5!&Nxz5f7`OWCR7Zgt%O2XA_t-1w*g#PZWrPf!koi=~O!XqyY}np>)n005h+Njlk8 zWl8ptA`WIiV0nt~%Gt8GuwB8I+z%y{T3cJ2W0E1ry@U^n>1}eUbN;`%Y#dx^vsuJ#J&aB}wa4ySI|I7jaVh!; z#rJ>Uv}?7a`bQ6{D$aG7B}-~(S>EqPGB|lJbo4ii;WYd$EK*NT9b9rdv}@cNT+^s_ zr%|n!%#_tN6tecPJ1-;9`GuK2HC-zUb22VRDAik^3e63ToIE(Er_^}3>7!}sGOn7l ziz_`*%`i3O0@HAH*2|h2Y*dosNpZRBebg%<9jc9?$pGCsBFF?liU8$h2R2|D+}Ad+ z-ALUm^6=I)y8SmxC3i2rim{qLl6IdM+!sT_wV2%_n+K@W&qz+jGBWuRx~>|m^~@5M zpxijHHP`Aiy4VwDo35q}B~;@h&1*Wdd$7+Mb@wdP%*ZL79YdW@W3>`YNXMNZbUEHN->HVXGG?iRk18LMR#l`L~1X}mCzulSwg&~jS< z1@smRiqY$!?REm(?xVp=h3u()+j|~K*%=&%9n^zSOH5C7w|P9Tu>4mo8*ddux|44e zv&UwVzZR>sgv4GL(9@yHEDzqQhYf3KiwQTfy)_t|tiEZsj^6}%lLn-c*Ssw8r<0!5AL7AW>MC`R?=dAtu}KAv1#Z+ zzS2Xkuve@mTw5=z)`1lF?w_jv02ZIY zXSY&HiZYC>SQP|ZD!>G4M(6;r0St-&y~xwaKpNRx@d}f^h=DfR*40gwI@;PH-pGI= z_HpH<)B$}iq+gk`mYv1aAW7Et(#o52Q*(QALA9^&QVMJ}`_-qx9EZF$KIMM;YBf+T zViS@o%~beX9voQf9*bW+1hE2bqUgXE8f(ldYzWrJMUtCEZyIMPTITKuRPtRk)KN&% za)5e;t*OG?*Eqy{Rf=hp%M)FVS=~rIRdPinWan;*jYhZCW>-USpbb=w28BhepocAHos$9morLF*j$gJ_r!b(V^KAt(C;QdaL zIU67kV}WTJSylCHxq3%bP`@=hi{d9(&)~PTHPKZ^b~?@;(Ab6OwA#pLUvt299+Q_w z@4S7?%c#F1EThFhD{UN_E4b5|k*c?TN=44Pd(?_1`q@Z2+S;mjRW%SFnviS>3Y9mw zu+d2bgKc@0EpguAQ@A<}5OcDDMR~PL^i*8zRJQiD?u=1z5o=vY2YZEV9W^RJxl*|> zqOfgpq@N8H7u#zmD=8v@I@-!(_PiA)!uPs>;4ClAV$oz5DEFQKr8K-DOwz*FJ*CIU zmAZh)*yeK^n=5;uozI%Cje;C5ID<0fU}zmQvaO|&Q$5dcYeP!=_lF0DvJ(9@(0IPc&d;b7}i0On-ygn|>zjl$yS5t^k$Q=0VgM?#Q zBOuuOmZ7-R(^DB=EM?aqce4;Wl|qD*Hm=tOyA!?^WRbENDeOsMHzR!)mEqF^ip?Bj zy6yGoyUaqprU~0pOwD+A(s-Vsa&ci%QQ?tS#VejnpgT628?F5(l1;L_?%_qr{{R(? zvMP<92ZG1GtKDfA@R9P4toLf>5gK?fb6i zxPL=2yYwvXRn;0pJAFbLsNxsQXOI%_Ai;+QxV#K~sLY)cqORkl`_WOH8|&((WNN%*do z$Gdkw>&N;RMp1Ri&*ROuAoJCrtV&rs3WiMG+Td1ZK5vL0@P)5ky+6}Onb#%bNgc&J zjFu)z8^LRUAg_6>#(01FIwm>ky!0hZoXKc#A>L?WMmc}s^M|`70Rqm zuBD}pcw-OMZi%SCv(>)GGf9somU7!oGakM{J#4c#*>mnZxhpDeisY!-U8saaSpbNL z0+=G6X}dV0e6F!JV7ahRvT%xtDDfz&#BMEyMv_L>Jde#ntK^YAk^cYz zhhRR}nfsQ?wzfJ(ftR$A=FE+!yyN`yTu!5^S*Nx=k?eX0OnOWk@^_JvUmIT7^EIUV z4eMoE!^7#`!e^*C>LeZG$)oI#54~nCY3SqFgR+GuWsQhV+G;sxaR5fb?~)UB$-wbF zP@fvBexNX9ZTZ_zy;#CeWnYJrrKe}!t;0_(TbgEjoP4&{9r zDI_8y0+I&0U09Nq83ml(RzcXRRHj85nw%$`Wozc8mNR0~S4^pM8u4c|6`Gk;u_kh^ z1*XJVLg;EJVvrpGD^*d4$r&Z0;bf$lOtCa!s2ZE9oX51;%}}x{>=Ye}ltKzXH&r4a z7DPk=M>Q#A1t)cGXd;=mmNvW0E6HRcjA~|7Q2zi^nD$`bvVNo7c`ddXjYl~URK{SM z`T}%5O9sk`p^jE%c)vr;EAVD`r?}JBXyd8G@xCnSu9~iPhOVNC*&a-=^*e>Vr=B_E z4vgF{MT1ie%Hnt(cTLTsl}&N(UI?Kswh_;wZi)~oLW+WwN+~g-q*R3{MG^{|szADI zf{K+*BHOEXKy^Vy&{XnP+I3amOQ94AcL^T%cgwcEn=X%taVj|Q$3XUm&RN~lW65b{z$w5L(a2tG z32pTA3wKTCUSh37QFf7LRtD36J>)h(E-3!?U zx6_i2Wlu9}E#rzh*r7MSH5|&3x{C*(`V)k|6Rn@@#@74Ezu>)IcZj17E*I1etIxd$ zQ;|VmF>RXZ8UY~dU~WCvUV~EBxy>YA!$W<%7ti|cOV&&6!SvsUaVY3v_vG+DOisU~ z7mjVBgn#)xa<(S+(RQAkX^lS{(bW;$s-Vg&H*+3u@^D;X+Wl7_FQ?%2IJ+`0$xZZ7 z0kPzl)ZB7f<)CU!`6$pHs(eQ@BToe+5O&o_2U3E>5=y6*=T#t{w<<{kPr*SNk!=*; zp*|`A(p(&`1&fxjdKAn{GDVx(V@Qb`1XbpcMo!=fNXuc8G|7aA&dLI55M z7QSaj*0L)ZWOi2gc&w{vb=K=%4{eJ```xfGFnOI%;H||S(zobiFJkOb#{^~0AQP+J zbiauz->g$RxaW6Ypw7|*ysx2KUK^oiBVR1?jL=iKHLW8@KXOl%{wt}gpn|5E@XZ@u z#|scb)7AAjV9T+qe!pXXPokDwd!p#^?lHq;jj>cir8{mO&$3T7&T}K0^o&x4!IgMi zgu5eb*E>>LeUtq3TtzMqJkf``XxV;Nxn85EYauLNW^i@7Jd?}iMzkr~>u}5rTUw`h zS&FlP#0IqzU#)`N{bnz7TmBcQ_B3j2w?_kvi?(=vt(kso>dmP=EM+`;HI3;d?F0J_e86Ij9QwD~z>OHV8}5=P#` zVbX}+&_kZvWpFnN{5YKCk~FnBo;z9CQqw_82!@_8#sWxa@m6tqflY_X`x5I| z0l7UEP}4(utu8%N3{_ODnA$Mx&Ks9oPyq9??Ps5ZiOG5+$LO%VR;n?VtK`q6>@b`y zuASB+y&*c6JnBH}s+vk!t7mOpa4c&MXld_o-xq&-?oozPOEiMMy`ac7hAvSL#ojA! zJdKx)lWpIr^{i0xrRadZTWp|dw#j{Mq7peQ5qR8M>jxXFZ5A6nLDkJ?bagzIcBJj^ zT-O#&+fNQ2*LQzgAiqtA;&7jQ&elnQj_soP84Vp;{S zak3~QVnr&cF?Ho2ms#qx{!Cd*-|gpRV_Ex%6o#%Wh6C}<|$cl zM*TdNnbj4zL;E?J>bh~Wf$xF%{p+CQsFEg1$2ImK?h2I59B-A}vxnDHS4Y~@$Q`Ym zHX!sPlFDwxu3r+urKYGAR8l%AM$cf=$c}3-4B`M@+I&Twgr`Qo>O1m21!UpJ1`*3n zq;E}uBp)=;jn9Gt2m~90%qTi@RhJ?`I_Rn1#@5wU%Rs5nmusq$2nNKcxVh0y^7GT8 zfGiHjRRoeXRUI}|`REi}6RHKlRrF9bH&LNbMOKz7K_7CCMN4g| zJ913A9ZDh#64SCkLzp$@wY6Aa-aXdi%`5;uDpZ;=loL65silWk4KA#WS5qu4dq{IZ z>2L;i;R~H z+hMh_RmKZXf0$WgQPFbFsQnu$sttE%yMPzht(L-{i75JA?|ZOO_$a$ z{S3f#-9b7k80NTLq&RgODH@9`)3Tkl+^73uOr0k@gyDE8gP<)hv zphjEos$3r>4YjOF9hNi-!5aLOj;h_x%0V_nMHS{JMIc$eN`QI=B#vcC6iL0TbWq($ z`_x}TjW#0V%}XIrMlYO=$BO7Dc?}_^*H&VW zvW?Ftp8hN4l9x1nf++L6Qg_nR$4gBUV1>-RjCpe3mANe~stwuOn;rTuOsJ=zsC%TE zF(cohanznmhQ=8UJ})FtF|LF<+k94Wm2g{$TRH4${;5Yfb(}KXS!&KR4j}|oP{G-T zWz0#rHVbRS6?8a-WE70mQFzIu|?BT;gMxk`HvE0_Ccey1b*pIhm8wrO$4 z*(2r(&;I~d#Qy;Q0DhzY0N%M!viOFb)SOw3(!IG$E9Gzp?6~J2CoDywsQJ#GKa?UO zq|7J^Q2<0mDUuNpO^XPKu^=KSKtducz(hm=VN^)@YJF9QD?@WiM@~)mtinJAYp}z3 zB&vRfR~M7ea`^>zDEDSBx<&F~r;Id~ux!u<{s1d?rm8N8faeWzxDZFUu9t*x=DL_- zGc*}z7iGt=&Om+ZHy^@dt)w|XWbE%m@HGznmWEELj~;Ig{{X4chK6&+zx|IH;z}v0 zF&CK}T*vCe;n8asX~hsevk7dV2FVkJ@5@}Ie?1n3m>i^C)eIg@{wvq%HBj)D=6StF zhb~O5!C9$AxfmXr)Vlr+3bBF5Z|e{E1$XN4dzF8~H6F%|7VGpL;k5_e)okE$UrL7m z0NMOhtzIv3KjFHC=xR}IKSESr_0gYkR2&+v`Z^=;DMJso}@W)k($xTxkF-a4%1F^9d`K@gZ8;Djz zB-He;nT&ObW~bo0jtr%iEI!p#Zi0A;4SU6jY1M6MaXI8iGpOoghXj@L`Q+#TwSd?K zt;R{7YI+tOXLo#bVATA9TN9vK2i81ebBLMR)a4Pv-dgTYKr9zWUzOs*=-~8CGSq6~ zrP*?BYAWNT4T2VSl@At*CjIB2@mDa)BOBdURN*C5gS>e(eU^?vFsc^Phf6EFTA4pt zA?M&a1)98-pHYl&mPthjb}Ix}fh(QkT8mLfM;Rsc4;Q!D8lS;$-MZwlNn2Zs%OF2T zPJ1SK^FN2VWQw!Oqee9>Es8s6PgJiNsOAJ;x=OsFL7F!=s46bmq?IGBp^!~Q46XX{ zwcil0EoTVJ+Tb+T-Hhzdn@zt3vj}uy%uq!t6S0v5Dr|Zx)DkVa0+d7u3Wm43WePSr zDv%f$mKz;OY^^3anX6=Ju?qlW641-pVk{+>w`{@pj!S)Ijax?*Ol7ZVK5A1ilzoe| zvqwBaNZ!}6+J`jUE4N&nw3V1d&YFexX*YCk)vo-!*5e1pY3q+<>%&k0yl>y!d4(=M z#xcpwNZF#EN)`p75mI+R5dtYBA}1syT&P4Fp@^|XQ6j}sfQu!EJyk#pYM}3;0~(@| zDF?Gwi-N7gmRO~_B^r%9H5lGG zt{J_ios-3#r_3vtT(nrEI6R@1Im9paNEcfuxQhspxAn%h{G8GkqQR=ik~ZHb&-HyT zHVlp`Eu(F9AgnLaG&T+ua9IBUd@A9srIFTUOfEeG!CM|AJ2*peqA05Aa;dr{3M#r?Qlu23D6ADwD&5c(1W|KzCsjx(bRvb-x{vDed%pEu z)w+Z95Aq*)Sj**SPoppK_2T_qDJcM( zvm!IAfOn0To$!56V}Z~@=qe`dVtbfbt3eXDTYEQq``2m1SoA`<^iomDOB_&kkCIcq zysdTfy<~sHRiGkD0%%kg(+>bUtdFUx=t^Uic=Ko=T?+ zh}=$|2gku;)p3*u5}ngiH?k5D8HV<7`&KsJb?2NxJQaA;odaCf7J}TzVycD>?xd*0 ze%{7U6<0c`-J=9-xvn#+NzH76Y1rv0V?N%0F7- zdU8QA!}PB3w%#Wa`!&F zgA&D#FpBJpzMknFRfJJvOz#RA!(_MBjs4T}%DlOz?a_O-5yKR;{23+%Jg=*YqBk~K zC3VZgg}3k)vhbN{s&KqQrwgq8bsPI9l0BjIUGEkv9Y#BauR{DXsW_4^?nB<(4Z;nA zXnCy;#=#^TcqkiKkfe<*ZIeq|L|lRmt+t794TiSpq*(bV@dn{20CmbNLJnkeQN6~O z>vdJmw>D2gQBAZusT){sr%P_9m4N{eC>PCb1-umBO*Ho*(3=~my@u*Y1l((6zlQ04 zS(JPBP>BOjPQd{8sdj_SK(&slQ3HFeZ3WFuVdvW)xomk`Z+g~Ie_O0=!TMY8)CIAH zaU%!wBd_2gn+EOeZqiq~{{YC3$#f1q(z(t7nWqOZk7^lS*9-H^Puy2T=KvRw>Ph~p zckX(f17D|);Nv)`7Gv>{MW0XiJNT8y(;XxmT1Sun03y1sBbl@D6Y`K-PXKF=LQU=P zTunA3M%K7Ke(`&W(Df_W^t^IC;d7`y^igE)iz?iONoXT0fFSi#ouF!3s4~Pidq?dlNr_4|+}QA*8w?dS6@j|A zhPO?++vo9J88`eEn}#H7sU&k=91HZ-ZGq*#CGNU>RCMt^H`e6muF3Xf$lw}W<7SP? zaUn=L_Uvy5%KN4%A-#PKO{B4L5fhKz1@bib2+^^Y4`#sJF(+du}E zRw#R#^2*!todqs4M>!Ffx+xCLk-16oJl8ZOHC44Wm$;Hb8Go|f2j;F#6DMJf?F1i^ z#Aa#+hD)piM!as{Kg}FC;HxC%B&^I9*HEp?DJ}wyLu7_> z32bEE!sJ|Tsa@%nKe3y`leA;emK(C7Co`t4*YjP8+yScd$_Yy-&t#baIwmJ zrFs)h#+$1j2-?#=8X#Wg=ncloK$F8XoaOg?t}#(IaJbiP%Je+1t4=L zMIZrkLD2=a-Ayjn7d|4zW1u(f!l-E|U+$DXZhp1HmKOY0=H|9F?p`4`j?Pi$`x@ zx!Gx*4EfsULo;@JbU(x^8dE4+vHlLnT%--WRB}Cem7>G3$1wIdhzvZYXzshuq4_Q2 z9M{Gj8-Z=~Am~+XG+ha)t_7{9HA^fkE~_A&d8h#DRwiUy!sr0hn-OSR9?kPbh!DaB+&d)`t5Y(sX=X2kVrQQn`)$Z9TSz1 zCO`!EYJ%1_J1NxpCA8B-6kC!Q zCq_tcAzKIhtDGa-s$!+lb zc-%I(DPgb^N4LCkSEyi;I5N~s>0V9TNU-uA3m&%$id(*%h@|iuJIpQJH&mV(Qha~0 zp{wbbb#e2@pMK2fVMf?4_${k6Kq=K5Yig{Jbu5U2+WSwl~I-l;t8x|U|Wk5v?B1?ET4Sf)E1E-i_L?++~?n`~`$t;ey7 z@r5z*L}81x%`@_o+yLl2PK%#{v7(}A-$z+9p_GR@*AExm5_P@S@}G(6zu9`q=hHGA zk92XtDK~i>v>Fxj9k$v&!lO#fZWW73QvvM5dtU@&^T_I#IfOCS zz1nuyuQj{C@t0RpItrpYc*VoE%s(|%UK>MG9zzfZk#2-6EC&lPVspnM^Ex(+qT7dT zS4Rxhud%79gQm>t_SiJ_3khdpHxd?aVzDj0i`i)Yl0IA1rMpumP>O7pTSkDeTRs%S zU5Vqg)S-m1zch!VMx|>ky$jI=9smbH_`XwHUiR(;Og}UDEj@mt^!j;CcRF1!P5PZw zF}}yC(iSo(;tc_y0086wuvAMsBQJ5a#>*ahsA(x=tEhWoh9+iv-LqOXC3yu)@xD9a zQ0LUtVYoPX6pU|m&m5dbQ@*}lE9X#-_T<_1XvNhdTj_#@^qh6;+8A*vaPUX`#vG)7 z+FH4F?4Fc(YxJ)N2qrw)f}|)JEKWj#=OOW0y#uJ zVQlI^bP_h>R*M9KPRvq;tOM3IA7rnfX|YY=O1-~h%fl=qk?wW>0QzTYq-d~4 zEkn1gfB2PkmGq7m6SL!GcZD_RUHXhq{K(2hVYPI}Y2*I@xGIH2Cuw8<0JtdGFJe|m zzRbFy-s+JoXK5OJ>Z^{SMKX6Ua%`)I!FR=~zE#ETEm3 z&BtrAqT!kt=rG1cJ-3X{JxbXPIjmei`iwf0+!~dCTiJaB3Q@+AJ|nD?o_Wdpvdw)% zDXE_;j>AP~hj8N*POP23?==TIiQEoN_$+Ki#;X*iplHm}?C+{eqgbNJ{;dOmR z=`3r|_P+|~6fr#V?#NO#2(fVr`g#~llfKu{t!VE!^Z{{?TiCxm(Ln>{neAg5E?nba z7Nwj;O7{@TdZ$Op;g$#DZnZUa6W7cpsTm?^`Z#ZJ-xJiR7O~M-piwNX{HE%w8KwOh zQ9M!yNgRH`(ZHRwJ}aN3XJ-Rib#=8pPc*8fj-jJAj&7}R+!byaoX3bNY{#Ev-&Ouz zJ_;ooToq)Sm06Ii)KtR@vdHTjT-aX2saKW-L;YH!X(VIbB>*=lz3ruyXu+Kq22J!; zboUlyxtp&i3;p+92PMbwh;=?C954R>iBE6ZZohFWvA&uqX5I;0N>LF(csnXAdMeQD zQG$d-PypRl6$++ofUA{Ut-7TptNVPn9t>bd-12)WMCYz~fYgm{C=bczTBSc`>{ zl^D(nOOu(yv6{LUb~Vj45MIJ&`%Lp3$BO8wr;4H>EH7)=b}c)tW+#SdWT(GUIxRFN zqKZ=`8^lsyyu+&<=06pcDHSQp9}MhJ?6o*vGYvz;6$7xJ?7L@q6}DJ4MX{2S;G)N( zDvrvOqat}IZpuLxL?nZ;P&ZPbZiEtnPMuUD1gPeLEP5dXs7*&CKoJoMEKf}oz~*Sb zRjI4P9>QH7p>I%IVlEbHO&CiWk;*xaW{wtAu9B*bIfjh@tutfv101ClG!DJ)&hYmwWfWB9m#3vNIF3!f&2%IJEJeb=pslB& zk@R!CumjyCx>;A2O-9gMJ1oOPh)4-B)5JLgsYxg+Kq1uB^0aHCt@0~=!W;vdLxI@! zSh#~~?;^$Oo9rA zh-W^|w`=^5;H9v)u@T5SOA8X=d#z=56Ww#^E;;sO>Fzv=>1g`2u}YiZQyrzpntpXNv|t9eH;1wKh+=H@3>P6 zmaBy@*}Yn6shit9;wc)>q!JL)Zbu>Fx^Xmg_+>$!IOEISb3^kufI6!lkMf^KGz@f^ zbBU}PH9t!Je3VyVf@t3N)xHMXeBIl7^eg5%{FSPkzRmvU*4o_UpSi|XGJpXeWURG<% z9XmMy`kD(gz0*adf%clRUr{8L)FI7wOvH`*`ek}uIY5~o3ZZ_`9NgML~q!$%=NHr3u-9*g0fKZ~l~`$ZdSmcP{Hh6w{EEFeDK z%ZN5BMZ(-R+A3B*6OuZrs{x~Xr1Np{KZ@S_H#hJKiiz6Rmj?#4Z^?My4K5F)Daj{B zP;_7rLvOX0jQV`0rJ}^J>|jX7&oS&I0P8Dy+xw*a*P_V!*(%HP_Ec>a$!`3&(&YV7 z<*(eld(&SJOI?j(7^F{jT6%WK<`dm$3>$dpO1m5`RNr#9b!gIM4vxpBt6Bc>Nlz>G49vk7RCdajW^Q4TysT>EG@AIn&!q^8%=O-IPO+hr>SJpJ)+>W=njPR zK1(1tk)@Wtx(MQPDkB+O$1_p3P;GC4S%#Mg~C$>Tl3vU{cm*_7t?eOzdcfd0{YyGCbqfR0UM@m@5rf0n;YM% z0xnNAVrt5GK{C%95BRnBEOS>p_Y`nA-~J?^wWG_KS*&tq4rv*3%N#5(k?m_h+?9YU zsw$jC9XTxj0GlUuzTvr7qM#0tOH}^=Sd?>c?zhNtS(dh%0d9*V;Sakar7y9qG&MCh z^_uAb`!RP1=CREiFshGOhc~Of&6hK;l=5=iwCG0RSj1#xR8u|nAUAKpS&uy1uTNta z1i4+t9a&R`)w-^b38I$WtXH;cY~XsWrB@VGO$lWs6pWOQZfgd&$3kwn%171G)3uRG z*R&5}Pt9DY#VeT$-`P{f8rzadcjTilO~sog=_KF(0K1!5^%=23m84gSO8D4lqLjL# zd%8&ur(Me9>ZvBAd5%_*W23nhRMoXJRf?G=ag-ehJ9q`Prmuq#gwodrwdZ57C-5u1 ziyZW^O)FlfA9gKe!Mc~Bq9Hjf%u5fJiR9||c|3CSSYdBtoMx^p=H|mZGTSsZK!Hlk zs`vod9;h5f#DxfyiBfCSoX#S}$KIo=n_HTN2_!B1n|>R|CBr1im$ZTByxwEPFG8fL zimI8D#BRrp0SlM(cQ}?Q>6`%!v%wv9n4ImVrE`e`P1j>ZamTs74=vSp&pyQp zm%q7+)(ZT2jUzO4akC#VaO_uZ_XYcA)iFw+jkdchk!0>4s(# zc_JMAM?$caFR_D-b}FtJsU!dpK)AP1yGls})Ue3X3tqtCZxFbtC6-2z+GmhQGST?1 zmxN?4z@cl+ogL#Ko?xHC%Dt^FOEm7J&9Z`Z>F!c(WfvCG>l1LDd8%!#%BeyEhc^15 zzM3kz-9^U3R0I>s%0U)TLB5Iw?_>pF0(V30b+QE(xjQ2Sold0(nt^+%*WQ2ur!U1~ z*HSX18?PNUx~bu0 zkruhFJr3(dT|p!dFKD|iu8fqCtvqf#qiKcWFjlm*cP0b98;+y%3oQ8CRmeU&xILt` z?LF5t*tGa8>O5*ndq-Z}%;hs1uk8=SEM*U4EP1Pm9S8se$p*F-R^ggC;u1w8UemD$ zMRe#*$k|s#>)e62M7_1$3DBX^`q&i&l(g&AD*Bt*PzL2x-4v17k)o0FP&K$x(R1@q zNe$S7ZdBV%?4(;;Z)HxP^Vf7l06VrG^ajUHs&*G05Sw%eNk}(3DIPni8fTGOwx-)Cv&gdw>s>9hZaR36e)ilq5ka;ehqeG`PZg``Z7QMFxXBoBJ zs(91va)S2VRedeZX4cS20WN5}d=?4Z=&nxt8tyJ6=$jztWKv>CJvC4cst_GQf=ZSi zBHbA-myO{53oL4=sE@RT?L6CLB1+MlP8->R&;TGE70oxg#KNE2QL)$XSy#73!QdTRa%g+ zu{fm+6;#Bsq9d84ePPTM)ajb%rpT|eIXzpa$60};-F7+~4!2Z+Wor(pWmOb)G3@bs zbUhYDw7Jx;cNr-wU5}Yg4;-9j-4uqUtV*a}#Z8U*YO-b)QU1LDq1_qWsrVkdYiDBsqrZ)B%zi0PiIc<)vaKR0mvKg z;HQdeXrjTPWm6a$>ohf{_I3VipvM{77RTBgz~}~meruVJvWGlOjBG;`H%GcwDgU? z(#Qd~Aj*V{8%;0?vb#b`olDrJHFJ9+TG?9bj~n0dD?Dtm$rQT?x9SlPiznrQ=i4rj=7SdE^(s2;)*PS3S2r{ES%Eff(uwAJz*BZs+Xcm{aF!Zl1L~rOzEngKYkI=$gY%<)Rip6xyQ_bRSTfhD2Y&}+7c$`~x{{Zh% zju~s3`Z`xILj{Gt(}yL?J&t3`9@5th2rB(8T=ew@XyiGa?OfkCn%kdL#vsu4RV^I% z{vmhZrKY6SqmQ>9vOZT+U+!oTU8<*=no}IiEj*7SJlK$;~YcQxusaXXv&s!gnJ1-YqE;sDoW2@<6J&aZ{IiScBjtZ8(6G5p7x z?42W98IzC~TD}vMRN%2mZu@(Lk*&x6Re03W63SRLnpb5W1oQW9yI5u6;oT>}2!5nMR7IAE0w9j=s7M81+zKk7DQ6O`Q1eqis>JW32J<|0`#xn%V@5KQWl)z@$RyRUFx`Xg zp1w;kC~HF+8qr`jR$-h;QzT6n5rK2!c`S?<21dbKnifqFWR18g;wdJLe`zfwf+~Vv z3DL6j@OS33Ep=3kY>}2Y0@5r&STM4BM|OE%G$h%U)y(id3aLZY7&K;7rM;~t zQ{+JlvIj-y^{<<<%qgBSI6CFSk-s9l*jyhIUJb*A!or&FY-#;bQX+CtY>(p zWm2Wvs01l!3M_gc-2qx6AP9-c5E^W-F$_LAL3}L0o;n`>ZxRb<*sSBRbqCHc}2nSbTpMPRl+5L zK=$*t;PfMrS4!k!%@n=8JIr!{t+sc89M;-{9f|G{Rg5t04p^%il>P_$2JtXWK`103ys=9Ru!q) zLsU|LDMTQYP^AD^z%`hYURo_9a-T4Nipf~j;0W6%Harlqnz*wAYSxB}4qTLrsv|j@ zm~&OO>xTQAE3r0E6s3?F>`sHWdn#Z(olHjTaOdDw;|r>7Wh-R>wZppho!a5L$F_?G zc^`*YGPXPR5;!t;^4Dj3mvf_Q-VB>2_-6yIbkEh{-w&A`4U_<@09!+U6*l;RW|ZdZBv|Wb-;P@6P!F0^TWqfkCv^kk3Q*P1Ac}XS}fyEqDrdp`OY&%A_?4^j!f^B(wn%N(zjahuH>uZ&cY%~RDRbYzSh-tCBYZIZ4I|>J|Gd26bgRf8guA3X4D5#|`AZ20mAa1DV$Npdorx45uxUV1M%j=4Rf?Pqg{)JIJRZBTALtYcR=^Z{~M zyB&-04l!AqG_{oSIl5a*SOuNNbu^qWg3XCmSGuaP_hby2z-DpSGz(}qHeNY`V?0Au zhf6^%T%M){n9_6r-s0-~aFngDLk-KZZwz^T1P{$~*|hJ@%O$&9Yh{N^NmqnU>^BgF z@SoN|TrHi3`*{_bKpS{$x%!NIGBj-Bmgu4$8sTREM*4&X&C=fl@fKLswJoNF(mPY2 zYj!R>02NVATq8E?mRzWw7$Gi|;e%_HgzQRbj!H^*5_WXG(eT}32<4VzJxhb+`lITw zbRU}9;p{AnHh`Xe0@--uiZ?DjYO1Gl)>1y@ zoIW>Hfo~A0@nl?}y-ZPt!+Z9%1OEWJ?S5$L2>DA&ZupKXI}? z#uKpk&hk_qpw8=k=rGDNVCajy-sAYJ!ZaZ4r@&k%i$8F&$Job)l9nPn7$c6{!$P~g z>;kCix{X2Tv2t&_B_x0Z8#xZ3-qs3EqRQLkYa5x)Ye$ZOLSDmy;1(o}mY*D-w0kLA zwvUioro;K@uGV8zFg49&?2<#EjfVFtR3+8Y&m((B8@S&~^b2za880(JH78fWcVT6u z$E$;nt3vI+Sbqg~6~!3VnCV;}A<(;%R*O(d$kpmP4w)#|J=8i;*s4SP#Y><3SGPbH^UDW{sAPSOXK9%GU73tD&@ zd$I7&hAnE8d_3yc`=W<}$Cf>%t_H*%!hp9ds-eWA5mmH7KEeM0k^Bn7ufpnR`_}DZ z-#bR$W0J}l)$N}Q$1aKO--+&tgnGcvRd$-aZ$y&nXkZ4Db(@(iyzl}NstshKzbKzz~&XMg5w|JcemL4mL(P8nCG@!`u zW+vFV$CithtEj}W>ahbOvm5^a38%WvcX{XJxXLH1b5%r9&lH`r81V5E+|Wlh+}Mu` zD|lQ$zFO?P>CM6D(V+a*%zq4^!>CyqmF}*2%;|%OA)|9)%a9%`S%cyNnwa}BdH zK*w34{>jsIdUlOQoLRT5owU&Qgl2YutsA)V0a~Jg?0KGI9Xy`bMvhG$3Mm-siM?`B zrM`)$>W;o;W;?IRNbdP0bJu;44y9qXXVg@fqCZ6$`bUmu?2pA}Y>5(@By_rry4>iN z-8p;Ek)^i_XTol@b#UB**|U3yAH{0@z^uL+eq3InJJ?ARTs_2(#bYm&$_}KCl z=*^EsY$fQ*GGe|_&cNB|*RxuS}5X#X7PdLuU{3n=NnPYrU zEO<9oWsQ=zE5Xp*5xDYMxTaMW;C2I2dJmEwpNi&aaf#?pXINi61lURkd7gbois)gL zlQFN2?Qe3Im$Hn{QC zC;&CMIx4o`?od1|o1X-*h{_(d|@7@i+z7s5TuZZ6yEg2!?4Sw+!|qh}=cx-vt- z2u~olxQz&Vb2MD^3r8bzIJZS|c52QWNhIrqZ9VZZ)dTdgq&ZwG4G4=#XL!5ft zc&$bkTZm$GRnpZ>GYt!xVV5(Ggq!PoUuEev+&jZHO^&hEGeav#zhxjdBd8#&?8I>D zM#)CV1nne@?rU|^paSdWF_KZb%rGfW~7bq`vMu6VLD6YwD>T zT~aF`s(VOgSj%+Q{Q8boT{jV77)z$5u8x{E9b7|OX82rev%f}R5zu6OhFPR^frc9o$;;-UFYQSu{AzIE4(E2nOBZe`Val+{MdVOwHPw2|NZDBy8-P|_a|nBL zTUPQ|q+Bm?f!;KHn_irCGyIgdnw208QCw-8{{Tm^yzxygQ=>^P^0B)1HpJlG(%bSY z%>58jcKGb`ICo=&fP6{*1$wl@R)L^y>&A8bsp@vGM12?GY)%?I&(*V0iPc3zMKxUE z*_O@USt`-tE`ALEBYdq^{blhiYi(rF$x;86xb(-J6z+N$BT> zc$*60F+qw~$4?=U_H1KA-5YEGvD*3*&2jP79+{gyB*kOHDV{^GR6uAA7cu4_T=d;> zK9{JQPs3O|?I4IM;}1SFS%^KAM~go~-HX)2IDB98DnHME=A-m{fAea8 z&v)jtQ9N1uj}9ge=;(g4=XadW{L~CCiv8#V{{Y6~@4aTCpB8@PcyabE#ZLr3s){y$ zg`g_zr=5^28*jOtFF>HGim^PM4Rk5F6_Db*}Z1H?;op=xX(UiUc@no zBxkG8&e>#kj&Rw7ubRL!Lkj?OjRM@t-P7T5TbdZ!leYLp;zL?o;s6_xxtvz4)l?GG z^i9#eJ}UMriF(c8r$0mWowje_wZ~=I(rNbjq;tBKwNLnP>_Acrn(+2GwZPmF$wDpq zO&oOEc8$$0DFsUfJ|!DSItSZNe@``I5W=K{8L7{04X>u-^IFxFL0?fu>qc|O&5k;I zx-D0RSl;Y^=yaj0hGnxl{^lq}yD;JSs4k~?f~R*j*1x--xoWEEC#8N_*=~*-A9}MM zWhYODQJY6BYjk;!xn&U*=9?Up5F86m#Y!j#qwtuDpNApH?Eo%ucU5};f%SEgVp0Mc z+p;Zp>f!e;XNBr#uA*)c4f6-x&cCwWXYlu~{+2kY;AAm0G%=x|4vKZUr13`-f4LnW zrZuRZqbI)w;k~&nXA{X2aC!Sl85siXF6QB=1I1azxPqFHx*BpSYDVp0?z8+ylIQ6t zu?%*l)l8M8*Gsp_@- zQBQ}`RCW|Dd_o`ti(cXkhii`uT&m#3T44-(9%>27(U5^5@F$lwa%rPg@XWf|xtAT>dX-HS9h+SF4tb>2?)(RUSDfI+mpFg`xhIm4z1dPM zS~+E%#%Bz%AJw;+9ZJeY!II=9kr0xJo0>Pbt4LiY1t6CPrGNhbC4 zfx52assM*#h;~3wiDS_$dLjgebyUw3b4EkO`W}i@f{TFFob`1Bp(V}sRs-1A0>=PB z-s`WCt$4G5A!;!kH+dqrlCet7Y2x)prjDw!4DP^8@PEm9_J6{8c`lC)#3}2e%?ta( z+F{Yn^9!6Ua5iw+TYPtrNgJIUjrLx{VidU9gmO5YiY+D;jd#U1A@p(+X3J|a{{WF& zyMivOsy1OYAc%?#!jNpC5E2QxJ9PtfCv*fNB7hKXh=8u+s$6wcB9K%_u~ecUD3&%# z+^!c|TG|K2na$O!dZ}|mg^0S9DlwE)j#}J`q^+(cLRsHn(Q3`XAghzJT2W{PDhA3_ zmG%nFYjaY_2KKtVsdxrA1JMXFXh}4&-=e;;FsBz$FrJGoadIk?M$CHzMIly67F5p* zCV}z4XA2c^7EyJ{1$YFGeHo{b<EkARzpd$(n^`EX&!6=v%dYBjl^`kPx6VbBGywsT4Ng5pjr!RF} zP*5gXAz7#&K>q-D-m;5sF056y)bBoDdd7b%I-ME+0P+}rsz16tD}XT9&B4?YF}a-a zC5Qh2al`OgwOCza&-XsJs7@`&%BzF06$dzTUkHhzyxrH_ymB03vkt_h zW94~;(p~Lowd{E>Nu}aCTKHzWWzNf5?8}pV7n9e_!-`bo7l=sgx8Bz_TNttJw9O|w z?s|R;i_+p$CQ506Ep?v5?KJeV(c<(J-=&#}01NI~K+`d@ZNF{v@ew?rcZJPEd3s-nWhnQQCSWqZ8wDRk&TW?7zI|KNaYh{w&%ULnAkt z%{fJ{ZxzS-Ei9zKYwF#&aNC`R-x9N_X=-t*=g&~=u!nc;ai=DQ;riB1`lh{)sr)gf zSoBeo_2k6B8B>e#8*v)U&W4$;0K4lr>1%WwuA3Rfu>2~7)#6oA(^JQxB=~3m=2tW6 zD~T!iM+JaVvCXKQmQzO%)Z5R^cxMn|7}pV0_V~41n$diahZ_rWT6l3et9&D|mP$_1 zd(zJtH;Xum8ENyjf|Z#eY3HrWyw0Bhu5b*)5~+O|k&rRH>yUJ41h|v8C5yvc1&(nX z#q5ogw2|oP<+xz*9ZK~4CxtjWhcL-#svj;RG{Y>;xo!MAq*z>RNn2SZ2t#Tp#Rd$YbmE=DjVLWs*$A>#8u^LK6*TGqT9Tw}Bo6Y8QJB zIm6sJUReQ>ih@SwG21qyON~#5imQ&Ou&yq`#yP{)aZiZRM|`&-)e&x3M)%y0Ps zIO(TBs`dI$NBA{21%839`bR(MC7q(rGkvk;)1s#gRyVq4Ssvv`@K6aL1-6J;fwvd3 zx5StZC&RU-p1vn`d94*dA4e}uc^?hca5y>^xSNtRQK{xBuEP%usAviSt@$XwKB_S6jmb7xt;AU~%v4azR{pWK zx<6>>td1$qWsO;1OG?|#AP%;T8k6o=c&s?63~T3YK5=r$wQ$#)z1){& z=%0e{O3GS{Ul=Tzkw_XC=brPed${u&jR9M5(bRWjf9O#x+|*IVwro!k%*qBuPDs)7 z9`W)6LGxOgh-Vc|6=lM*EppA@4)VT)c`tLscxQw0YSP#nQHDMCXnX`VJO2QL+z)k^ zp7Cb^@eFmZrDZK;b0a6Pnkb15Zz3&wX~}M4jy3Y|VYaJ8eHb^0tLdp(J8B>=>Csnq>_i0z%_4J{`vJ+$`1OIBc;}cAc1+?aFVy zt=xI8Ya7S0JW?1a>M;qYp`~tGXq{lzfzHE!GPa=?m&#F@#~gPiVAs^XvbI{OKn|6~ z)*BB1tSR>>3#AoGjzf3JD5F$TK;02dv_L`B5y@uIVs$iwE&Eu$!;YiKtRz@U5t^wY z>{+LY+!?s_d^-{E(!bT`JF?n*KP7=#Lsd#IELU&aX}DOV4r@A-6sxE1mv+qiFW%m2 zj}In4mD=`Z=Z&Y&^%XyKVFE3o(FV(FB=|*JNtzeZzwNYsUy8N*F_MeX*FiAoO^V59 zOXpN!EexMHQ-+)-6#`g9p!|CV6>)lmVcgLFV zJf1<(t^Vlwu7;wWlG8pC23Iti9PSL|%!#}yyR zppD+H;Z0KD$s40d&^&bt)kLqTd8Vgzzvf6jpy)hS{-PLWgtm4u>^z(9;f6B#9va=R)U9)| zIo%^06aksuSko)4bmwKX%onmYk9$}NbAV{nl8rZMAlmC&ME?L=dG(o#-y5uA11muX ze;<0-i*?mPAvucPh+kR=MH3!<{5Lp?N+?MF5)VT9iw)-dqX112H4r(2` zo10q8DzHa_Uqw1u4!dv70A=oOsu$f-4Y_>O`^Ef}0D6Lc3Co(1YZI|3>jQ8>=zxn{ zD7m>8x|`be0YMs+19uy2r$BWYC>9!(4kX^nL5*2T+1N=9&B(1CRWy)1hYc^GT_&RH z-0-q!%U&;Tt2jxbx#P2!AQep0oC z=y1$N3h0ZXcn)v2$9qliA!dRsc`h`@TPU6fIw_m8+xYb!3w4C!44uN7tTq~+UuIA6 zpTScoS17g_eI#xy04f0&H{C6!sjbf1bXXUaH%)D-jeI@`FLSD$(2y(v(#QxK>Vo^+ zYM^a%p}#}`5vd~IieFU#T%onikb!b9_bA@x`l%POIwL^2(#Q$Dj=CTxE`(cU8fLz~ z6x3htL`hIL-$Ve|ldpmfn%y=!l_&#Z;ySD<+6d-pA)&777HJ~)8mJc5=bnicLyBsd z%+yl87ZGoAv8}aTRIo=YZ1H~+y3}GgbDDEScLj83X1uZ2V_4ItlAo*ZM>My)VlBxv zw!011bXHr!?dx?e+?Rd}WYK+=y8^S}l2ARl3BQHb#@h82kj!V*6;`$sj7MFLeif zl-Z4uuEYgTP!+&5Iw&pKMUq<}i*vX}@7G(Z&eqvd%^ok+8J<6x9=kRXGcyRHF0s{X z>9ER=T@y;q$|gGQCz`a}R=#FOMdXUH3{#MYeI{qq(7|AeII@`VFuFKLX*j;pOc;8+%!Bd^^OirIba8%PZoHS*{1!9z9oI#JII3ZwpT- z66SnvyRzFczMnPaq50u^T+lNEs0*Qr95l^IO3z+xOchi@SZ8FhNXv(}m|Ub(P+|3R z_D4xbb%D{ktyc%gAf}EdmjL|4*!&kkGeqYzMXUy+otAodJbAvvWakwVTXP#vJ(eYp zMVnD`P6)Mu)nYGWqIZb-e^-v(REWwHDw4yWCAMmG@yTTOwYCs&FhPw{Wekv)TpN&$X`QeDhzC4MPaHZ(Uu1~jS~+25RwY`?)Kxqd2kKhTEq!^NRn9Qu92bUZjYcC^Av~3pwFauC$3Wsvq^2x8xsiTJ zb7;lKamjI>B(274Gda}~7iGPz(0Ku1y#vw3WhsU{TM?>`2p}Pk?wwrgjHBGOJSFJ6 z6U75-v1x`KM0?%w^p9=%4TqWeuR@at;A$!;Xgy9!#>1;lcY9rQAQSOc=E)ScqYPN* zCfP@%P7sR|rTsm_@wC^#&!&N=T8PL00K_?U*?F}z%$^}54Z-+>(6310-Y>wgseMAS zweSevk|0}f(Z~`PJLwk%qN1t)0BLYpnKm6-{{Z)><2USOJ2(N!+{a%vrI!}s=*wfH zoFo8AAOX73Q#sO0HAC9wK38ULVY@!9yg!QVcwd9@jw7s!H`3Hl;kkpRsF{U@?dH}4 zsVA<%dMBh_1faz*Sbs*gI57%1gDI_}T*37n;n4Cv`{9PM-tO#Vd%GSbNYd%s;i}o_ zweO0igAjEsWjwUAu-Wm-+@ub^BgAO4)q0-j%MW6tL|Vn@r4cR^pb(I()Kyc!%+t*r zW2>A3u?0-^WQqzorXTYjGBe_L_XT7zPJNM!nnq>yy1}c(DPVVI*BPYy5$b*Xg22Qn ztLCVZ8j7y#O^YGBSbgVGy>o&%FNN@&2AdMZsi3W%qCCwHxo8KIT5Ye1TXE7x3g-U+ z(4ppUgpVhYxZQjPN?yt)H20#7-$>!$O4iaj^z|>Prwo!?+D1&kTo1ocSF=^{J_m`% zIl$_w=xZ7aqk-=ZV~uY{{W>LJRgJb8dxalsbj>d=@}cE)(p(B)&Bi;=2sPt(PA7qQ3SZX zE9fg)*3AorjrGut#^YkSjAs?Zahmxnu}Zlrs$HRbk1m6tTR7nIG~c1GsB08>cV-eI zE|JR!h=c@0Kt`d#z?QkD;De}JI$T}-pJ81XsEFuYZEfN?t!gUrVva@TF2ktFh51>w zb{7RyeXbijPgvY`{71cOr-EvC7EK$Nd`5@ftu(oh4~@=a#?EQ6TPkc~V9v^}CRE0E zxUu|-rAID4+@o)HpFhmDzxFk#2UWBq2B~o@k@RoqTiyJ=YTK}>+zY9yDd%q@9b@p- zWV6To+!ehP@5s|%V|T-qzoRhLzLJ(BEXMLnE9?fk3oG(ZiQ^72wpnUh&N^|DKiYTk z_bRYw(b3Vz6;=+}=56mG40XlsH$E$B{v&))- z_$h7_aN62OVp7EBKH-dOd#rf-^uDVH!m}&(FL3@IZ|jvzIi32pyHWw>d`iy6X-!2a z?7v$ZgV;Ke$!2*AC|sFllb+*cV~*XXiIowMZtRY4wAW}`=CSPR=`XLUwEqB@e=ogk zxQ>pRd@gs(99h`h!R{Md#b9C8wDl0QFoqnXxO5}k(ROtCmT1~WhFENL*_PW{<7GUS zHDzox>^X^h_Y7dWkGWu+N~PvjwkYB;#vXGV#>c~|x$t7S>}^Y$2nE0rY%X_IEG#{+ z$bDzFGdz!I{a*k%EYv|e3uVHD2UbR1uV@|zfp73y-+Id7=jFzvkCc#H`L*B0V>M{b z4y2jUg*=o6DuZl910)#|B6cKQx z6j(L&^bC=u%ocLe$rIvsSBoyD>l&_=l?~Kc!(y|Hil>P_$2TJw_7=UN!15~Y9f(w6 zZflfMwL=C)TV2I^Cy98*UxBrlAR;B;2kPf<$QK?GRxD@j{L zBn~7t?eGfKB+XglXv9>%*mshtS*>jQg{{Yk@@*i@{Som{tQO4iyg^)K~ zOs?k5h;}3?L{*sp6xjyIfVRsFUWD_^_K*8dXxmddfQxv1>o7$?p5Y#!t%5mqz~pm|*^>{^;zmhPs#0_8TP(VAoa4AP&k6toILz zuv+YUhcQSf+lgXxwo@~UY#a_#@UUBaG4)OKXNG!{UiyI}%we9;J*)Lv9xBGMXW@|H zxQ!dBiFS7vFtkZ;tobYcr~98;&nuJsn(h;OqQw7JA6+`GTIHaV3?=v{H%xSrG^srk9C3BYs`;%$m64Vg^O819V=TQnX-o)$0HqfxCK=OB~4JO zkiEGW8W0Ss-4-xu%o^dQ*DJlC zRToEt_=-=)Nsz`{d#IC8TGM4+_3~7-5_QydT?5aq4^H%DO%&WT_B>oZZuPt^s_Lo* zH61BrQHZ0BrOxu)pOVmeHHgK-d5f~fWOJ^5&tHw!hte+?VllK}i&mmID+nc59t)m<>JNE1=?RPY%I& zhXtUBMMl#Uk1UO?V|B0>)BB`+6uB#?qkTGDvl|_$Z76OPhmj35EDbq2?Qi4pT%BGm zLrV8C)eL;YK@&~Q*4G@y8;U+`BLflMQhj2q?8fu4=dV7x1#^Qv8bT;tQH(xz)yO-I zicGGEbuRlyet}Tnptnt%3oR;wJadgPDe(+p&yk&*SOa5khvK(>hS`hF#t;lV-LZ!m zOn{a(q*~`*q%UQ|{TFb(JTLW%XI9h_Pi;JoBmy?I?WdC2@UIAAJToOsxOjef$RxX9 zI)6S2%$eY^xKXXLPJ5d-EDeGNjKE2tHf_F3T^(cUoaY9Jq7NV)?g7yI_gR&7(TUqm z*xdO^up1AG!^Cj!phKV;-7W#2v4q*HgQPv6AS!dP=E4BeQIy zFdXgyx}!~&Q*9`sTwYk>G=b6h@lK13CJ4Z-N}3^A1WWfV^XLS9HGdy;k3m9;6g z#qwsd!F;hfTu*@=TT%>+KUH1CY+qE zPK~|!T!nIyYLQhQed&W4Z3PS%B|GFf!EtGMA%mT-*YjRo7$9BS^ys(TX)Roswp#gO zsGKwxIgbtv<{Ajo;Ix5t^w8T5PIjVp=@HKAehL!hY#O89q$j;X5>GTcC`AMWOR2Xd zB%$VrHbfwAqM_~kAQx;EXwi4H4a-nw3S$76Vkp)De`5I z#B2+jp}R=77{{ZBy;JABDW+28@)j;OYoHjT2Y~T*Y<9n?4 zV9tB(E-{I?9zsyj@&REe#`!3XrNaLJa|&z<2$<{X9*q%-9sHPrRISQE=%F!DoG07y1d`<(Cv_Ep)Qp+Kc^z|$Zoa3gJf%R0Uq+L0WdvJCM4t=T{)z>&VnxXvmx`a12+L}b$JA>-U{_$+EnL`cU+AnfW}p^WoB3ZV8(*&~jkS>rKx-1cP+aoi6DD3>k{ z?S#3YjX@VvcMgWj69<>I!s%pgq{Q94mS&@xpx=wMMx<-9jW1)bH6Zu5@*Pwg+hPL5 z5bFX5RXY>Q@j_1g)jC?lAS76us5%=Z&pnCJMYqurG)UB3DzB!Rs&)ii>ZeYo-+GWm zw$ub^7T<1nQS(NPb>yOgD{h+K-E|iiI@v9D+fT(v%VBf_OLJ6?gWjsx9*PEoQgzg+ z2&95P@TTAqroL(kwfZPK-ufs7S0o-<*)9u3lToSG+>n!V$w~z;0nD?kblGZa=rnYZ zivg{c+>48-KFI_E3Yf}_TvJCXK@K44)moM&O2WtNxA=t%UJIi(D@^t|jxBhyx-zxF zt2i~>zl7q_(mAyC@68c5WapQIzctb|!PamfkB!$N_O;C|AP{sQg>w$XC&OMC^64op zZB5+}{72lelrOQCJiB;jRyE`-rM)&*Y2}V+TP$yD+C{->xFKIUjTJP_rA=8E)6GMG zw^YY#d)Z8lH`mA(mm zEv1lH8=xw=y|mp6#$&_d2KxiD%?8(0K+KV~y#Q66^}6FuTcp{P6(orpc&3)U z^&vphp;9;Mu|$&FscF}eH1kq41l#1MfrX6N;quBZkx}Y}aU9PVk6)k8k2dPnf8NvCH+i^WLdvQ4Md=Lm*93!-l zfG^{6He7EKU^8Jex*S4gx}S)YAIR4IFa0nM1>wa$~mS_$>IRrp6%4RXlXn(VU^~(Xx*p6}Fu- zSkTf-EI5`%u;nZ|j;pD|CXtLRmQ3!p{Z^`aV@ENFSW4FSgSGL|W#QCwww|7*c>}Y! zgOq$0+#wXMUZqo;?2XjG3RC_ii)EKD^>EY7tZqemEg#c9b=G;+GLQm+V(ZMdH z4tN^e>9y9=d>p8&XSHDTG}RbQ3o0WIY;d%JatAJ+OB0RpbA#~pRdfJ0MgYi0mJTMv zPIlhj3ulHOSHkK0XXUgl9Z5FW4!SQT;+`VLIHt0v1H$ODQVFat7k@)*xROJ4@?Sn{ z#m^`AKEZ)F;EMYr&+2RCnrfQ*l4q%?c4=gB)x~yxi@0!CRvc#%jm@X00rAH6n-?8H zBfwbu!s~b+f+(=cQ9dg{Pg7oGCo}uuo>$Xv1#IK^Ycc$Ch4aN7G$pa*E(~Rw(9>@o z=@#-=N?V&yGmjrJhmGP=)=MFLnQ6f`ZR{=7u42C)qlJ%cERCs=pqn>gzdnBDnT@)? zi{kZcBAi1-8^Dde%cphhM}PxU)6H~PccSbo^h02lvayvJ7q9;S>Glj(dV1H$7-$^k+0p_@BKkMOUTe3L z(QgR~H$fE}nCCPHOy{}IBy-mK`7QSkVANbcg-3@`2N6Lvd^9phSX}~#?-B| zBM_(*l=8^Ym^LzU^*slP*K7w&Oq*Zm4a1ucd}Ebi17502V6?7Nf6@YG|oX z(Ye9W%4~8peNZ~M*k6#pJ1%7L?q0^+c?g(_abL@Mic$U{mQ3JzG%gR4#wS1*`%VU1;Y6|dpLRAY4KS! z7%vgm$oS~+eC4*x=TtGQZ@%lJ!eO4f4uYaKxy_O=;Ow@)@>il@@J9|41W~jLFlHy4 zx%}3yqEN)XQuxBxbIGv|2;%tg_fHYR%#GB-*&OHF-T*%pgTwqYEp{ChUMF8WohN&; zh25J#=xwe2>)NXy1vCz*sg^jQk5@hB&2O5qPls^+DQbvaPg7&7p_bzQ;-gKHQ%;in ziiBUElg+8{3>uBEbaa&LAYIZ)-f$grJ5{y7aCoa_jMIW+aSksUfZnUC#W)iL#A+j! zQ9NyHgP#*7c1bPC&HP1*+dd}H#>!e;J_kb4aC2qXmWyM5p_hvkxJMZWqxxp!ZmX|! zW`U9!8&9rjdR+1v{1(d?qm`fU5w5H(e`f^&~5H3S5-7L zl~1I3yb^#&+_aUPW$tQAlUa&A(&4%2Z)8oe2;5d)`70BHonT__i&22T%Kj=R~&XD z#15lmk9#SOOwMsRoIFoO$+Tq__^gaY=342bbDH;NAiRBJ*6SU1FvDz8IeBMnA|kk; zA|e2Yhyo%ZArTM-PDhvh6K+5*Hs3{8CA#2-wfsv?*EBd;_XKjvRukeSxNXfOble+; z(AMA)PdsjXh0X-_uj}Ae{tO!oh~{k+McrI8ADX#AM+FonDroXXTwRv;7b`CME@O7= z^e}=^rc&0l0MOe3(QC2j>EB4%Dk5yLLnCB!T-?Bb;e9-bTOw9HbONS|dUtIj3w|Jk zGHZ%4-^0uR96q{gW}Ta)jUGViJ}L$SU2Sn@=s8mh{po_xzHBB5VZ^Zrb4D)S)Hnh( zHp~w@td`(Gf*Ho5+?roJWF}_Mub;31RrW1uzQpoI9zFL{Q%+vu#?-efoZAxH+fnZ-A1KdvCv9@7 zPzT9M*Ehk~sugEqs6+xHA^|xfgg}HuL;{4x$yt@bX{%^VcXKbNCB0O=t#*Vg<0>$e6pmS2k&e#UVsVaE`!5@h;I`O}328D$ zH0HIW5pY$h*{dkD&AtnZwxIg8ND)+xht+?Jet2PrP>{UFKM2j6&JdlzCC`1H>Dw~A5 zghiDirAiAW6a^|t2oV%eCox9=_7=EkR1MW?P@_YM(3qTF&t+*bHy*)}^LxPeF4krV z80I@-xjNWyjR-kJ%--^UC1(1IX0BLQV>X?+VQYE?TX!lOpi(znX77_UsTCq3f=L|F zKvFkZ0>~M$oH@MvR~vrAmqrDG=c$H%Afy-e86(HS--_tSxC_~IC0cLpeDC6^Uac>; z{>p5m1AP>Ma>;nw+8^MV=s1-ZGzTI46!)2Mi#gz zj!4V1GM*feS0r0#(LoBPg*Me>RYk0!W7oFSavv|eETXaT0siGDyYCAbe5~p8U-^a) z>W}V@{{Vs?1vdrZ^-iX!tC_8rBr!JR{Uetl#jnM2%vb4f%9hF-mN;1pyN&6u-n*Yh zQdR!|vUE|lCJ3!1rPludtahKtT@8HlMHBPQ94zMNdskiqJ5kS({on3=XFK!1$>m%z z!xdE6)g^W)8Aluv2?HMSo#b-2FM8Tz_+}G6Emr zc?&B|ZQ4$OWU<*Gwz-Y9R_@XZTc=M2=(JI+SMGfO0Ip=+s%zM^7)wbzgP~PG()&i{ z7n7n8(9^g+Cv{sYO&di>u#uj{#%}l3)6UCkQmD3a@MC#0Mjq#*RAcx*571L!l`3oL9twv!jElOCmrNZ#!{au#YD+mq#TdGuJ=#|}eFz!lX~NW+QG z2z^ad+PTEIIJW-a2aT48(Ce!zad*%(OC=jap6h7VxPf9%xCP;!$!^K&eQy*tK|yv% z@3AW3h0wO4@yR3HLm3=m?r|q!*G+xJa+t@Xiry{6rp0S(DxQDhIFQkOhd>r~J&RM|*kqMcxP~x&R@{z&1*Y@LKPj;oBaNk? z!+39q@SYluk%Y|GOlo8Vmplgs>(|=y)2i+wh%v5XH|B5dT($!={7YXJDN{&bf)@!X z9A9}HHOy_W2E+NX>>AM0E=R)aSBev(MJvZvK*k=jW<9M@bG1_(vJ|_v< z!t>fqCG-v)o8jcUj6$ifH?nS4HLV=}L0ROE7ksiMYIPD>BuiVAi!vzR;^v;t0G2K(CDY`UyV8N;yZ2h~?q#S~2-Z*oq$TXI)Dfbo+t zTw~Q>qI+QM-0>rxGh7k%d3;u`EZU8&<6Vs9jvwYQXmBci7Q?Gx!{02KT3&l%JH?{> zfLy$sO^ji<#Wi%oJIPKAl)~+9OPgNz*PZ-qyZZW;G|4>DHL>bkTxXJ4T{M_wHB^R4obzE|0k9obvk}2# zYe9+mT6YdN)6G)akC@6T_$*;Ha@4~xlP%lqj*Ax-qkQl-MvJ;JdlR@@8cJ4C(z)4y z1oxfzENZMuIG>gvWcOGsvCTflGE~bjO9VJ;9QU-eHsQRPDqFb-e?qs7eYzpWeQLs0bHVClD?gQ>gies z#alZp-X3mzc7?VF>DYDiSkL8Un3c^QyuoImI(RA6Hs;{-3N7XDT&8+u*noHOP;IWe zZmK;7>YE*P7v`XoRW&>{{HOl_jnv!!0H+y0 z=~`|wfwIw4z1n1`WzT^&KZ1rsJ6mXR8pzwpy{2G4?z+P+Sivi03JuAmjl6gy1eaCR z)>Yq>vsu6Piw~0KIO+5Ov`wHeS&nmFA_BtWOWVXPgP@jD4NY}i?HU%kOEmAuSzvJ; zBL)vEqGMaxks!(~vHY&8j;1@(LU>-s!Ozp5r7znf9OZiqr!E2R8!HeW*J*HLwXf8z z%uEr+8aV~IH%*#rm?U6J^m51rtsKmF7VE#_wnJ@gWv;BhZ9Y;3;RgO7m6}7J7j@Yj zdD`lS*)gwt`BwOc>2#bKfzua z4L4bCuEkYm^Msu7fWpIK=*yTu@Nv`bTVbI$KP98!`I`D_sM}{`nC;>LTffCbyPXU# z$c6MeCR+olg(T^8EV2#m6kOildT2(DO?LzU5QIV6#YySSKo-`=#RljA+}#R-H9(+} ztwGm7mKL^(NEXzEOSHKoL;~OoY^pBg-IW#u-(_BfpbHOj5CJ4?gxceNiU4lewem+D zd^#yajX9{wG`JSFs(ii*2`UIe`l%yJ^HI$6vS?C(P}ZCHl{ z9YpwSrbt>}3y;!8__xRJT}2g4RZuo~9vsv09&4DgQp+_BL8zwG5;Mnr96vRTqhc8x zPP`lIV24n#C@UbVfJ+PR4&d(7(5##2RYuZjt^u(c*-|$;0d-IsomB?ejmc3!sN1f} zHQhlLzbo`o(sn>kF9dIbi;ymsy}t!E0KL^r-0SYTruqP+0b)&*0Cmt2;#7gZ$wh_s zQasTFRi^e*Ep1gG9NDj6q&mccbyH-bAAQBVbX>kCDXPc&Fac#WdfV+Ce(NrhqG23P zdx*1ITzr==hh~wFs(8ESd3o>ztTIb%8z{@mQ8QXW*;S&Yw%Y1jxm?0gC&cqh01fPJ zqkd}^zc_S6Jhi#4rq|?3&N1BRhW4v74%=82H#W9_C~rfmski5Ki9O6(kY8Ct7}UC{ zgz3m!{tKyKF3<~-u=qO){VT*-+~1(0W!!(h?HWD+mEF={ki$8Zrsb~FO_!|b@>sAo z`?JIRM~YgFL{xhuTfn$-IiiYci`<`QlItkAevXz9z|20gJM1fRHuc;IJ8kVNG;y zbto=r8FM<|o}?|MWn586<~gM4dx5&+S&dB|AtPSl*g8T^ZKD@kP;PI6rk!$)&No0W z9G%9uYn=kFXyg4K3u&ZlqmJIexN_%NP%0vyB}=8f!$Bl~PQK-t!fz)Jnj+(N%rx`< zO5T!|*x9QTxi-`369TXrR!oir0byVj15j+eHV-Z|kDGNFZ`95G%UzxBbPH?3)Ge*Y zDPS$Q&6&r*YJTOdaU*4$gbJFxMjR%NSHSwy*~<2ABHjA((POH~vkay79XAJ!s)Ro0 zaf|WR0Z&;ZZjil{j>siz3)>^@t6Oae19PIQ0)e#fj?NGrRe7H4YUeoIoAX@9rOXpqrcj0E+(rdh6q84FCWDS}qi#mG74qt%5pw%7%d~ zY<2e9{vcU&A)?1yEq(V)vBi28rM_G83luu;Hx?YvMNTb3rJabWF?ZL@Q80cdz9gx^nG>~|P~A&6?oBV)5NCVj8*AGvR< zt3#eacw<54Y)Z>BgmEucL~YHP4SY;vrISqh05`JoY)jFUxUUpf;&s){Z42D#Sk_#~ zN!KpA06O#gyFMl2Y%2$+W2&d^CwRLdip9>asExJI_QZjh zv@qt^E$^p->#=J3d_Imz=ar4M@&omq$OX)B#|+1cG1EGJ+~4VYKdR$$N1EEiqd312 z6-l)&8Aly)Yq9zWFzP60hc|j~*WILYZo>9kzeHG7We;xoGqM-hwXWvwpm{C62f>Yj z=1D+v#?F)S{MTbkLk&A}f&uVSoN>ow7X&+#wrR0i`l#kGLg3H<%mz&$Tw zb#mjLpyK9369z`|H`Jeh;JuErXsM~>sFa4XHkUcX?Pc?~6k@Vt80AfK$;$V40XsBk z0^iX?bnnpA)lY0F)r3%svW`GgrIaF&5fK1HK!75frO*(HZkIqp=sg~@HxkBv%x*s= zpj}U+W?vbZ{{UhVJ|rsg{EXSstICf;L{hnjqA5e{n<|w$i=Z_)B_Gq*K?WgHO(P~Q z%GU=sE38L#*8`r*W%@R~%*y;~s>kfIFn&2#KZ{be+(#6p<(c4cy9sNF1ak+)UlG2TZ0I+qy>M^i~~A(LGz=QImI7Ok4-J=spXD;%On1h$Y1mhKm6$nhyA;JmXnI&Y;)4e*5zpqj=*WueaVMW8BHW%pA%Ty zqf!ICT2cqMBU|v*Y$>Um*qp#!;>PP5iJ{?)Jmhn}OKJcX9G1g<&1ox1eT*72^w7Hc zx-5sxe3qy+hH@??$oTwV|vp+0(c>7QAz9{O+n) zSR~?nB9>O{=$rRhW?Xepbfd~8P(_tj7Tr=x5)>kY0TB=cL_iS{01Bl_kbs^_0-j2g z1xTP3D*{SFtCEcoNJJ%(IV^}Nb3p_hLe*k4JH9ox1wkH5B8fFy@!AY8Ie^-47*dc4|sHS$_(|q@Zwusm_v^=-CdYKLgY*k*;gNb4V>B z;ErpQ(2EgpRopVU_+*(JOX$hlb03KCSjs-ec=A^a>JyTtDH$sR*x=@oa6#Qvsy0)y zl?q5uiBJfMWTF64p#q8}B2f`ZAxJ6|jnEP|Ra|vcpg=^9$_eNfElBfISyflcNB3>e zXg=k-$LdW!8#9}H?im^8bPHES5QYXu(O}VKPI*)-+@gHQycC2*&m@#ku>p7KD`$0! zbR4|D6_jISH%4eup#lP&F@^j`m~9;~zrDlqT|F!ho@PS9snY!v`aZygZ8c^oIJ0Jd zWe8axlg{>CYTV;)hz0rn?+=HR$x0H_$14Z?;ENrS=vD(4^0&?%Ov<_#IV7pnmmgbqiq#);A6y%Zq5SB z4$G#-XpD|0EyyG;ee5hQX%@2Y;mf)wkJVuC@;Y1?#j76?7ND2i_l1~3#l*+|01unU zf2b=Z*x2Z+{{WD~{ZakV=>CiIZqMxqN6mj2RrPIfLNZ6BAD>K z6s>kfH$K1p$1Hv}o#sr`lK@SFh~!s*)W-E0KQH$_x0SyUn6*bVM@#OxinclN$s;2L z;8~Z|Z(^zu;clvX*!RZX{q(t9eReY=YMx_bSs6PGY^M%3ie;10nx~ks_}e9kl1E#_ z1+W!D8px{SZeSag`d+||)&?~clffNBHD+B1>Zbz3svjJVmE;Gu!M^?1T_-5)IqjtE z?di#NI|;qZLA{m0(hEqjHq`i~BpKobr(gxV74ZQEz>-&Q1h(Ty@I6KjdYQ8nwWYeU z;`=NdU9uWxvKzV2k*#PNl5eG!;gGoIb@a=lR@;VXSY&=7G%b+PHPbdSFP+V4x6aDF zUR{`E$>~~s+PE*de~g`qFlB1F>q$K|Ot?sE$1e76Giyy?`GZt@GN}Mq-A|4Hf~QcUOqZ zn%2~PJ`keSEk#6;x%F^}ULN2YADZKl_pLTLgMOT-YbTZQQnZ09ZLEz3`A0>(1OQ8j z+p3nivNVRD5Ve*`E>WEkO&l>s$f1ZbHh=|&%M%pFC~)YXEoDO~;|>kZ@!bU8*F1+S zofXR5LK+CKGp^?j>s!05x%SdW#4%SzT}Wc4nll(V@2Lj+j#v3C61HZd>e;O0-Xo-D z7VykYCbnptSjNaRO?K&&a|LH`F9zW_9UU!s!`V-Y7(Sjr;_ErqBv_jcnk`-%!dMO$ zj#E%Yg9?i{IMq*gJGwIqYzCsszmT|$&#3{_(E5wa-Yq{{H@&lkI(7MX2rOV8N>@Kq=JGu zOl%A~5Hzs1{ZE>|MLEt67fBJDnWnp!{UzeDHx8$xiRUxq%=QDRXc}C3k?>j$2FGQ= zarm(pQ;AuVA#TSnhl<9U80oQEm@6n|t}*v>F~@$S*>wCbhPl{tYF)$b4UmBVYYdNn zj-x^2qUj|ZaHMO-E>h(6%qJ3$5u<{-na=E`8Nede8)~+!h&iG{<73HbczX=}9Y`4O z);h(*>bJlxm_F5ku>$s5l9FYcQf6CAOAVY2yjB(`QyU@?=FEBpM{EO4o^)7ck<`v! zWCXNW+^u~?qP(lr&l-KoCOxDUe#EVPOcrgL0X)E2B5>(Q%nMpbxEt!Lh=(-kZg;ZJ zNv3j5$j3HH;T)G3$vzu}R8}@4*|HZnTWf*OqWP|QT`clU^LIVP&L_=%9qEp~Iz9%i z1>`CQ$A|;Rjq$u)FdI9;O z1wBv?1k+Lzk{}44`=|;4D{a9rnYf+;H4y^y@YCmIsVk%Obx=m@ye4~j8x1G*d5uk$Z7Z8ba)f9VHCu2jkiA~M!G-4izw6N z-Ihji&|8|dRT!F*Xk2uA3rO<{=srq2*S?ndu4H(2Z#0^tjAS`k-6rmgk9aF<3$w%= z4Z#4bHE01m7f@78Tjuxo-D4OC7DNx+$w2q_cr- z7})pbPw`t8=+%Qv%<|YfFl&pR{;pXybum-Lnn!9jXcs5km3@fG<)!Rh2b#c^pw&s( zK;x4A_l{$r{MH>sO!Y1~iH<+8Ir){Jhd^UtanPT+TeE7mQ@Z#!93a-iTUP{NHMtnz z2VFwxO671D2=URIK_o72ok0ilT~ODm#rvDud3h*QZ~^^(`5jHMelw{+v-m=HnoO<2Z{l(BdP(m zzT~yV(_#>UO|5Q9k`#k6Id#JLJso!NJ3wW$NLXonxkTqF$wbZv;f^Vlq zF?1SDQOnO6ibB_J6&+Ul5u|L)BzsFj_Le+?H450fH76aVFuqDz{bHEe{{UI1XOADv zbhuq~HMIHTI_&11+I&|wsbl7)oK;gBJ-*XNg$0mCH1n0A8`r@Mx%-)b8yoO4}NzD$5Yqj z55;1{(Ae6*bN~g5#8vEWITUUWb0A@J%Uhc%cUyUU)pYfg^J^T;cYr#oH7T^I8r##8 zGQ4kfJ#4829(THsEHzqGW{GLgt8QyuGYiGq+mJj}+gMw58gxjuy9TU~G`K?PA1f)~ zVV0t221Ofpc{>G#HDM>SrDtmU+c(u7XYgI`pqx5K*J7Bw<+C}2K@*E_lZu*tRLI|~^Y{&dzm3=7SS1UqF&eJI9Ko5gl1V)P z*RIQLQeMd9mBcZP?>M;H!FU&>&L|v5jrLTpCk~_~u=4F4&Hn(Ghnnug%Nj?WQSq`| zk?VXZUk)b?Ow{<*HX|62Wyt}Euy2%tP5jpW86L+14ae0Xd3T^#>Wo;cvmaB=z%>5= zhylI5*1wouqSv+)mnheN6_+wad0`k&gJBfTa2o8Yl3wk=1FF`EONlX@z5z&)!QJcl zm5PJ)BYJ(AgNr;#D~UX}E11QY&dK+++Aa?@*GrM@aC1S@*YR3f>?PCP@jEZQZs3|n zGgXFCOyi^uZs35e$Eg5sev7O)CYE^_hljyysxa5W^PV>7ZV1tC$59u-%l!n?v(VzI znp$TF+R-7>{Ffn!=WSE-$=W#cy6GufEj(_Pc>@?l?Rzd08=iJzR)T9n9euBuU3dsa z&#Zc~F>Kw7o*R2xRm$UVJ@jR)O_=jA!hTT^FJ=7Vi^3K-iHrzLtQOPVZh2vvwk1a7;~ zno&p2^W$>MC-*U2#*=b1vb)1ZbH_MaX|wlp7iHwq4e#Kt7>-?TZn{hkmRvs$6?ByB zmbSh|(nL@EAZ~MC;C;(Wspe7ByE@$iPTs9G=!^_Y46EawC7z?Vj++Lelhxf&Naemz zcO?DcdOb5+hhX9iB9k<5GSRip%bwnR)r=2^X)xMY;c3kbHtgfIn|^L^=1JD&Y-A*m zL$v4Oyk1<}xLuE-#xzjbTq6&A2zhR;2KucfHUPO@L0wvzIz#^O3e=$%FZOk={SA0 zG1QsrS|p}p{{UAQ1i8lBSbW!WfZ#Ys4%5jF6GX~ZO8oC@NjG(X+?A!^Y$FMy#404B z!DFI*J3BT@-Ym*V>f)!R(HQ)VbyaO-V)dBesfh!O6DS>D1CV$aN$g0?TUyZcDc3b%R9%X`o~+E^uhI+;uAR-i1e3a`TGzFf#+OXoZbdmVQ{eJ{OqG>1I0Uq$W%Y-M@5r}* z!FZQ7>|gqdu4Y_64i4|;bfkD%!|`4>yqav)=rqt!hX*TBCpi_}E}<65s7=!95dk+# zs6+(a6d*tmP15KHK&I(*1Cs3h7Sp=bl}AuZSP#DCah$BX{{TjFwBa+;{b;7YxR2mf z8U9muLcfZ2PTVSjjmnZ&Jnsb#Iuuy=l|yN0W~q4qM#AqkC_WL$;uXEG7sOioG8YIy z<)}CL{mYW^vsHj$S7AGuV-4NpB!R*z#KZgv2CxB<1Yp18_$*Q8O4z zOwsmaSjaDXF1vi$&5Rt^irp$6Re0mu&J+Uyo?hR<%m4zFfUm?y2r*6aT9;INO-lkAyc60Su28~;a zXuBwbdGlFqqNOW0+#>J(4A}WaBiKBHkLI?^N5W3a9b7jT66gN_xDUv!;)Zl_JBU=O ztW*^Rgd!p^6Otl;LTZ31Ktfqc1OO=oLLesU5fB7L7E*yIqR0^fQ4s+Mr4SU52(cFn zU5HSJG`=ya*#LwrlcO0$OS#IBT5Ls=OB=1WDM$_EV6j?~Hw9Z4Xw;l`vaC9__-uzq zK9uU_4NE*nhl1(pNy;A|hZXG(;pIODRA~gP=jOIN7BEp~s}{u_|g? zf*1_0`-kGBSaVvR(vmoTjIAg+HLOSX==3| z6gcj56gXuq4FnXBGqZ{a!x{%c*Qr{5B*w6eA0;JDEXo?G+DuP;20-5u2QPx#KY_{~Wxrfbh-iYF={{UgA{cYre=eiI^qB7%e#QWD+ z*;vq8KvLDBr?wJl8zxHYUfL=uCCbB>qQMe6$1ASY8Oa14LcvCfb4_q+E5lA=dh}ez zF&kW3=IC}dU7cGam83bMN5Mj@ViOy zOEB1i;mXUN;%YMn6;NE;5tsczZmiLl1|2U&EPCuO{{XaqbF1J-M<)hhum`)eyo9%q z9jmodh*HxwqC#9=+}8~%-=kRC-WjE;k=YpB;CP(w(OkzW;WHl9u5E?yme*bvRs6*7 z{-^u1>A5d_sL=5!wih#LV`fJ8oYB3nxL$pTwmBGI8wl&F?(6Fw;^xz_mLlEz^IAx- z8S+V%MrLppY1v(hYAcgkP-j2G{y#kGq=7eSuM!@a({n=E-Ao(Edtr@@V21 zbK__(c_%L*2L4xDIwoYHn1k&~NFUEF7XCc)YWo=YBr z;sblO=X0gi{av}|*Kg*_xgN)Z)jio*11KTd_yyMRZ58Ncnalz=-J4qDpWGKBK9R&W z=P|duuS~(BWH@XT&HAkwkBa4WeEuFCzUNz@U~|sr=#i0B*&RnCA$Vc6nnvn|W{w7f zV1EU2;qJ=ahc$88a%$V(k>tFTpA>s^VzGu&Y%JUAvZG^K%`Brx*mB!bqPN-*JHq!X zE?Ba~Z5wJP&oghAYn_5p7@Qm%pl!j>jZ&hfIIj8SYe3e->QV}b>Zsd1KF#cTUfZmf zZV2bpywcYY7~yfEnx~dV<93oSuO*99RTdpbJ#@lHvKAMXvALY!2Ov4wYjEBv!m&wQ z$aAu6p~5NK*|>tx;C1jSXvVCuQN|c_5CcyqZubvmj?>QlJeQyGryXKdSmhNi0LkiP zgp(yaZ8==yuywZ{AIRR}o{gyC#ovgWMn^{BmMB5LX5BOg&i??-*KLJhcx4<;6!g(F zo!&=%$HeZhP=sFUzsZg9N0Crq+*t%QxRqRzKNiJhWKD&$0NBNkeb(gAHXCzYM+tCE z9tlZlsvl8O>-K~?(ffzuy64jNHE&^djrKrUP*Z|)8`yH>wCAYFHsZMa7DfqjV$xyo zMAk|pXd_GQb$qe0w<}s0(a>3C$ne-nxEXqEw3wt=g>^IGq^o5ib%SIL%v-OIJ1vZM z)k&4gy$s_ZEhhE{s^>V@h=vJ;iDQUMEU(EFS*!`%oALtMt(7(#QrKaRO3^Fh)$hti zb;xn=31Ya$Aj+mZ_E9h~jA0J?*EeY+e+9LU7^La4nK>@TE(4C@_?zUN_0c*hJ(%HP z%EAfQomWXkS?bXCZ@Bkf>WnW6^-6F}34%D;qgVkt4uN@>8G1yjZFr``DBVlhyXie* zD>(RDlCpYybK@FB$1J1Fk4Jr7M`~Ql1`}{BjKrz~NH#iKYb_rQ@rDP9(86S>5Y-le zBu;72^Rel3y2!8M9v-E3N8&LD4ZsD*^=+M-#-iSH9Kfzo+R8n!PR(q9IQSh8$zp{``?XlfTB9s-+a%9xZLPi3w#92WVz^gel=T<8yD-<^ ze8WPvEgmbD)jB;i8j`e0<_4N{SUCM)qQWXFMT3JZ&+#1x%&hGfDaTbs-mO9%dy^x_ zfY5#AAg!3?mdG}9ECG?&-%aki?j9Dwsj~}SFyK7(T!etQWMI3TLs~kMqV8$q5YxvS zZDzDIdxE21FCs?1f<9);oYd-Xs)A0QYC*l%DC!!_YMsTbs*dIHTsU)cPX7Q6*0M>d zpBQtpI{NFX>9j4n<}s`()X$Qpow=ZKyO;;CdigE=CROrC(ADC9JWOfo-IF91VA|j; zFy8TbH+kL1QdG9YTw2_faK!255ir}EozO0tNgUg3y+KdgKeT`9*njRTYu4W7Ofj-3 z#BJH5MOX3_GL^E}suZrticv~0e%mLxz>mZ(z!k*QlE!w8-ZwSl!o(HZL_?XF8-kvO z)}Pf5XLQj4-7U`Q4WceBuuyG#>F+=_)f!H`kb(vE(?XUz1iy5tY0||2`nFV^08`|r za)AMR1teJcsOP=ZT-(7c5hY*ps?|8(OJar*+H>V z5gz4JZd6|CLFw~Q5f%pE1FF;Fw5KtVr+tFl>JFbJM67I$b6w448Eqm-Nm0uUFLWfV zoI(Q(rPiZ|6>xkj5+!Aw$3Nm44Q_qC*FCy&i_6je~wQ?_WG-9Hi370iKs4VB6o zr{VP-t3h-xKT6-kc&ud`GRG~4Pq`|5E~tU*k)lR8Ij$E39!joigKN4aqRK_BYo+aU z2X!ctE<8s>7V-BdQGL?Hd0jmLJNuNj*Rla)y~2QObWkjiH&nRuB~^Yv-D`M;q|)IP zbBo=vn^^PMDN5ZDC$(9?{+1(%>T2Eksb7`D`?t|_hKi1*qE5y#4x!D^{FemLadNhJ zMlUrN(YwD7**v_J+Knuxt`C!qhfNexhj{8XY5z$+`FsCC+fJ13|&~bhySb zG(Nl-OtTZ+gnfoz`76o2BXNEq#Q2j$Zgf;pzR*YDKD)e6%VpHl>HIj`?s7BgJZV&W zBhY;}aj|iK3*j>W*8%IYGojbB2j+eqSCI=e6-X{5x$bk^b#sZiC#hTR1Hu0QPVp=h zk^|UB^wS=#Y1`gxJ?m*NL{_R1#8h@g`>sy4_&n6;yb2E2?WMBBzO?S3TAXN5b4? zhU1vr)D#r;L`2NyXRro118+TV%|mF)5S?(2!lA6}!#Q5fOa0w@no%D3VC* z)0}1i_-I13;9A_xb=k}v!mW3r=AByP%9-)F0^wuG_^nPa8($kbg?X}o10D&B&sO;; zsbO$!j&`_rNY?7e+*wq-%Y!PkM^z-59^(^PtBL32x!Gx{nk^$k+%(m66rfX4m&oE@ zD7#r;e)Y~`HI(_@=P}u@uo^ET74CbReUZ#@k;~YZM&8F(f)76*g5oh&_C(7K^weE< zSgYr*h1AWCFvlC*?ku%67#!k|dlEIK;X6zLRC8+;m}4NYbd9P?&tt(m?dbl80` zia2g=(%b5+MKdO+d?kPwV{3FB+mWdLdaa?4Boy)763D=Jn%=>dQfaeGJ~bFi@NB5s z3=z9afUjF|VdkvFOJZQ#MRCU3oqg-Fcv-(QC7?LvwfP0;I1LwJMF5e2I1u}7t*w88 z;&2!RPAvluupA4#g7l!^@J`KWTt2m)lE!*Zhj2TVSNJT}GHD$aL!ftgw;&O2YN;Gr zEURG!*8;;L{w*3!QjCi5UbGu=($|0?7fK)x%Y|+U><@&tR?38Qdqlu4w zM8E@klhtLzk<9HcX7ce^l{N4{GfyZc_OR5fxkhZHXvYhz*JBrNxl=4(ak9q6t74;r zx1G&oO>hOyHq`8_;`qHT2^0>gWkcOjD`I0|jJ)PIwfY6B#3#b|w*Z=&nrpIbr!jU{ zM&RprGO?q*Cc&%BYWTN`G3=!G>wJRWX|`>NMu0m za5W^`W!4HxjP8&~9x~aj*LCN!aBd_1)4LF?iPcP&S4ifIIhyUQ!4|hgvyK>F%*vae zp`U}-VwF^(wRNJV-R!}cZVt9vw^xBrkTi$d)(amHk+>cYEp1H{&Jlt1aI-nLyOQ$b z=_aB4M9Do}k>R<6T*A)&UbpJ9o|+kWficSC^B$S&)lC;9Sa@u!{UtGsw<~Xb))gNR z;1$s4g1$F1E@x)bFFk%M0kh)(+^+GIW zYG)lLk54hL=DC%TgjKqS6{o9h?Hk5#E`KFnNbZTTrpdBtp2QTJD^SSUB5aHxwZhT*J{KS2M>|MYM3ywCgkO;r-FC-(}LBmjT4JKDCa`V|GA0Ci(7ue{#wzlAT2M zz}If*+6JZV1L7BUxa=Y$J}*xg0EQmX-T;3aF2!ke33-wuK)kJhr9e`-=-xD#oJN+l z)7sF@tB=`t@mNw#Ob%>}dEePx9aIt2K=@^C*x_QiJVu6WK1`Bb@i_e)oqP|9>FF}Y zYizrm?M^8{?vG-cs+p!FHTfCQs~MrJ1ONc$s~aoWeK)K>JHJ%J{{V3dp~O+6%Vtg+ zO_X->1DV6RIt7_!R+dn;+qPPj8JslY+*YD9w2?L5@JReuMmJox6zrJYG34gGhv9Me zE~QDkr+!*0BwKY)Bu+{T%25$O2#A1kP^Cfu6Pg6(fSyVMl@>rsC;>_Uh>Aeupeaxg z5{QTbA|MIL5dlNm9MTBgXz>bXM)KvpRx02U#CnC4T{8*CayiSWcH3Q7G<}?ec&d3T zk*CWb3a6uOZW?;3BrI1oe@1S?;+)uE6 z&yvDX_AJFZbk2v8fP#wM znDmKIVZoUYcC$zYx`CLXibZv9fO2NzRSIqm-dmo~pOdY-r$ zI~s`05}kqA`4v?)Z7oAD6wG&#Rm~Jr$C5_1;1-57+TN9RfEEi#O6uJJ>bI=bWoygTX#Aj7NiEWsazOZs#9nCXLCr+_T3E zbq-k*nu@t_UBWP0jv~e(!RfoKaSo}IlyL*EyzCdh#ZiS}kW*1QYI=6Hfsn@MfpF2t zc?HEwJ_+dWhFn|To#S)*%9$rGJC4a+S5o}M5oVhPH2p#0W!1xj!;LeK zmp6|qU5>lb#~43}v42#heXzPmkq~auzhd*@)A+7e2&HvyD@#Pymv-|uI}U{F^18%j zfUsVH=yL`YIE47j!@EoLQ4X&oQ|<@mwqp|s$zy|Os?oW$(Xtp?BZ@YLv4duTpaE7T z%zMg)vgKWDAZ}L9)Nw7o<=Er^E6_X_+jXSJ@vJ8Ur88m`OpM#R7}f9c9M!%D;yQjJ zrJk;ymZAuwle79zJKA32#bG9kp$S#j2SHHAcD=#{`En|#W@~Q32lLTdX=|Y|kUosq zk+|qpnSpJtb2RD*ST0K>oO$kynR_E40imu7ko1KZ7&TMC7VdwnE{(G_&dD*c*{}Qx z(DC~mIBv5x?JW2A+ONgLk#>vCsl?a)OZPS0KaNEQ3gNhXP){u3&&`##XuOWGzrAVr zpNiUXIpL0+J&_*FI{Vu~N4;)voM#WhcoKp+rR=Av?Lf0hxes-TJ{m7StBN4&zGmE= z4gIeb!pjKw^R?>#0CU#mliw=$HcjG41KMSeF1FC!bu?8mIicjVwAyD8(d#i zb14lr9F;6#5f1jC04#*M)+cY8?nklU^49ic;BXmnI3ged=Z6x1p9SfZfub-;*4i7d zKj8phj7Q{k@m_@s02+-4^Y||}*7AAd1J-;y3dJe=vmT6{l(6^=(y5L(H?;^iJzdiddAu-Ir0ZOSJ+zjannUi(=st@>^+`k zdEXvG#JIKTJ!%>{DPAua4ia{J&F^AQOLMZb9y{;Bi<5nge-!b=6XSyo!gJNsOE`>? zdjM=K4>R&!k;9a7;n;s>`J|QdILLDy8-7EfQ+~1HVndW`Vt9wng7r#Kf{{Yb*A=}f|Q^*Hy zCo-31uyaTQPlwHV0ILCl_ax{%)tO_p(nc}m02;2*NkJ)!$CFv2!*R(m04r{g`?!0E#8rX%lz&L`x z2{|KkW~bk?e=j4+YURVZ+B!N-XNI=RvFcaTb>~>EQLe>mYOi*eWM}wWp#1&ocT>f* zH8@2_VE08-=4BDMY6;U$tDL8bS)`7h2Hr<#Iu504!aHrVZ&8&^B@;V`DNRl!WpMf` zf1A$V4gL$PZGqC-tZX)wlvHe|V9ll6@3eZXk(*(%2CKctz=$J`X#S?+NU$BwN*59@j6)v4QSh{nr+ezq^+F(J%>XB+a)8K*UIf7 zwz^5CbxigTaI;(X8_`#~>_c*bjGreWdu1llC8MH(3DE}E zPcxu0_MM2b>hP(1Y&xD>==hpXotG|7>v_V&938DY#P>4awfQWUD7OQt8%;I_ z-4rw_+yF(2fqivLH#>`N6dyaF7dxrkC?t#Rw*3=*w?li{+9(HABoYRil>*?A)dk4{ z`X#poLIm?B_CR$So83lhUrVO8B}x=c&Y?*pj!K){TXj*|!pKS~8Vz<$EKpqETd4-^ zP(T+t9gvgG+o^7%_bH{VWhf$$H2`dY5DC}fnu4bG*O5>W9?;tAc^f9)&&4j3NiEph zOO4cYO*OXaJQUa@mh`%Ykesf7a|#G58=D17uA~x#pfNEBJ7`Xtj%z^hTH@2VT}`yn zX|alYj_n#Z)Y)4H=u?s&rn>h&DmU>{)ifXZR+JZT%FogB{*$aTN`Gx;u^q!4Xl zIW9%OIiwwk)D@M2;x49?QB*qdAJn|^{^|S`a*Ab`@@?UrC6sOAR59W0xZA3czM9!o zZ16?*7S&b1OQ^D`qQi9_gdzb`VQZ)$7j1B-eJ+HDY3^LVq&duZD2q|rN&)g0{tKr) z3gP`GNKBM)>tGz^ZYbQ!H8R_YoPau5@=_E8=DH`HCz`n(MMQtAo>qT_++vnw1aFt)@r zaT$I)ttjzY*dm;qjon*NgkkIIcYJfjRUA=X$wqjnBOgNnIurJY>a+vr$zfr$0?x$V z?c2mG*4UlZ?9+-#QY4(MB=X&NI5s2x#^6kjI9o0`ik82#aJYs&o14d5+sDCh^mQ=B zUd-`{Onv->ToOHyd@sL(&BEDJiSZ3HUon!Vrlo+r=H~f=E;&R>DoUSY=@?q#Ku=sF26O$)!?T+^f7_I!smYiBPO zJ?@dq@lHKg#5k+#Djw$3gJ>bXjBj5)tI<6MMG(Vr3a-vh-O~m+SYI@bYZ%eHi8cX!3Bq_Nz%UAIJ-IWrx0%iQ&pV%rt~|4MJwqPUY-SH|4g@vr zH)*x(RdG48Fv{BkG<$j#P3}swE8N4{N50N(z^v-cEOXn#6GYJB<{sfXkF)#~QV`PS zlbN4cy*yRe-*$;u;PCB--W8X%(9M~HxbA1}Dpx9*l%uv=k*BTVT6r-y$jB%4co<&i zy}3Zk$Sw+}in~b(^z~Q*M z;9|zBlzRzH*9Sv}s$@>T?HGvSYd13ckEBSaTE`dpC6tA-2=;B zPoC?r!vXE%W^Q^F)YHW@j&80^Mqh(>V{itlB)zS*)Z{lBs3-f&taxjtZ@4NV`q`#G zQGgDY*>{Dl5fQLlj{-9^bDIxn18*hQw0AXLORGrE(IK}=pSgxA#3}IHDq6ak*$`t1%=5BW z)jBwx*s#kt)L`aUnd6vVEsSGv%Z}Ak%S8Zj>=+!-UE&GYD`Aa3?ufVOQG@XdxSxr? zMPY(pRS~(*n2Qj4*?Pq@T?I6886PG_hUR&@jk%u{#ri3v!`(J5UrSFD9{F1k$lG^X zKaa_FvJr9#up6F>Jgr{TyBPE8YxstCvkRz}R=N2bcD179o9SiCaEA@f*Hl(iH?U;x zC9$1yi;}x2n@w92CuwZ3p7ReQ;;vs_?=38`-Aa+1XSb5LhhF&S1Z(UZQ*OuohJ z1N=vV!)7ezP-mzu?S=k~3lvao5oX?L97tqQ=F?D0<1yX~;rHTG&gup>T96*#Gz>h* z9Iv|BjCyA|qc3A0*KpL8MNTZrij3iei)GDzO6)tL%p{XXhU3&&g*9bOH8j#1W=i1J z2LN~G0=G{{=R)6D0Kds^c*hFH8N_u?qK0W;o&BQ=8F8-RVzUaxB7{D8x>$$j0)|V+J{^O zL|Z1HPDqFdL_`4*5ClX(5fK1HK!l^Z;B0y~z%a_EhRV;?IPB*1^Id~Y!tq@}1QG~0 z1ae(21;zE0d10+*tU@%;^~dJ4vfzEVmf4-wFH|V7`Ra|2X2L+~c@K*7mX~EN zdATIH$EjQHCC4c78Y*}wrwfXPI%8&kfPQE2Th&V%)-W-k2DDfK$yB)6a(I$*I(V_Ha8W~=l?bUb zB~d&vPYa@%f$VUx1yyy4iB+0-Z5R%j`Y?Vcz$wQT>9){BL;;WNs;Q;EjhVOdI({pz zY0+_&SL_{bTKpGZOz|WUyjsp^A!J{sebIF}AlX8LY>rA4@=$;xA^?bp0t7?^qJ%_3 zWTJ#b6D2|-fS5ptmJukS6pJN7A_Nf;2?&UQ)?(Daw>w9g)N``x9>De%o@<}2fW;~4 zb!;SSWQVDaq3sS~Yqly=lFXpbz-!B86g3Vd*7`S}tU7tE=OxHU+|01i!&aVPt;Pw7 z_UtfJoV5(l^l<8{lzokiSv?uHLAoH_R%{c=KnhU-ArvA2xIak~m*Q0L18~Umd`bM5 zczu$*%Z%jhc#fj~0Pym(d==PL$kW!!u{3GX5pSb{NF*DALGUW;Dyo_++L?##m1$k0 zi?*tcG0f}av65A6vKyO8GjI(=cyX3`$%)H*X7~k@=Zi(@|t=y6{ z`GB?f?AkJ&r$MRw7N?(<%8U`Xxf@!>l#~~t)nmA=W;KdUh*wJIz2xL=`?0qAGzEm+ z6`Dze(E>DZ(1my_O;t%!F4Ds_O-xkO@tG!>!I7|TNnWGE__SDVF@|T|2KCpP^9(A#)x}Jd`GrNhCP+S@KG7aLyop^;q6i%)8o?`FX2BGXeffei{q9*s z@>QBUqVLf67O(-b)A5!!7Z2c5SG;GF*omKM=Vh~&syJYL(!H#THj?KPU;yU4D~|Y< zUL(ef<8c%e9EL$b>}qB`!S7Ne-C>44k%eo3n}7gWKpy= zjT-94rtykJb#LyD-L*t)-L)N8=L)8*U4Dd zv8#?=j7tkydmPOo;FYH1cLTw7fcJpx!%t77Zi}F^OG_WC4>8NdbDVM?9}8B*?FHi_ z$G+WGSl!8fO|29hHCXGluiWDx!Li(D44`Bb#q@Bs{h4KsrS84_Z}PI+()u)%(9I=n zV2(p$5X+_Q^_NG$F-iW%Qoe*o6-f`xE7_a=Bed|+%ImAD<%UXHlJO%S-)pr#7Cjda zQ@QEj1ToHH4#6;;(U}ucxApNTm@R z-~!iJ>~vZz2OJaPo~KfC%J$`J`RQ|SnblP#Da67x7Hx4lT59okxOR~Pe+#S}Il07P zrrd?R)=hh%f{M0CE+lxn$=s2qii`wlO`CE-*==YQGhbUO#?FPU%m8z3(Lfi_4K2-F z1CTn6l$!%=yZA2hbbR}k?A`DzVc4U{1G>$wyV%;$(oXA+;0TGTo$cHJ4x4Jb3Z~|a zHLeZjO7i_(?$5`fJ*Poiblm%z{8tu&fVMX^(#+xAjhm79FFWE-NY!*MtcseLK4|o7 zgKowffJx?Uee@Szi47$qCUm8uS=@cM3!nTiHT0!dMGh}5B|SVdR8>=$8yFy2#{Khd zKp&FT#R#{`v#jKrqkZVsc`C3u@w`r{(#a&ny`+`^Gy%6Exma9LjnY>3kBbwdf);ll zD3lj44nT8pzqxrfDP4%Mtit1~l1gYA19IK0CfblW>PWfOSf#?Ns-f*7jn0f4YI*o| zTR*3_ZJ4RG!bf|;+)KjvcM(MDSnDbz1diFx=5*P0mHcN_Q&}}UI7E1KyI!sMu)D16?gFv^>zY`8Wb zSHcB2%;`za_c-^7JCb_cZOLl{kCV8@4)L<$IFB8ggO4z58w#q0)YUpnDaevbUqJ0U zqkTcWud?3ptE$Hc;(w#bbw^=#fw-~n5#wvwYItoveM=Oq=Fb<_WBg4n7lG4FBOq}T zPS<3PFb~DWbr4}~v2|RJo>Oa=6J_EU9}!nzv{1o3~J&8qzQAt%KgSEPU+U|~BF4(fpS2i&-A?^dYpTot(_>62Yr z+IY`#&T!BUUiGGydFu%i6PJ@l%QmRSV{o`6oh_=SfxY6;8hPo-Zefaqdva>zcP{3i zjd2Q`KZ0swY|V@oc1;Z$yEdBqSBy77;=MD|B*q#lDm&{V%iKT1r{cWLY~frs$}>Mg zQ4}jpa(O5oDytwG+nORuLXGc&4E*ss#v= z2n1NHni~4b7haxX(s>XF`K*4Zv2apcnZ|ODW^^>XSy;;n;EF-iXjaabis&Dt&6W~* z<+xl}=Amj&L55t_8*u6wqw8m+(_+|lK>8}kiMD{76_y+b?vdcUuxzi>R@PIS)6~ly zxd&*qXVRDXWNl;WzxBlQ>y1{A8>(lm7QMhlP6LmNj^8i6XsLLnzB>uq9YE?ukI7l7 zuJ!QxhOo85VE3~3($-aB(N7faeT%Z|A(k}*E__O%%_cUoCi1?d^i;O4yD0wvco*@E zEML}47%ygw#Q5@8!CSjhG`BM6={nfY(nS=bt8NOr7B^3DCv1@TxM;C;xlrH;u>nTJ z6xq9qSmthc4W>Vn7|^;7V&r(mT3Am2|VCgDZKm)D{bwyF?7Zit~u1djzg zuAmzw`UC`ymk2LwcpwLRCo}|eMNqZ2P~L?=0^^>F)l7Y?C8P~Uycj%;%YjZ^C zQOnds=w&S<$y*ol3vG3nCN|yv6MYavCg0-=4)%!faJTmy)R2 z4GHF?1x~#|P(XF8c`rEQ*?UZIGUMptXgcgpzl!u{Y`mX{ChhUc$y#mp6e-W<_MhZ$ZhPk7(tsn05n zdz)H3d-7ZCj67;?(x}IKhH3BSuyyw-aV~p_HzeIaS>uk_(N=t$=HyjN+j`S`COzkS zG+gPw$!-|&l-xOl3y|PJ3txlFELgQW;Ee8={6?iO#^Ru+2 zC+OykY2@L^t=1pJl=vqH!AFD2*WwkoeMEr%ub0N!4~m4Vxn6C`H6K&0^pD0~rwq78 z6)1IE#if;}^+Wf*<>jmZT;}n)REyl3-Nf9J&&61&oUy_tG`+{CByQOlu`F?Ek`);(7(;7^fLyn4T|BRZ&$fJv?(Xww|5Yd$-$9XxpmLlJ~vx%OmBL=I(pV z+)C(p0|)&fjQZTI{{VKQaCW0dKal)Ze96)(SmA~aQayTy5fRkdU_>%n{{Y=Qiru-l zYnb3Q7B>6BY(ZPx7NpG+spfWRVjb5V+|S^y%MHF{X=$?V^0R@d;Z7sPv1#gR zX$)?a{@5321E+$@#QhvgPld97TVbjm+gvQ)aq7JT5M^aGA$}OfG962p&_moWy~@?k zTP0wP@;fjMu(-FydA}L6*=*qRHt^;xPbfK~Ej*fY4|?k0eps3`7VeNaEl(9zRZ-%j zv#1R22W1CCzTrm?;;`ZrlQg$1krSUU*1tc!CY+VBVNvW;icwQ%ejyWqE^xn(C7Xmd zHCDR~Y_Ktt6f~5S^uo*!0>^V@w!xa-)&BtD{6gq-`(4g&Rh40t8yjhTZmG9274RBI zL=C;b8!pk|=f(rRY ztG&DfE3)wm zw*;bPY#4PdOpkS(-0mInKJVhPYB++Yh#++r==t#Q`2d)gT)baaj}IPe2L-@sFq&Zv zF}=rqV;b8JC5?;X z6!=aTJ$+l6#<8S}^IXRVWA(U~8e@2Anm16<=?H?)jO$`^+f(7T{T92^tE+!NQHaZp zA)K~%4=(6F8XtHISz>BiS)S`wWbm#%it$B6^)#%hrl1DRov~ zhOu|z48*Y7StY1*yUdV)2(^x+`Dn8$usP%Ex1F*ls?Dr(?4iaDQ22vasb1Yjh_~mmNcj`rS+8zCztdU3C-a zs;Mac}bSGmsy;`;@WS{UNe2qbQ@C|F+} zjRM<|&2D3;L$Rv)lQ>^YxRpccsIc=hMt63vV?}@iLHDmV8!n^Lg-310lgDsG3~Xb= zOP{@R;cQ}66JIN~5iXZk6a+-%fL$)35Cl?)2t_D>gj2~v0Emc4L`8@rD80sqs9P*Q z8^kD?k~v!D531&ZwaBoRIL%a%WHQPQ;?AC%i(~`+;+3bVVYlA4bi7T5O{3&|C!?GB zE)_+Vr22jtdQrCyqnbV4o|{cwNl*cXqBq~8wOK35fh{)#gW$7iv1~@0NUG(xLT)~5 zQhhD|0G3AHKB&LUk4OYAX12Y8XVkmC=aSf%KFI!VuwvrMp$TO4@yJNFW}6>^!xJ`1 zAeP@o=z|A?hT%pH9I;97MtQYx$f^v8TM!i2IQ2#A0pga`>ybmX8QDn%Dkpaeux0wRm31fn7Uh>Ac&K!8~k z-9i9}hyugJU=qe$2BBssAP_;>N@O)?<(|^lka;I1n~BqyzkZ-U|icv{JOvTU}1Sgui|wB~8C9TxWstrIXuA@7fxu2J?jG34}S zdRY{WmIlDGg;Iimf@}$1M~qA=F^Z{%&XC*Uy-yREQ{nX!AE_IU$$1F5aVK)NbnBCu z)Me#Js^~Q~3M_yv!;n-?mgu&)6ge9uL+xu=9}a6&#+NuW3zBTNb;s3k!4pl3hF{H5 zo?LBSrtXRPef#42hL2i#Zn#ZTmnDtzL_c@a+aAPUp5ZLsA9VC>tLhskZwW zrNQQO@ir)fd^J5+r}`Vin@vMij?_3XObk(G(#&b^JKjghdA2J}Q-)Oft$bz|IOy;$ z(mH~=o-5)w4j&f|;Bt>phA_z`Y5iw~{{H|q5#zZ=btbmQ)XMaY#qPzP>?;kBiWVD7 zAV01nkpA!9xYk*tQ(&pkD|Gcu_2v%4wqrGLI}^ws1r6DjJZl_j9+Bwow-4bw8lxV? zWXUaH0-7K@@-TEBC+-U;g!tDO$N1@uk;0mQ#{U5KVWqXo@Z6o%w?49 zPt_d&B#qJTZzkW6NWM%bk8*AIJ%5b-Akkp%brv4cU0rQ# zdy)SDi1qLbjNtAh#p`(18F4D<=k40|c1>{+jWq7hs8aE2UBv(vC@-qFUAV`p0Np1<8#oO}oSCt2WQBg4Mi`<4@2 zbG6JlUek7w$gBKgP%8K?u4@4C*|tDAJG5`!u5jCtHSRiIUHRajdtbSk!3?N>0#NoY z?hey98~(BDRf#&H3b$o>1=@!by4r9pYial^4~@Y0grr-a(m7+}R(NZi(jBS2uDr&p zjZFUlFZVrs+utSkI4&=&sD2|9J(-c6jhs&-b*|y*>7m5)%Fm?8LrDv)##>A&oave^ zY@pj+S2*ekDcI-sX4c=s+^xqg(W70(r)AuK5DkINW`X6Pf;ZOdb%Z&yHl9`ttvcG@ zCBx$qJ>oN)=z-H-Yp3BVzTR_A*IluOmigOXxo>IWlcP&k-pL(x&C7}SC$v4iilZ?A zi`b2{RJKhAJC)Z+@Qz1y==PpQ(@jw0aVxAkSabNUj!3WIh=(m-grb-4>KEv~nzc6*MO6tuCUkMy0!5@78ZJ`mtBDVdq_?jdFO zx7s|uJr|c?(V2LLIqRyVsHm0qd*nARI_dluQG#%eHN+K@W4PT(rEOcYi1OX!a^Kk& zwx4q58$%=*o9Ues-BBE+nLydVt1-nS;=7yauI%mIhtp2xxzw=9lvonLREl9OWH7=( zYY20+76YfnUVp6A2E!W*8bA(lHd|~OD507tY%&*sTz;`7V;o8gp5{3<7s4V)%rvr9 z)Ds;vEzKmEORUlNo2>erCZeYTe2lZHX;)7A>i8%h9kBSCC!A%l zmD#(D*XoNBe`RhYcxwfnZ7pT5lP9YfpqD2D==+ASYzl+dV`HSPlsmMjmiHp&_T&cJ zd)Dh6tu)vcBUJYQTLar2j_$Dn-Zxs$NjU9(2ZvF=4Q)1O)-og8djJsQuRcna@U|g{ zOC4Vk;@+_&H!#yuw8sM-ZO!#@7toZn{L(Y8M0s}#V6`~SMI>~LeLJZhUp%jAxw+A; zZ;(6nUe|(Qa8j4Z);19!v9m?Zxt^-t7lzbOw6U^AV>UZ$ve=S)ETr1{f>SiNG~&sR z1ry5@ZEltVoA&uW<_FPolJ;aZt7`01Y zBCsXycqcB~Z)+^Et*eDRZ~yJCMldR z1Wj&GHYZZJ@zrKy&Z;=ANUd{>(Yqt_8=JRJ!C^4nq04F=jVZ2KS5)MKVxd@INale8 z4>TZ;dTcjNsqP2~A2dOxsyq}D6sI)^fK^+$e-%j82KGP^IUP{|L_mNdA_2^zA^?E~ z$bc%Kne@{MS!2n;+Y!*JbyY&n(soCE$S1@sWlcLX$9uRol!DQh*fhN6u;dQGUcWU1 zYjQ!qg48zv-4n$W00p)yXTs8Uc>Eh#?Q=Eqzu>itBME*?T9L>8b3ym%_@nG+2U16( zmmBI-5^rK|I;d{fCy`AEzcs9Ni8itMDDy+Eh(NL;c`53uwwi9EnHJSY$Ks?QG~G+K z0Rhv+Maj_u1KH3cM&zL!kI6t5H{AhH9oAEp!&^ zqJVe#l>n$%XrlavsbQ*s3U&oRk9v+@ik?~p01F*#q*xZRfO(#ZO}*t!#=4*_NWk_v zqze$a+Nir3+}{<`TH0yvTFhb$%|rkg5HD_K-8 z%TlT2ur4t%ny*sAYHBPl$jKV>UPuWyaop;?1JWH=V}mvTb)HZN>IT1(^YOO4wp+S* z@Y%=e61ganHM%HMs0(1{88~zTqNS{M!&0*`>F!%h&49bV1#=9El(bH%mq$6bH{>}5 zr;{D7yJwr>mW8pizW2g0@^vnGBlBJY<4T7;m#|?FoGKCeP)~f zREG8*2a?cOWU<{q7aHqr61gTbX!d*~8^L&vk<{&bOQaT(2|cS@mtS($;(QH2>SOvd zJv~EpYn<}n?*hES2_F=Vd`>aFrtNc0h%3;zM~t3g6!^Jt1G*}5>3{EjXxje(F>EEc z zhB!HwYp&C%vE5byzPl}75=L85%fE$m?qU)H;=oqZ1$HrlQTnYRqo|BHxb}@LaVNwQ zwn3)EoqQEGHd7q)i?qxqiZfeeggi`P{{ZzoI--;x_>rE~qt4oe&|sL|B}3z_!|G$3 zA=EY7^#pDgH1IF3zH0)mhMsJ$EiuT`cF7US=AO3;W;*FL=SG|9&`#j!_IzeKr^Zfl zA|T~0Hn*DNJ8FnzF_*XookHz#8s_DFHo4o~(`CwHSsheP+=#a8&aN5iqslzz7OI+~ z5UVeQhPGpo-0iizR>OtrX=9|7jAmCEF6)i-TP%8-o=_nT0%shbemr z_N|oi*x7V6v8P8XslVXJ-ZuK`s=I;iyHc!N^;NOwv=0H53kWC!L$j?qD8GA2p)jT6hHY3?xY40Xg+9*LAV~0AQ== zIAWr*s;RQo#?I5Rjk*DT_0K&o{8qb!BP_*PEOEK{LC>cyi)lq|afxhNi?(#^!>F4x zrZlhz?p|0HP8S2+S0wEqvAx#mYxOFYMLk^inWi`zeVwklZX9HOwqwZGS-sYfqhiLd z)WUh({HWK4HYusuQ<;vale2}HNisjDmx{N?+&3*|6C5>fA~Hiu;vcIQ2Hx>?)nU}m zs>P&Aucux;u zqLT}!>|=4c&2s0Sq@77z=cYQhH-w|7)X6nNNn=IMQFFHTy_NnT$1&&ey*2@a96h3X zPSLVeG?3B@fv_8!H)WMi!cvJ}SzU?EUx>+I`CKxwt@|u)z+Y7{q|=d|dK_l};1X8i zZ^hcjM~BMN#zIBiCoIn71;y8@VU#gZ&9J1Xm7>lH1R@K8#8Ii!9Y%CUo8OG|E8tMu-=LOb#WPOFYtllG(XJsov?&?pP z=IiUIaMp*`R0bFOEwLo{*e%UA2)Nrc^JbEjBTdAWctp6{W2~c+S(w3^-pc{o&2pj{ zDl1Ji9q7ZXz`?7RrP1M(INKwuW1*Niw`0J)ya`+dWqnm{F(p0^2#A-K4#*3tbPYD(oIqQ$sUx-3r? zYh#M%+IC>#bg=`?SB_s9pVuU*c!ABlaj@N^^HjJ+OTPv2a&h~aHQYr`GYWRG%>&wV zmXfy|nn4@$v5mdj)*W51K7n%;%#s?HQ-WP4YYp{D@T_hLVPx2STxM~aAYygiJT%pA zLu6M5w4o;XI#Z6lvN@AS9&6vabOWO4u!*L1Hh3Q!tOK4i1D5NN90`lJ0h1D_`Ux|D z$Rq?h-A_$=tSPV@T7w6u#Nd-F>D!s&Cy+qruQiv88=^cnR&dzuOY1R;%9$OR(oE+Q z?<)yI+(5b1l_72=!J{tW6x}YeFc(XxMF1j{s;!Ks6;>% zT`r*kH$b5f6LkoP097hNo1i5TM1Vlg-DMSV> zbUmdzx{X$a!znE*rz=N_Q}%L~G-y?jeulnS`j}QuNS6x3T%}bEj*dX~n^{4zRO+A| zEd^6*BHU&hg_1U0#SKHCoH!i`)pU@&J%Pa76;zcQc;~qlqH<6cC8s^d)qRErVsEuO z!#&%T=X)-v(mhS_8hShX49chDhZSM)JZ9!3M+?+3?RCR#67i;)K;fwtucaHOD&HMX#pl)`Ceo^hLpv zogUIg3&j{{1<}<*a7Bp@Y5W&I#2gveL~3wQL1^#Oxz`Ty1oK=T6d{Q@? zPUFX@UZ2BUTTh5Jkk+@=Y8(bq?Hd08Blsz9FS%@GxbvsH$n#H`fZB@QqBQNi}qBaM(43+v2iW!gk*flKv5e(}D=mNLtS%f=K0N;YZ~nJVC?!QU3rH zzoo?Sx+-Yk^;#;3VrXka9O&I)=Ww!}x}o43tf8K9?94J@hDB0Ebo^II6oI&eGtfIr zIql5DwiLs1(`9sma^AUJr9 zirm4hbDE5osxZ=MVGT|>LHe)U^bQZX;fg(NZ2JEI_Z+k9+Z4=mO~LRBOTv|ohXAK% zWLyS&9~|Xo!8vu?&e|S}&+8NM=U(skJv`#~yE$GXh)qo;KWg~PU6^Tm*-jZ%5u|Hh zFKLmsc5ThMm9@rwkBd|2GK|^| zgH^lWOg;3}{;@W%nZn&b1z^m^QyU6f6}R=93FR`v%{MvksNNi%MB z)P70;*F$inxkk1YCu=Hh3#@OH?{K>(f~!3f(d-gOgqdBmk`g?Cvac7armvZ_MlRAe zyq7q)LtwJFR5mUhh1O^WGs~A%t7dsCOJa%SI_0`r{MV1wqV0Rk{S?SiT@=Fjl@o_V=DH4Z4%{TDyD; zfLTjR6LBm~Y5O;am?G}SewW;f^s?yqO8}<9FtJY=4w=I9%3EUhYx3wnHMVzqM(8jXGAj!UD(SD1aXY9v7j}e>;{(kE3J#w;1Pl> zG$z-&w(O;@zP8+=lbibx-4#G(d9|+NuaH&E2DZ!ss*u^59ryf{8AOsfx6mCx8mMjG z0VQ0Rvr;x&wpM3tw6=@IeKfwIl{C~*ytbIVO)uXCuG#AJ<{Y)^vo&q!Q3 z9wgGj(%Fe7DP9Q?l6&0s&~sb5Nz-=CY|vaZk0jwtVxxyKh^yaB`iPthY;G<&*zM6? zgBZjyzBrQ-jtjnH-i*4yFaQ9*g@W#=crOO0Yz}m9o@kyPWRc|Ox78zSE~kgMM+B#x z)v>?>pJLz+pFg{0bh2Yj$*xRex~UwG64v7sI6Xu(?WmR~!r>&QTQP&3!PiBn;P~LB z!{DQaVN+31?A^h3l61ArzniaS$6>)Ka5|YWA6JHu$JxqXX78ZYaab&P7Ybo=yk&a@ z-q*Lrxu2qR)&tvp3_^d_9J!GLyS^kwC#zq#Nf}W z(Q*fnTo?Oy`d1Tzg|r5ql#*m2_cqs4rpuzMF}99bBd}&dMqYPJcrwqKy8H>wD}~96 z#2imkJfzbXM-!WrivoGv_%1UT$4(VWXKQ|t0$MM%mSudvn>VJbh2ytYI7Y}sk_j7> zwXG(?{KqA=gBn#9SCUklM;%im>guF?jydIXp7Z8zRkjN>4+XN8kkH}pl5gu0*`Qz9 z9TvE3y0AGp6)Fl+-YIpNP#Y!D6p#}9knEvAB@}W+B#xmG3V;z1A^;`R-kg+ybR70U z&s0zdI%*JDi>Xm-8;y{ZN(AJfAq4x=#S{*Ep&)E^D=Q0NbwrOlGy(Bgt3L>BpnJN# zSCP^!!}A%yXl_(|6ps}g{1&OS2I;-iQKpCr5C@u!{h1OC*x=#rDsFXDxB?CNpiK10 z+$3XOG-&{ZJKEc0=zx$dx${%?PgDU%VM5_Y zieFD9J7|ayr*#S~;#7h`vG7xr?_~slY;;v}(EO1Cn{&}ibx^u^J0o(4E z8){H#a)X)zTeZkHKy9VAOJ7^4-`=1iMyhS5qeV!*>Q4Kq6i+WS76Qkf)DBo4UwX~Mqd_o2C71Uq$^EwLY8iBsdd04 za#GIov^>8wAtNshr!^HJzf@{`0_hnWBa5?RMXhT9wR|=KWX9V#50cyYtt`@RR9}uM zBIXxeU4zUeqkEqX`_%6})8){v)}E^g;#@KDx;Dr^;zsjl#(xhr!?wif_asJoYNplE z%we6H0yc2yM>Uo#?mRxmX6V6R!*Uqp4ynS+yONJ;5#k2nZy=gEqY^~+y{;Y7-HM(Z z$6&?j-Az#&W2$R@k|U@isOlE3x{7WesdZH#FT&(?<%kQIN#;Bjd2uN%&<5K4`Epbc z4xnnOf@aSUk{1U?@GRl63QmJtEjkFdC9SHoK^(%o>sXLEY^@RxK59FXxIHTNlQBG& zs}+flh0-$MfqMm1wdL_;?DCuLs1g|>b%D6tbzGL3JF$yh&MO$#5T~ncRE+G+i*oC_ z%B+?taQ7Rv_pon)SF!&9Rw2z1lJ^VfIjtijoIoZqJ0{n%=tr2Mm))97YB^-AWN~{= z00rLgy&tJjGMtfiuooVr>VEalQNbNWbS37+q>#F-IQ=WX!n!(FaycDNHG)je7O~gh zp|^8`Lyo8j9xCk%L+fH~fxE_@_0n#Yo;E9Vl08QZ4Wz*%?M;MnH!<-GO(CbP#2;4Z zKy+XToZ+a_#QYZP6D(#FV|~TI01jnnsF^eKJF+@EUnS!loU&Q;j8NH$CFotMd@#c_ zlabj+8FZK0);cdX!m9AvT6adtoZW8j?yg&pNqk37hhY^sbP{&hg+;S5y5weIeBCd# zm8=(njdWCu?F>>9*VR0oTH9&>sB=w(&=sBvV zoxT@fppPcwOmmKE_?r^IczQD0cLuqYPKP0dp`Z{Sw)f?Ji#rU&aV{3&m}&6}Tt^zN zKGT{@-I$A;lc;Fe9e!)k9TaUY4FG00I&QG4>02`cPJylm_$(fM%WWAbS0@v~+&_up z7@Qnc#L|eW*xS<4#=si`Zf$ZkCsU`!`!2cC7K367iP2t{KpVG!3e$kK)b4ZTkoYdb z*GX}4VY-LHONb8DUyZ@A_*q(xM!c7kpjcld(XGU(BXu;g$if`fn-F?0o_!!qS5w8+ zEtW?#L1skJrJG(qDO7m37?mBemGm5;ecqc>McQ!rylhc)|L)-88H zyJ{W|z~P*`urF)l$l)W)wbQ+O=yc`Pc3d;Um{t`7V}cyb<$aP_F~;PVEY3TfFJsDh z`m+|Uf($C4%TGz`HWO6K-EjkP&22Dv-BiIrg|V`}7{DZqpj%B>ap@BYz^kyxaJs3f z;HZ)L>4m^~BYO^EYAbQ91^e0c5h9rO<*A5lJBt z5ClX(5F#KWW8kF}4HOx7B@q;ughWC`*24*IT3qLMxRtFt6}Y2rT3EsRAyJpHv4vHa zkuHa2u3kmQRW}NoC6E(w)ogfTZp$5~*1_S-KJkCSYZdAz_I1?K-q|K;`J?P*2U1M* zbqac@TIXE_9F(Z!fP_Rq5fKRph=3qOKuU5!vRwfPh=3v@0EmbJ1VDhPMbhdJ#FZ+Q zAfY6pi>1(#Rf@<&u#wCw*Gq&%HD@g&OC&8S2wB*~C6i}v#bAr8;`lV=sgMD>ofDEN zFexEy@M@yh_D^=4mbC1lq_x4#HX%b+Ol0EDxj`YIlCbc~w$BZT?~T?k71xR!5~4tU zk>3O6 zD|YzVBMThSm1AJS*mOh-Tpzt<>vg4)O~}}Sq-WrGrZ7;jc7%1a2L&wpCeyZiecEveu$YPgvD|sCT>XSx)M)YX~&%vFZ1#bpHTWKb8BJ zX}+{SEB7-Yn-QeJDW;AA>hH`OC9iup{54tlJ}D%nu6qTqV{NXp?7dZ79naD(yl?_R zg9Hs4+}+*X-6goY1cJM}ySqz(;2zxFR`B2?5a3Lb|K4Z6N4|6M-M$z6SkqI}(=yf1 z)7@3o7sU9VnS|a1%In@k`(5LgbUWfBo0u4RVA~G1gGQ2U1fq) zwq!S{@m3AqI?u+a6~r}M)9J^jAtR}M4YjP`*{{IXzn7nUTOdEpR?xTSyxm#BE{>y+ zr2W;ltJj5*u9`Hvyfwxz&;l1%*AA(DMI|lt(0;swO-6HzZLpa`<6_KSd%!ZkF*|$P zXUVcDxv_7EgB-)_Bg{LqPqV_0TManDEgDBF^5X|lPGh?E-#R)8#oL(Au&|nc0xqdh zlhFQb6nhIE<$TvpA7&i=P;evec<)~i*8TE}uqrn#w3(aZ7sB`s(fb9Dd*EzbKC-^Q zj9GRC|I2K@1MWsj=j$C_yw`(0k~7Sb`)(iHjFv2%Tes9^g&~Mo*XTQ_l1Sa6vep>D z2kz}X-k=d@T0qGjiqPQ_gHV|i=!fD(aId)7!tO47D~crWY@n0AT3cC z$d7rhj~OF{Lq4L-$f9>5@We-fSBCYinG^H}Q&F6Cy)0b=-}GmjEUCFEu0YsmvvpK~ zYXjOYzB0_h_`TVSa>JzKRa6X(nsSMD^Cmz#bKGyQ;AEmzL5;~MuncA;ZH$Wy@!#k^ zIATjOF5w@sG`aP|G)_e+$wM(!vbs+HR({-aX&MnTZ$y9R?5azvg@L})$h#lMZTKyI zmDO&>u-Z7SuPR@|FgLfH2HPMZtqV=!#_}2*60?#!}qC3o# zr(^=Bz`M8-=pu5X;AYKDVzOk~6gVv8DN=veUThsg%3hMxRXxcX#vrl_ISOik}4 z4Y58Cc{~x)ifuDnEyzCM)52s7V!2U5fdS@jEn{okJ@Yp$!x@Wps9#=n+-!38 zIY`!VM`UnIS(;l*xHg*Gm8_xtsAVvskNZ?+p~IOdzs4%CoL^78)}DQJ9=Q3w*Dl}0B)SR@1X2b2DAfn^Yq5(F z!QkpyrzX&PmVtvMS0IVVau2}H!m>nWb5&?kz_^^uwIBbG1$@;FTt({Ak~fyuJVdy8q|}&5 z!b*y(i}1Xs{+e%`7m!DUxI&ca%kMYn78DpT$U=@jTDf-BfW&{PY9^M=2#N_WZiqE6 zsML40m*e8W5Vi7}ORi5fPZfZ{CIv}NSNk3QcCOksR-hFg@gra9M!XsX=Ang*88AjP zYy`}$GCiEqel^=Hl(FZP3?2c@>{>o90V?`1R}HdlFYbo1V-EEkcCht}{b^}K2eIt1#jVJIu(%5x zVD*8bg6gbO&4UCTrR0D)_}`h7&l`Y0XQ8@LM)wf9bCe!hbl-P&*! zJqv64Mx1AbbY}0>iKPK@ZC++wc1)>+|6G@tA+6GS>T)HGTSi^JMrMb#ylyo&ff?KT zOLpZ;UQJRsoEudZE!o9V#qdjkxcT+g6r4fv42*#py->nc{G3FSQBd;5FxMfY1iImFfnpy`cZ6%g*LEp zdSWL)KB=s%CgHl}WR(fMQfnO<=SAmAdv@EZTwmH~Ei`p&?_0ZHt;)5FgEWHG@=#$_ z6c7=S6}hszpEzmowz*fv2iHn_D2JAbDNkG%%!;g2Gmc_;X5d^RbYJrZw!}0`2>yxarn;|(qllEuf>SFPtUNktNW;tH zZj1IwxkfK7t|(M>j3pJLn=#5DJiJb@N~=-+i#^88#e z1QVjV_eKf`2`^95b~^gadvj^Ov*Q;%_i!R{BYZtnffzLFbj#aSsJFB;Gj`(Ewxq8d z$GH;y7j~8-D~On7Bv!PlkjX-w*)JQu4EzYL>uD%M517gGJ%9@nhdO(3KD zS}mz6mp#gn0Gtb1GfeO`UA0kZFv=-?_I37m7PI`a>a+!EmM6qby(GL(uFd@(zPCP- zr<9BXntSPAyS^aSCx*6pMZ{3buek?erXdx? zY~2XsFV?vO7Yqbf(w0)qtv3l;+vu4oumjFT4_h30#B(gJ)WafX{eK(&0vm_GWCZx} zkE6a2E~&hc3lFJh8CjC3FeC}UQy(omHil@waKn_B7$(%PJKe>$+d(dkO=igeIRs2+ z#iL@Bd6F=T2U#Ih3<|Bhjs;AGS_(t-u7{RqlA;XhBn*TN05&au&yh#~%jKXy2TGy=6S%i+ zNqWUhEqiKH$8*LV3G}nr0%83t@?HeVX)EGt$0qCKeZ`m|UFebxk(lh%Uc?w0ax8gq zoOp=GO}wsQ9Sz;w=Iatrc0RhUk16A*<+gMzU<#wWV-0-Z$fBr(w)XS+WOL57hG=n# zx3)w!rB1l?Qq!PF%fK0(r(+|dTZa3}203ANE2F-vv3Rcp_MQ3nQofDl*ZWvGS_G^$ z$=AS$g>8 z%5{zyz$kr)N-(Afr6_oPSZSV?Rs^Z6FXthPFT_e&CRbsyOU94fT$WnKMVMX|-^9U^ zD9%QBR!oCebXub>JnVr>@O%tT0Lo7K7rs!)7~R_4hg^%m0$m0-6-Y^8U=QH&495D_XwZ-blH7PZNmty13}Z+6K3)??6^7l8tWu&r5ly# z8ZX|m?G(6!9#s0qcu2z*>Qzrn|D`tkT1lb2Oxrf~$8nSt=g(7hJwm^drxy<{E~FlF zBuaKJ*_8CxGiPkky7LDt@X8Dc$xa?=tQLLQ9qhO3>)|7d zpuOqp$Xpw)I$LT`>@lavd-NM+8bZ0(fUWF`Wg$)z5@ysTUj3!DjOmG=FcuN;*Pl^91bXBsW# zvJE;u3$SCuki$UjzD*&eF$$mJK!dc=m-r;`vpL1X_<)*3FD5+O*-k9f;1}(&^oOv> z99ef9n^!&81w%VF^s)ko0SPTd3-fjEC3GbF2`-x_q;Cff%V<|K$_gkFa~QtaE_7z) zjHIbKjbFij!M)zJ4nunOQKu)`)-uG^RiHQc8X38#&sS7j;Mh+%mLl?|G1D?D4j1BL z{sqMCS%Y)L61JPg-Jtm);9-aaiO2)3cId>UH>;gyJ^noD)Z*iZxHEg(tIC?RI2#+- z{ao;PXdfTR#a0EBiV7_^y0hr6{W)CkhpAzF)>CFFoG{V5_9C=QDr`8%HZ@ydkGxG> zpCU4J#PV>m`b?7BAYuL+(!{i#dL!cCQ9T^jO#?UxF?4lsc;vX{H50b!*Ezq8@qUYX zDRRj)&23#Fer}qH_!;vtK{72x^XO{V{d&!nedqB=Df2JcNo6e>=AzD6?Mve(6IGsB zyUuucS1n`C;6z&nGuJYgHAWm=0a15Z9!iE5#)+*kBB`oi)-*KU`xa5C3Ma}po4~SI zobac@>UljiGnrT)$_6D3155O4%ZVS;&bz zr#~mCD{l2#$*pk^l`D3T`^%}riXtW4&Cr(ijeypa14Xffz(JWGU&U7qQG^{H8PBcz zMVztP1!i2IqN^yxC`;KLeH8Y&(GNEA6-!n*cVUg$5haKz7II5LaP2-SPBx!JW$z&= z%x+R+-?nyzldyKeh#*k3fp?A%N9ZCvvA~uxMc|W4MEaWTO;LI-JOLl+{NcbkSGRD z!!@BT{w-^?v3!ZOyTuM760~<|`_3pNg=Tew+heDb*V=a{9bNoL?^`;kJ7OcE)gm6! zjx67?hAb{SQxqhbxLCF2)Uh+DSa*J}cMnt#LquXpEvYZgJ5xt!eyr z&ibTpwZ9j`KFMX0<2mpBwh1Fab<}7h%3EHC`=LZxkZQZm5isSCDDjcbfPHJ3nLaru z7cke>{++?GGkm@x$t-=n6I_Br`!u02BUA@@dO#Va7%ReHgo75c-=*K{XUF zNCso9d#EA9k|5=;vx`j@7xYca-f*cA#X|wRx=7Ufkd~ivoci$*v%pR_utHKyRGuQPkoYW z7J1CiaA8`zBev{*PUhLWoZnmUZKzSl=}B z=*;8Oy4?)N7x z7$=l~MV`X#v#fv5+>)U#p^WDNwrF!W^a`FBl@cO1Dy}WErE{%8L{@wOVZ~bqM+fh^ zwy_q^4>y;*KmRlgo*SvDj_va(MBYE~Se4BFf!Q$cRKt@_YWASd&KWw)EB`G$gT@ZS zHK?n0$qAyqqs8jd@xAhpBp28`mpn2|RbjP7Lb-v0bv*?MFjOCi;)^+J(y57J+DOa# ziCHojGz*`P^1#`9*{)Mwaae+L5Fy@^Mrsxt&JHEJB>Dx<8;ocU+bu7vkLys9Fxzo8 zase0UML&hyV@Y>vH~snk^_dk@7^z8<^||l(w8IO?TF62B<85oHYdrp>m(!edQ~;gx zZf7^B6wRn%fz$oK6Z8XR&vl@MS*T4vGhoiE1Wf?~w}nw5eL-h|`K-Tnedk6Nukrkj zVF>?@mu)p#y&@AMNBellv=J$f4c(5f^zVq{3A@nbGFqMjicTR+@C_m2Mq3JXsFEB$$-yO86;wGc!<#{e zj?eTpoRuPYq=l2oC3l3>>-rjET0UbFrlLBqd7@%*@L_+wCjU57{+XSGoY_SP7q@)f zXV!~|M|&+yQoNnAZ0DjVt^Q#L?Vf;Z13Y=9^(z@woHV@3ZW2WOlaBo?b5ywijW!Y$ z*oh)LRYT|&Qw+-f069hwJdSj3oc0Sj-v!1AACX@Bp$vJ-M4t}`k8yHVP@?xWCr1Mm z7Kwflfd)Yt=1;j_EI|fMBnmI293!ntOh%$b8w4#w9`~=mxD>&XLt$Xbr1*C#Rp%&e zw@5p=PJ194$b!F_FYPj6h9|)&7F}BbvTL9*W|BXNUdXJRW6ga{+18LFqZO;+Rg5zt zVfB3C!>d|sPB+`AGT>@kUVcjINE>!Cd!h~#kYTYO2isiZy;0tVVPRLOMUKy>0*1@AUh)1OZ0T-CJiPW~%mMp(kDn(c z&TXNSvbQau6v5f3%DJ?lE3nna;S1TU@*BBiFgT` zz^>erJ_5YCziQ3(*7e=esuXq`hh7X4&xYVpmNPHj<_6LdHp|)?*VlFWp3qOX*sbxf zFCb8(8O{7D5v(}dF8_Q=9cv&SKV&O{>Lo4$j~3@%znltaciA=!e1B{xe~Z)aB@yUbiQldG>HEQs?Q8< z=@%1|6XT5jDm(7*-fq%WD1>dqq00W`L_RC5@i ziCSwQt+qoV&FCwiVW9zhvHtjNOimwk(JRZVL43JxV=@0ZV^)fcFFVf!F{PoF>ESBk zD`M+B?fMWL-!X&xU6#!eR;8ny;Zq{YFYn@I*hakVZB`T-T#lx%fiPR^@~OZ+fie$^ zkpoWbB3y=Jw5P1vc)Q$tLL&dSnfMr&uk*hEsma zWP*|2QsSdFZ(C91XN?~ecVY+8x?Q566~+`DUK~@F z34S{9L+*S(qc_(gGtb-4naj#JeVAnRMT$F}k^O7-2nOK~6)I0)K_6F^+POXzsBK|+BG=+^d+JbtR?2WsMaOLyfKn>m?)W@+%QS7 zA_X(B#^$OF+ah{mstCH4i{~Q3kCz~)L@+qbwkgv3!X+9r)^~O**`vNi4y!hpxFF3Y zs4NK1_DL!ev}N2S5X0#@rMuQ5U2kT6bBBIs#~%FxB58?nz)RdQa#Amvlii4H?xnUb zsW@eIbvk}aV)^Yoz(8G$oDI5^XAa(7s% zsGj8;f;k@(cSh>?vXzfZ2NlOd=RQMBSn*4*5zhJ4z^+v#%J!Coqc{_e!i1ZwUY>L4 zr{kblIB=sPTw_Pp_dP~32z@a-bMTT#EDvtwXII;2zp+n=+NO6=eYVQ4DLCf7?x@;= zD=2vkz-V)BD2{%APl-@d@}P6BC`CWR<&g(x+ZRn&vYvF+8dCcOBzR;PSdn0n zX$>w|T{FNWT3#;s=8Nj@^-C3#Xx&xDb48FeJE>*+yx<|BR3{QyT5#@Tg?OOqnk&*b zQ-UEwccJDxY$bb4b_$u?2u493f7C-)8NB@I^)fOfhTXh#|2GYq$3bY-3%XBZ7%Pxe z?c7jil=c^jKJ)${2>5v-ybbwOLP;U>62gTb%qjV=U)`C9zFg~x^@5wzCfUvJs`2b- zs{(JR#_`mn*}k+>2y$p6+zDWm!8I|>HLeI)4|0a0;m&-q+x{2_1idQv)srnGP9%kU ze^{%S_*0G}1+8mnrl$YmG336OfX)3vlP&oc6C24fI_MO+bhBO%a+?aYCT7Y=K7NqV z&gPU*b`b`GFf5`V+pl5ciP2C-3J4~05r)l&9pMm#jwGTw7is{xLOW5Rf-Gkg=;m2g z?(?yGmAj-EJ}@GC2btanidT%NIKewhwXKLI=VQwrm0OlaLalhh(VUp2d_9qCxRaho^p^y=yO+@z@>87LcRZc>c zx}vmUmc4EE_I7ROW;KtCvZGs6Dx7uHLU(bsFR7KNS5$8ioJX~d8XJhyt%e_2$8NSe zmDW7FHoO|7BVve!O!ku+#gc$$S?7$fQvVe_@)wVnT ztzE%SJFy!LGR1@54@mJdi{0X!&8z+r5jU@yWot_z2Lw7k-hOj&V*^3jx#$N5wsy(f zR_*j8w4i)VuT0m+*{Yx4u5DEo-ZsrE9X(BNiB2>VxTYqU6qS#j4I&A#ARi zkmxFgQz|IIsBTs0ZRmKul6Z0L_Bm)9l2zg(I4Mll-%F0yhD^-R7KCWOm)caj)HiXR z!Knu>71Rv0T5p-j$d9WOX;paV6#;QxoUPefx+c%eFyfl4rpRb*f~=EhQx3-o7RZil zF=wJNTg?iFk8!2oTn`#9T-}Hx)n2_0fSovP!LqHfwSG*k8nh|;LCalkQW7DRW3zbP z!er_oM+#f@b7{5(TPgSw8dZ7;9)?Ghqq&N~_p|+_=EvBrPtPfnk&%-4uVL;^KVje1 zzJP*{e|-p4adeYBu-q5 zp6%W!PQSHJvNUs4O-y7glPnExX+c3B6h-CPIkZi4W*Nuz^iR6-os3u1T54>pw()u9 zHpUZV$dQO}xuFiQUkMN|9u^Zu3)8?J4i9-Zdirprj{RhM_+fn&_H|Fo< zcS8A887^!gT2zJboSRSq#6XTL zIze}ja^9-WF-0{B*>Wd2{(xXts;dJ9y^iunC_=em3_>ZAixKRJ;aG)qgcRYZ7MUCz zU-T)j@M=^`Mhs7O7F0>ONj3f~q$i{X>EN6cJwuA_O8Oh2?q5sZ>!GW7L!wQLX4PneoJTivuR1dTq2Sb+stNLMTZ{(9zI9 z|Lkl5;ckei-hYKlKCOTpTd!#hwCw@cP&QKZ!G{$MQ0v;7Ob1jb3X-b5PCClmvFX4o z={Ki zph-K9P2vp`hJOPxp5m)<-Vc*S)JT{nLZ5AYyT^N2*F#3Vv0?@lD?H-;(@lI#%5icYJm0i{b{T1^MTgF}Z`l}TUc&icz z7Lg=5(pa!7GV#Sy2)Mu9>0p5H%W_HOqT;}eZ{%M)X9!$WN~6Ec4asL{|C$^MDw$CR zrD-N}rjTs2A&QGd$DEV_QGT>(^^u2!FHf_j8&IYf$KR>I7O0CL7R9e<&vbk{DDw6B zT3Hd-+{qLu!=^pN#GqLYNqD1lRujXg-Yp&ejiMPi*pFSK%E>oc%4`@D%pOt^5nh}$ ziR^dphu*xvrZV4l7u(1`qHbFNst&;<)GAL@LZNEPdEQ?}`g|1qEfp z0OM85+Er0kY{>1HP%)8v4aOJHN!0z*piZf+S?mG!(I3-2ju1;NC@AuHe*?j5lZtUO zSr*t&JbOvsD+X*~Y%bmExzg!2EH_Nt=p!@-Rh(FJt$U5iqz+OKp1(=3W{fh7`k@-d z6z^P_zuV-la(+7|^UnK9D_L=lD}OS%!65sV=G{V=b>zEN2ACiN{A5-uYAvf!;0UCJ z?W=~#+*Xf|NLQw6QGPH?VprJ<*T zXk~ILi6ey*jwsU`XWBb)*)l8Xa?vvG)xR>Zh|PIRKcCR#y25ebXNTZr_YMW2`+Gvo ziA`@32xPJ1(4Aa=Xvx?g*e7yaI(F~p*xJVLjz}8j0S?HLQV5YcQS)jp;y7G(o4>w7 zoN5b28K8Esns8Gg3qro$%J&WfPHE}K641iizt9tt6K9dM*!NXawI3&RM_<%DmhS|0 z_2sZ1@8we{yLDXW3UOk%e5PeG0fq)vosYx!rhlaONV5ElLU`(w)L=!%R1Fd!%C5=m{7)^dtJ zAT51y)lFj_T7qPTs%5MalOO3(9cnT##5}GDD_=Ix5U;NW%LS)Y{}KysJ_}Femf&25 zWxT%D`H^q2lvK7c7s>pHUXb6%j@?xh6X>dnYz@Rm_bkh$ie3p0Zlx}rs2X)+O`n62JS3E-%OH#0F1__!`1xv*s(B`kV-<{#?R#xv>FOHpj*$7xb|4 z2Jm?C;+v$oLP}vIH!gew1Q!Jc(^zlhyu|w&?C^}klQrK*fq`26N|lwBk~WVKozTa2DGTu1~0 z;+lt&A`bi!u_6%V>5Yy`aQN%$u;xD5mTn{0>hgp&{St5rUDsxaU~_bfN*=b1rtNn% zqo%5wp}eB(0YS}gU3qJKE%uYnv)nMG6*lfY86&&gxV$`A#Sx#n(h@juOyD{VUD!3( z2$Z`dsHgX<7382d*KOTJ%v^HxRNs6(R>@blre@romPMg>tXTqgMssw*Us+=Saztq8r49NXx@G^?{ZJWVfVJ6kRR!&o+lZ5UrjpGvf|6e`v-&lG7BP1 zrM3p7DvUUo-sxoMb-+Fv%Jw`Dgc2_(I8Unjsk|NfR?!6u;T4pkjZYl1_xnuf`qevS z5Z-z)J25YZ%z2(aoi%!D_tFM|t&LbfbaMwpb4_~i-C6=c!X1_}XmxQx?v{5R5ihcg z!f`hRO_BTk=ZGSMN!2;)t?$Ch2=sK#V*$tqBN7S$s8Z{|K4B4Lk+ZT5Ln$i^g$@kS znqXeEqGbWGAc0(;UB=cVJ2x>1_0^2r&lRyIIadY2SNrW>8He}!cW$+PYRf%ZI`#=v zB0OSvxnfF+y-h0}nnUt)D297Ie@!J=ZUL)%@!*5uj2>9J^+pMmaz!1J^~i*8oX6kr z60%~(Ft#cH<0`kayQoZ@B~Z z1R=JIVukZ-S)BvL?g$i71C`8R-|J&5AA9AUWX0Aw{L+v`aoeuO!sJ!{B&EFAUMl{k zW3%ClPD!K!$49v|x9ya~QMnrqMLKH(HKG+|Q@T8EtGuI0b*Wb6G9K&ES9I~-$u{RT z?K<_{6|W@ZSKHH-34fZ7`)cdC#?4{;9Kd8)v$IB!q6Svw9FJ_kWG^NfQYc%w4OUYjH%#G8+Au>B-{t& zGZW;egH1yPhMercN3Sz>r(pOK=Pfm=voGx{0DEGt{ z#gAX3o2-0}r`^|#pXtfCuHovlc6g8$q2Xat-`+`Eom~2u)lI|8d30s-K=7@g+=_hQ zgAehQ2q{X{#Qht;MtjVonMSe?`r3My9z0N?&|k_Oel(x%S;qg`+@+V^7_p%(A16EL zB@ZB2a@DlJ!rl^7SfuX`Cx+?F=C;TS_&GLY2BNnQGi69qLBd7;05MgtDZ}e1YMT5L z7YnNHL4B@UeB^$Vl1x&sq69rTy{rZterC&)@vDO~(t~aTI>4g0j-79A(oo`^HD10m zE6Kp>pe^I-$05cw3s#5^y+|u#m-dBOP+=#*zA~jHruD#=^&9@AWuEA>JQbXxQ8J3)Hj0cSh8I4#c=!FPg7G}`=>^u`> zN>~=tv|L&$S~^ma3`#ttJ<9cEj-UA(npApeihOGw`e3?F@?-FI*oqlM942v0I)-w@ zMNc@_?S!Qw-pEqPe9i#Io0+1O?bCYIgt^jbXO{>_*vrUDS?1 zJkjQLALgj zt}N4&sZA!j;Or{Qa7$`ZF0%k}^yxEg@z9LkF{zm(6I{+Hpw=Hyoe5le*uE^TtItEd zfEa5()L2W7{kVo`i5y}2G2yYGV{5dU0PG@W$aTx<$tuUfHrTFmC%Z}*fBTl?%@l`{ zPOZM`li{SV3V07`{>wh@p9ux>Dq<2@sR%IvWVv#$^_FwH8YOvMScI&w6A;tXUq;ef zE({k$e&%}bg9}l;jEFR~LiQ1nrjZxXCW9S6i8^E~A#aTs zq+$yAG5wuOMPiB3Etk~`8KI#9%>ob1vM`*K^C92?(>+Mq6gA4|nA`K)nn^N&jp zHRm2e?|~bEih}mfeB89<*$wYiz5e*a`jVUQ{wogBGVArNx9N}LA$xvjVjoWZ@++mQ zCS&+%b2leucgjcM7pbYtH-)OX0kAj&!Y`l~P%O&x@lRU}8L1fg zWi8X#vYzK%PD%pCZsHfvvxnck8pR7paUF{mQq~0Am*NPzWu=?5|fcCUb3|JeQH{dFuBP3IZCOt}h__$q) zKm2-l{LD~}SKzT?PvG`dZ=erHn7~Nr3&_=HApC(>)T4nv*Zw)bjgoyBad;H$tN-q4 zp?b)d^Fp3z?KyTA_Op#F>e|j~ZB{&1BJL@#7UBMPS$wt{ZG2tp7ZA0;(_pgHQDzXd zSh6NR4RQV0-QZgX-kx0sD6!n5JV3f|KtH}N3z&|FqFGpQ1@4)brhL8Do?wWo3uAg) zK}}raV#7gPUzdxt-iDzuJXVg$X18*7>7~1qmH}nqXlxI>gUJsF1#9jnqbtDLbag(XR`aH{-w;o6H}3^>16=M}G!or^ z=9yDKoK@zB2sWEKtvH~lpI`URA*C3N%x3LyRz*ZOK$<}EFQ!mIj|hlOiqT3r=# zZocnWH@&@>&CK$QQKr~v8>a=J821M`gq<$pOLwHb`Z@gfv1kFBS?Ia16+Hft zp5fI(frRb<=aSFuUBe5=|JP#Io58pXA{!VNk>j3i0oL2Y?(t`+Ywa5aERipt>TZ{T zO9(zUhW`*IvH9m(K`-*OXB+FE9QeHc2r1}=o{nC;%UCM#Xdr|}3auFg3imF<>-2YN zAbwVRQA830rTf=)UQJ}C!3Cmz_^xCwBkRB=*Au@klWgd`&G} z9)r6^q}JoV*#T#ISTnBa)K$EI>U%!7H7OvF4t%hDUf5ZELehAuemc;{9(wEhp7J=f zSJl|XQ(nE5?Ym=%H9av#m7{1?f^JTMFNtBt3#eoF-9h7hoR>&1T{S)NvyOnLrxQg; z)C)+3W$p!3#ET0!$<(7di>ri^d>Z5 zb2k-r35e7^wW$DzuPywO#SA;~LwHW%6NzEg-&{w466fChQ-F~id%Tt^BhT%K;!1D!sB!(?Svwv!tEHI0O_yPh1fOq{%AdioDyXCq1 zPnsg|yE8*q`2J66eoG8|Ecj4{A_*K7^0f4~nz^%tfWejA-#qkxOO$*ljg{17;IY)LN{eJ{eCShFusB!aQ4q0g68>5pM z-_&1_2*0%y!g@v_{I@Pe9Dbb0h4@)oEAmIxmPlgJMLkg2g}eW%_`KJRfVl#o>g^am z5(uH?QfvF~Oo8!(@8i2a1BN!Bdw{qJ>R-iuE&MlG6G;A;1G~yA|DKnJ<_6H=jm8Lv z3s?)Q@D~uGpQqzUWol-7lA}0Z%*3TW!3*ep<@4h6m0z=m->;0?N4&@JD6yCU`2n}w zGjjs_`31k#txZLbT9gAMwVuAMOhoLtT>r+Hshjd4yyqcoyJXlX*bxT!uI>P|RWA*H;=YKX`lO~L7HSfp zB{*X6S|~37xkvKj!F2|;dMYlCJQ}Ko4$OQT&dff({v%k4~sKBMQ_R z89VF30zj=?K3FC_w`jfc?!XuBh}7Zr`8VLtYw{7YpL)#l=es}W|DbI86nqKy6VRaZ z3g9y?vqOZ_WeKBu0Zspb?=RsGvZerhCk{UGUnHw4HN55_u+so@ibFvFARJG`MQ7_57=-GzT z%v?lh5%hKN*LXSu&u`?c|(h8oEHA!qv5dX~Gw@7#!b-Wx_XZ>68 zO-p7Xhq3+*#QJ}M7~@9+6M*Iag6p||h7ju+Ua5aWKlC4j2eSANI`Ci8fRX1nWB4y= z|Imj2lJFAnmmz}Q>)6<2|XXCleGMb3tm8xThE!@?{TO0_qfyYOqGw!@M$@kXQVM3 zOFe;`@MU?f6;{rG+x%KYZX{KnmpkTi`D|EBt2({{ZQKt-=3R!uS85B^3CF5@A25 z{+kN?yDa1C8CUi1?A&2M!$2{cj*=+8$VWj{7SXA13k#{;dG^K*9@;H}={X!7F40 zEMw@}C?wzo*bg;(xb=wq)da_|-yokbh*5SrjJdP)^ham*0S0~X{U@8jUF&`7+em`2 z?69-{P#L(0x+}WnKX?y-{5(4;FweB26xavcj#jrO&9^zv$j#}HSe3pK{#vBBXo;q% z4cJ~h2@q(;$ZdTNrC}8Ei2qe^#;ZL3ZtQ6o4|tYFz~l)@Tdm`NE($bE-je?`*Ltq% zp(P=yD*M;Q?Y|?${PuqQyL0=;5%Rx({&fibzqdoHF4|LB(NoV2m!pXZf7 zZav^v_1}{I6zlM-d^d(~|5R4>6nn!4bW=2-shGL-&mq;+<_`(K>T{3Bulh)+#{&NQ z>;L~bARxN-zFUn@0ER-5lw`X$(nlq!N54a-MwI#31FWOxDnClcp1Xp^JAvs1pqn_J z=hZ(BKj1c%XCBL34f$0vjKhajQvW}?`oBBr|Jg}&OVEB+R08%-$iU#g9eXB5aR!_+ zH8vrjERdvA`cVHXe+Yn-h^b|upVWbV+Im#ddVF_iHCtj|{y(OFT5_~@pjHwbtsMqM zGh(!M7!=JqQfdbmpZh`a(~SQ{)zX2p1EJ02>1Xj~tJHn3$B56cd+%ih_iS zh=i2naS|xtr3ml{sECNDBv=?&B>%4;5A7ffMCc2I02n9=5Hto93QdhrDyn!q{ zfYc4#F)-9sF)%>l;!qgqu;Rl1{q+BnA9Sh^@6VM3NUw?N%H29hS0WXDJb=WKll%+) zcN)TK*O8F@u594WaHr)rCoZ9-_}@YJ-_1b#Cd!*}ncILJ=ZVT$*Z^-jp}0F# zb*1ZsoBSoA>9}Q7uKRQK0EBA-AWXdvpq0qcRUl64$qarnesk3qW>-cS*k&UCy%PR6 z%K%)zX;l0o~kCxP))KQcpPWTcJB~Q}!9uNAIequxO!Ui+QdjvOem#K3HqA)O zNL!e??lkYlegyoKus9CLD+l7_aJN%&k9N*srQA66aXIq8`@{dSj`-jG;r}0e@!$R7 z|5!@@@4(7`_lN(Vw6_1p{xH61Ohg&B?&eTcnq3JQwC#wsv=3fd@Md&r*Oa19|Jg7) z(2^c7jrMz3ZP?rGT^_Xuu>wkWQwlxa!g%y@QqgYMRr zGXPC-4Cc@p;=LgU?VD8G!kYmjN>8oOvEBrzK zU?b8m8h#D_YNWZT5)YudS-*yRwP~nfCO=hAMxi1!Z{r7$Q)c7NON^Ugk41}3g|Rmj z-xnC#7KP~dgjf3QCLaa*OyUCa;-HOi?kDvCwE%gDck7=IKb=;Un9-;SBBSkytu%dI zvY_V%E^IwsD7}O07wp>oxkU%O8vy{`URNhA8hyl`U2?W zuQs(*h5&vXl=GxgDnIg0HB?_y7$a}-rx&p_93w6T2|){}8bp~Bp zrtk-lj6&|U$V)B(El}!wa+^g!vk#m87*p%@nZ8EU2>S^>on^uSHzQcB%L05fzdrE* zI-YN@bPHqZc7Fg}M+BUwe17o&TDu9dqWpSZjs7t!yh7{&RM?t+E9#z(%aS(0LAr*VO|kP<%ylG1agj#`8J$=?1A*zp&B%jx;yW8tW({VrP35ElG` z;Rn#^Y?;bfZ$GNA{oBHf#D-T1=&W_Lp8cYnZx19>Eap!81z?VSbOLty9dqvM46bdm z)pdasAzHG#qEv&tl@X8MRWw(%ipo?~27jSJePHr~GbWDFE z4U-air7c&c_ksVCRFt2CQaoqE^OIKPed6nYv7Fn4wLV$xAu*g9E8aoU`}B)+$@T^J zhHmb;y^kS0GnTC_3_s|o%c^Or!jt-T_`+W!$V3?5bEXL0alE+?ZIVymIqYUFkNpHB zTyZNddatF`5p`KKI+LM&otv*psPr3(Qr5n5`Q%#VhN8F5JB~TGg==4Cu;*$YKu3MQ zvCzabIpss`nI1r!ai`23sl5cd-SXuog)iGdvcp5LOj*6-t@GOZma@YKYT0>x5<50w zBr^}71-#ag2ar6VZ{aoJT6xa?TwBfqhyYM(+34c@XWIF25^j)>fn$S`rf!yf^QUs< z*VfyjI7te$J$^5aHyJ2d)z?Q{Mgj-%Z&E9!uW8$jY)BS{-qas{mPr%}uW8jb=ad3z zqBM*vlErF%<{^L~urvM?>Ymt)qBl>%!%|?2k?y@h?w?g4L;-mKNzFaCL-n)s(eWFK zCcQ78aB9JnBXfCc`Mq{WgCj~!G1!WMjU653bf+5(GprX+hTT&fzo$}O`S5@%ucf|8$#N@T|JAy9Eo0 z)I1Fdpx>*uOEN!IS*^KG!o}*jo*(poXC(Ak9q-jBgB+u5R32-ahLWGEuA9m8+Gw1<=+e7 z0Fj!UM+X7c+Zl&<@MELNlAJ%6d$Qq%u5A}kI8k8x zu_ycps)=>uDEPGqv^@CE%Deo=LqMNg2OG{#49{iB%p}Ht-5rbYuPn4s{}Y|d#oro=Qa#duGbh5ooB(nC zn)?gz<<}=sf|xhM4vz^U#Q|&Oddx0Bbu)^)Z}AEcP=9Cq=$n!qV9XzFxR<2`WFO-u z^^_k#Q2v=nNaQ%fVCE?*yS?8y9#ggu@FU=%I9MaG`+BcaA0hhkb5f+IH4CtVA1AQT z#3r8HlX8dnuU(Y?+7*f*eyl1$x#9_=blg}pkoS+~=H%i1)!nr#JJR-FIa@-aul`2j zT?d}Vy}*-;MTtKE3pLJbz14OL0rsCIDD5F8jnE2PJtHGkwj*GM7$fdBsoG%UkxUjx{2_K_VQK*GmBVZR65A2;>}DC~cXNm76b z2P(EM;Qf?4*uO0SsMxRm7WKU(Jt;s9#j9erEBvgT(Xs01PV8z9)!nQSH@F-X=)-ue zKYdnSe^z(^^=8A@k1%xy07U}rK5<_FS?QTS!RvUoH@6#igI|0)j4YQuSI9M(DP%Js z0<$P8DFm-e0UERi$geS|gUtAg#M+%P=^b@RcPose0ACbE59?JzGh3(B186{hIBFdv zG)vAjfS7zWDV*F=X=igXftmq7Wipx=G=y@-j7${ zWpg`>Hbem=X|0mn+qFnboXrqmc8IsuK>js+>usXnSVP*F? zW&SJ!M4wuOexuU(0pF!i6bE=x$0DzdP;lCwS?Ff`0km5!(p63Y4oodVtsU?VhJ1qW zl?dMEt*1DcA5*tH)sBYQZP$R>$Ajz#UfULa2MvEI?!!!>eYD0Blf3zg5Vz;~^6#Pfu6U z7@7eq=|cZqgi61H@~(E)G#IAqRoBi8p6f&EHrn6jLDC)Vi; zcId~j>mKvs6`*qtRjxiKz$chdosHM=(;ppZB!C2f?ppV)-upxNettM%$m`k_EmAM6 za{kq7o#gmC_h5wmkprKqhr%Pg{n_e<=v4z9C64J&iRDLrsuPR975^QpCrSelkk}I> z1^k7+(SiRUDMX;16rufT|6l*I)8j_f_K6RHk{I&TME{nue_*C$hx4BXDH{T`EJS9S z|EcHyX&D;If7?W__xvDGn*VH=AF1b&_8t+nC8Ol8ic1zu0HpmXb*fJ|3)F6ZwaI1q zal=Qh*!{D?{f7eo1NG#`{-dD&`^x{2Qq~d(fH1I;P6am7OaPJm(N59vzw8Ladg^$O zh?n}WdXMn(Mty3ZM}%0)Y6xWL)sC zK2;^JqyD(lvwF#b^>OaA$Ih+#Uo<|Y$NV?ut^YGW{%Mv^psMiY81wyyss805 zH%=VI$2l;8HB<@gHlnE>K(mjT`A8{3U!G=}4CSJG48E@d_CAn37(n(sGN#HoC6ESB zFrEGF&-RF4qcXE^M-n^W@Ch~nM*NF0yS;m=zaH^_JMs~Z5jwvPF}?ur|DCZV5Ts&8@~3hDo)3pH zqWQC+{$trrp-d$U0z)vK99y&c&yKU?anJYXd@Iww=)V%);i)`*2QUosY6P>ZW?@FX zgF~e-^0(N^1P83MIRmjC*!SLFuLe*1DXtX9z%cSyC|^=Ecs4YNne$pO&GcGmd9kQ5jueHJ`NskS zgYwAv(cNhGZF8|!Hew@1bFeld5}||a!Ctf==pfAeC~Hw&=#-b2{E4fV2BLFT@4~<9 zp2C2sczna6YI|O$5RUNG_A;f$@XL;0lfycy(Z=g6FrDB>E}U>ONXUe~A=w%*HA0ED zNsZSS<<57jWz(41p7^C!W@LC+6#JTIxAu#^);8GoF!U;t5M5|UWZ9M#X%UlPyS37a z?}Oo&`cr{VO*LALlX{}!3z1bnKDje;4Xryjf;*0XzW3E8jBOp?Q<6vC?GCy+RX6>} z(S`EmBU{Li_;+w{*_yp(Y}`9ckink4q4V`;GEri!jg8K{Fza<+sNb6F;Ph5tG0)?* zQDd1(D5O}&uNk7bg_qsSt`JISDN$~fCQtJ8ZXVr)2M=_CBywtN*l)8_vA zu*q=h78k!8@5i2ghZy3(VmPl#>n-%*q=!uAEWX5n^J}BjWus4JOC8P4FegePT^uUL zj>@va!xd?6j1Ffyo(2XCnS1H+n(iiW>5ZARFU@I;zDJRx(zu^PS~hOgKXW#5p&DsA zm{GlgVu1UUC3B`D`^_Xf=6HZ$i#vGnP8q9ZzWz$j(leac4+$kQHos^D;lhrS#LUDd zY0E)$YV5kM5FYYFSa^vs!i<^IiG+mVL*+WZ($CjK)CUe4;iMgOwM%c67Pyd2(%tLQ z95&r_cj+qMtd`)qx^aY+)0;@$lUUY`+#ys#UiXlDH+HJ4PA8$Dfgfv*pkq>tTy<#bnpbG; z+N5t5IcOjkHPw41M;H>aIV3!_)8N=&Jgz6G0)Ca0CWy*n80az3LN5a0U ziST75)UeCay!N>vEO|J>lKq3j&`AivRxPOSO<`jqqh~nfmTYrvjufB0r$?zAXR(ju zoQ8`G%VU{zBiJ|0`H$`l#)Bq(-vGq+5Q9*TCge*%H zn8dC*AC{3hl0zOzE?A_791A8-t`s&tgZfIz4=Y|;n3-9PC)UQ3j*x=J$PeQ)rYl{O zxG-T+6_$4l%Q82(VfGog|T-RDHJHg%@@ z_5{)K=zBF;Bc9DW$2mPZ8{#DM9h8rxyK*n`{hwQEolky*M)og>nH?_gn5~#_pSn(l zFH<%!F$nB|6U%y^)}!_&tXE;~0fb1DBCjXz^w!6szFD&S=f;;W3JjXI>%4Oddw2NB z7tgE8d}D0iqM|u*xy5#vH@PS~ux3=H3vf(I&P2B?=?~)Mi*Diaw6ojT1!~)}5tdZC zHd=*93d0>uU#YW-y(Cwj)08Xgsl>b9F4K1Glph(!X&F;usO--Ey^KmooxPRP;#3NA zD=0{RL>N9o`9hjy{m7reD16OHl#sH^<+p8vQQpu1Lg+z7mbU9X9-f4(_qXZEu{7k* zGxh_+!fw>+Qk)x5W?!QvXX=X@P!@X(BD0@0OF0m_uv^-Kiz2+HhqmR-#>P_jV)%-p zSgfVosuow8h`b9Tw!pqDMP7y;u54yIcq6RgW2%B#6PK|@4eHh!_)+WA^=itzDYW@U zm%7Kg8umG9BVH-rww8l`sEO72QgIbzBdj+NF?IHSdXZ4?;l@v+Je=(nb*`m&J-HxY zUNq{+1#5{Aj|^VDlBKh-4TLv8`kJ;^(acm=W&3J~0k!LlKpLOK?|{X%$BMixCavpv zZ4^hh{*U~APD7XXxJ0u|F;0xppPFae|FicVTef+Q`)%z4K zw?&`WC>qYsQD>TXdaCtUS#?uCBR<$xk@u}vwP}RE=vV_!CE1>4Agj6Hl9bpcEjL}x z+4<)=%@t$IX&)TnQwiyPzPYX{z~#VP!?q0yoxqC;TuRA`b599wQ95#4)iQqChoAo$(8nXaQzq788QgiT^WplmoFOpy1vU?uEdCO4y+Xl+ZCuAxXm0G=}L}j4|KU$jCrerof*; z;$jd`1gALM%PYBLaLzr zXXgPeLP@$McZzCfs*}5jLT7H;slKHpzyX+$!OiAxQx|%sGDMFSloZMLloANeB|5ZJ zdxaG2)BN!V@5HI1mf`AE*30T6gB1yX(Qzr+TgnJ?jU$aCBobGI#Dl1%33Srqu-#*d zWlIZS7Cd3rYwi2fB)P0eMI8rG&=8fvL9>zSAOvMxm|o8sHyx8guY~c;I5K1uFE@sU zUdO$?C7fpjT0Rs6uyL(*DD`a&!~0D>I9>he#hkT;3-cY6t8HEi7f#IOep(lBc#~bF zmr@#C+-lr`s{P0$<_8Ol$m>z#iZbIRzfN~t< zT;?Qoj+V^l7fc=S5NzL5_bQ^R)5wn*73_V*y|eAdVu?@4$*p#3+ZGKf-_oaKUprC{K+*lEj3AgqN``|g4sUYZLBr@R?D*b4#>Lmm6 zU;y&c_agqqk3L%8wWx@D`v@x?Ip}{{&U{Fl!J*n8H=I$tTua8ndsiWO$c3tX;1Tkc zRR(kKgtxu735Jl^(1Ydy}URxz|CM(>Bd$sKKD*x0-2GBboI8Kq{9kB?YH-pvx~y5Vk{&2|~DDQ!e@Y|9j- zrRnm>!1*@QWYuI?c76UR5-BwGYO6<5>uqmFYe#cj=tqHfoiM}V6+AlS2+9o#*;2I~ zzjbG=9l(oA6PXj{Sc zAwk0};Dam9HR{^Nc38X7m&UrTf>37Z4eyEI&X1Rk)*K^phpuqiM10U)wU|uAW0*m| zzy$J;VcC!b^Fx@oCb{YiWn~PhKNxLa1T&rvCYWW4+wo{4q__97YV*ST(V2kimwp(& zpli&F8Yi*pp0k}Zr?`|!f+!o{+jkpm)R1DtCel?GhTKLjIfaU=eUMUi8r#BKQ3ddpPy@Lj`pz*|v@P#Z_(B|!ldu?AQMo!>eUToJ%=&X%o6>u^({h|4m< z@^$ox(}=vGyjq|uEn&`i;!zQ?vY~r7)wi5G8wq8egIl>AP1XL6~-};w&A^>;&*Y_gP5(9CTiimzzhd4aWdDk z>T*?xW}tKnN>xVgj%~=hX)bvXy)YsoOuV4Af7J~w0kNW`yD{2kw)OQIO)rCEfMB|z+s;vh)`}pTiCK4Nd)k%!8jBDN% zu$OT@=7AaRf!Zs6I29*#bW@wM>IuyXF#46uwv?Wk4Y67akDA%R9&x)QwgEE{Ip%b=Z_~V0>7i>(ga?g~Jhz@dLufPpB%TNUK zyfncH<07y&jnsT-ScsrzWoCufytz9cY0(2&%oGXi+@z<~m-&^TL9NpwqVW;kq0a?= zdJ|(cI&BrDsr*iG?;OC2Nur~}72n8%Ml49_cV(k06(<@?6j5E4EkdLgjaMZnmzXM5 zMA~TZr6k;3_vPe##h;#H88C!XwO@2@fxPvD9(_s3y%_d^<-)eY4>V2?%uMn;EXJ-+3XRH{>{00MiYfZG&s5W?-&rKY@ zG073RxCd&@P7E3svQ^|~%~V_s@wUV^@)XB&bBTQm&3bOwLz(U~OrYoGP;j7LG7GCT zad{d~z7oWE4N;O(jt}bWh)& z9xAfx@j9{Ln8=pw`{RYuy`??xU07zW!8QZxitZ+6-e`6D12OdKOpH`<(@*?xVIAVw z{PP*8mk=JLrEi+1KK%^%$!SZ7_U749g>`DhSG&v+F_FQP+rWHJ}$Xcab6~ zGtnw-beVezv7gP#*xJ0!i2TgUOx#7gS9WKtl}6by!?3Vo!$RCmU6?J{aTtlSOGq$k zy{tf1pDHJyo;o0c$tOn&#u5J@uxeo=L-+#wN-`t8Ir@k!c}qkEJ5^#~D-_$AT_lsI z9iv#qSak}L*>HgmBXvl~AX%I!Y3f?ZwAuFFC)NHap)`JwT%d52X#=@R(DJn=a=3GA zitf2W5`ywDQOvFnqmW9OX__8kOF8-gBo zy5%A^cL=|ShlW-9*cAdtBcyoH-Qtph2XB~QvZ}Dso+D(!7z=XA6iN3TAC#iKY41SX zt3C%;+;g%(V1bv#j=|eI;uH7_j=k!8rwIe)V7Xy>3Rv4ZY%_%mr^ypsPU*(K^|U$nJ@+?RCgPIY%a=rFB3n-voiP$BdpE?`=P1W)z)5b{EgzaRVw>94$V z6ofK%yzwz%9O2O)gr02saxce*erF@~OLYHuv~&cQ$e`;1^np-1cp&VQPVbi28`Gs-B#>6#%%*(a1Eed2$^|JCb3nE4^=gRB#;IlTa zAGDvH=fbS;mu*;9}G*E?_%2K$0c-n;H zZikJ4*N|x^?OE@Y50l^Tm|OLhh8*;6aE!c}>4Yo^GAXb#gYW8aW6uNeSM^<&AS69&fYbR&%2LV#bNOI!_x#QMV0cB!LyI zleH;NrGJo&S#V@{_ z#%TMhpMFdj86;Xr#~ozsZqdNa7K@i26sso(FRRcSfBfXCfRG#(-meoA_B+!S%X+vz znF%F?gRvyO38cSfC_ToI#4%6bmOTINoa#=kDp78wOU}yQ276)?q4HwK7i(d!o3?!E zAPS#df>io?;>f3CxqQx5j8`>S>qz*`XN8B zoKLrZzt+5}EuCCg4%-VqpJ z#4)tvQZA30)gzi|Na!3nWtS^G@2RHXl01~SXaYX;si8KCrG|CDNij+o+^9UgrlKo1 z7ybacRW}pju$Fy>(7O!v8ts# z4V8*is#-CMkX~LNd{nZJKxxjUvd>caDX&O@9-}x%tZHTFPb)*VDBcovuHYT=tl2Vu z!P+)3o-y2vEY{n;B)KXlI4YM4t2MHb@wl_|x2cWrmRc&9rtH2;M2(w|zmZaqSxvS2 zZQ`%xm`FU?xo~SI+y2SKc&1W%iZ0gvn2p5PohS<2eZo&=4>rsIj`sBIezG-+9chm=xDv z*(Ajibd~KVNy$qNmuv||mSHR!Dl7TLR&gITIDgZp2{NyF$jElAb}FnC>&k}cRmlq? zN2Ryv5PmMB>9GR8-psb@*~GB0we-Pm z>ib(c9UNA1=@-&F?>8Cb{Cyakz*c54P^QV+RTcL5uLC*6~@SzKDYZqZ%k zlC4BIRaX`dT?rCP5}{EGT;=pH=NV-K6(SAPDCeh@6=CebzE}=<)6zn)pk$oA!b4MG z1i5+kXU@CDdra$rZged$O$yXp&37DBF=t-HrT~?8cqXP<{v~GWsVeG9z|gLHXNvtkY&|^CJGryV`{I9s z-@%mRo7m2Xg9Je=#OFa_@-ge{i9E}M891KWQf?#7_cra#XSJ`(nMR8g^Gnx$yyYX} zAX4vK&k;2InV2kzXKqFsJgfd!5^#rA;X^!kz$q(HP z*>fY2r6*9J@Z0Io&igH8xjxBUr^0WGWMG#T21Mh$ zQ6hsujU43Nn5Gb9lz2=CEksWSP8(}7Kd5a@l`%Jve=2CK)GjHM_67W&7Zy@c(p-1p z5f+-ISMinPjo7f5x#M{Lf=I{bsN0xq@DK4jnt&9qinmk z!$Uy1O4F+J%_kiOiP`Li`qUKeen`X*n=_8WQ}~U{vv&_t?KL-vF0i@aEHP82Isti3(- zCU$HF*C)j{S)Vn0FNk993`O?TTvj=?je zdC7-EC|#Kz$J#umoKzs@+8oyUjM6!@9x<)th-kGV_oJXN5n5huXI^^oq+y?Qb6mpj zi5=}_8zq4P6CbziXUFJkrG3I2L3epmZmQHC=KUXyr~Roh@wO%jzuei2c(vM5`!mQ< zJH^WyB^-WpC3DC>$cB13s3by^s$yX$r~Av`r8!Rw%}0qwyi!}Wwrz&6HgEdkso)8n zPY!Mkg%#KrFL;hQd7N+L=i;zGCBDJ&LEBqhS%|{6&yP$=;Lt{*kJ%koOn$};poPsJPmi>bAdX^h?t-=RThMAurWqA68WW7F0 zbm2u1q%~=4-12+Gx^vv#`B-hqzVyxAKsO57Fg^VSEVmiO zSrc1>Z)tk8Jn-oXK|VZ)w`#rXkWaGdba*V~sjF+ZQ(X~bDMOvr@I8~WO!vKGbj_Nq z#!1SA-d#GY$J+ijOo`&h&eF49=;}-Kk^u}nXGPq;*g^an7%h)S= zR%{;CA|WbUBib`?FNy61Kf`l(q^`Oe5HtP?&dg2nkNc0{&u`4b_(x#bw;EQagU-gP zUDmxIcX+U-6L@AbS-#4LJ`y!GW1E-@9xQSa4D?bqU zq09*h0;gmt!cm&a<>E}sC+RU4b|;C;1!Bz$D+k77g@Veg@jjT*<{lIVCzb{5EkA&G zz{xCkI>5=lE^zYSBy~0goct#q3hin0-(M&l)6<2I)jWWP2dZ_FlLS@OdIEB)?@k{; zpJ=Ihu+_rV2t(6y6<2Sf&=CZ%bt6R9W9!eAOeivJ{3EiIpa}M`^wgTBg?Dn3pp*iz zu6sZ=!m_bu(3)xxRIo*`wdptR%X#ZPzc0ZTa!V#e_%G zHg3M%;*!RyyVk@ow-A4|*r9Lw{B?I~7i{qgCy*s=;Wwk0JXZ2sUt0$a-kS>R>t@mj zqUSYg4MJ_Qb@*&nak4erKCzo0&MF(#Qm_v4FEB>l31~&H8>LyqCAxEEhpsYblsT-fq|Cs6{>{@Y~W7n+{?zkD$s< z=cOwhM3A;w3o-x9X9C~ZyR|Lcz$Qt6M{n1PB87Sk&+&drLP?FX=2mbue(R3% zOS=1+5Ok}53L@RA?HjvOb}qKzC1ISYY%6&cI5!4*x+0skc)d8wu~3a^iuFG5M75gs zLCZ4*aVu7DTiHe|%h=kfIwf{=N>10Nt#^EPgaSji@0BFM>u)UkS(-=locqWMaH@Jm*;#^YK$)C zRCC0)q&ppw=$0)-Ctb8+m8V7MTo&{|UQCWNvok&RR&3G4#bPG&9~_!>-~TL~J|VG03lNQuc>d7MM>8j+MYmi^AC?6T@DhwSDh1>G3 zzPD|I&siKaRz}m30S8NgX!&-blut{65{!I{p2(?)bw)25f@C9+L`O*PU{X9FB53_l ze}TSE@EMDFwluOPHkI11?l>_1XLy9yY~}VcQ@^!b-JFLJi9;Dmc$W~MY`o62?VscC zF@VvyIC4M=>n$R+&B#3`NX^F7m7^t&>9X9?S~_9|a)Q*1U*#p9Gj1KNY!A$PXtirD zWxx_0h$f8YNaW9tMZywVtKxi@@5D4#tzTZuf6d-hf;u*Bo>y$3B&M`-^`<(X&Q%E zO0ELEVLNTA$^)Zwfy%X}`5>nE==nq+cxClvu5#EQ1GOdb?7Pa34q@B^Ol6x*8`cu$ z%I>F}xU~GwpjN~EK3bk`1o@pk0nE|EgNQ(%@x(KRw|WjSu`P*(todfbcB-8Bm;S5J9r6jmR+bu2ESqU^^#!^;v+1;-PpANg z^q^kjRAilRAw9xM`B=zLdMueGvB^lrpm+NO~^s1__v)NV97D2r=| zK#;>ekQVYj8FOGgq{cQeh&6g;JnbmLZpW^~Ekn0;g_5yZRc^u_KRHQq?kGZN%Pgkd z-mD<2tA&PY=)%iYrzV4M`rLuSwRxw_xx48DVUHcQIi(UCauvaLhMvP@5gkK=3LSOc zxjtXtE$chcZ6WkXh)?_+oi3FVWo1nGmumj%K2|~cY+h?H4WzQ#r-zTyZ4T+^ou7l9 z-Qxe$9=clT6J2u`7|NewZ@N~5w)np^pFz%R<}}CfdV^Lur1tFJ zD%mA-erBJFl@o1M^Yh@O>uHVkCeT&SZ}5&B5|uXbi7>^$FmH@MJJF$kMnE9CE%s*c zt5j3ehb`FwOM44^L=s%J3_m@P_QVIXMWPv+u9IVF@KfVO0A12tt`#X7VM9us&B;^Az_>+Y`S zp+laWu+$U}Uwl(V6Q+P}!rfoobv7kUpnKWc&Ki7^9puquk3`HzipmwG?f$uK!Tn0O zp-cXDR$|AhiO1e@&xvNK0Ukc;=IzY=W)--59{F@?3SGMCllO1>rZ)I772c}!d_#ic znYuu+uPFmZQ0<=K7)E33A7;c9o)1xf)!GhloXbBmcT%b!A2rsDW=U=)Hr!8KXL3sm zX&-p6t?N_8*|gQDnn@R`46{%()moxLK7`h!$rQt9xgZ#Zmx^Cw1A=r+sgFTeL>o8~ zYU6{2Eo+)}i+x?ZU`(6G`r%=1C`V7AVN@+2Z@78NBn*|ZA=fT-8c@9cq()AB5k#)MJl0K|u ze_|t~O2+?W5Z^qx(U6p&uYy3Bl4z}gBZHL}iwf)D&}x8XY*~D;Sq2<`O^Ie=d0lL z69;PV(8?6`7SE&cT1sQcFqU6N_ACNVOB{zEN1pg{nl}t>*z1|h!k~c2Xz9#h2eN17 z@TI2Xcx=${f!Pu|-3VS)ob#@)NVSM!nF3HKU+gg}F@Elg$CaZXd)aSBTbRh0qMR8Y z9Mn>pU|cp=yz?H$OE!?-vFa&(LJO!gxu>=%$Qim)tBO3S+U+;3Hzh4Y zKP6j8X|AtAx0#inT=rJ*p)<(Nu)$3YJ3)F&W$h?c_j%7+L0@l&=Gx26_FQJ(wo_jj z2D>JGObjl1h=a;rs;n#)C01o#lo*q4ZhEA;Fb@>7$rWRpEF-kD>e9Sym*2B`MhrR3 zf<(^N*d=aVY!@zSdYRf`V}8z=?b0suSLn<;Su4>ujU+#Vw|C3g-db%LMLNv$kx~wO z!^ve}vG~NK!KRd~k44hVV3jX)P~T;8v4nFb{)L@H8Gfds6){Q(3z6kyG={E&QN|oE!=RtfS-% zJ2JD{FW;mKCf1=X(>twOTn))xy|*ii%r<^%JD#?=KN?D+e<+qA?Z2E&aHUf+ZP_Dw zp$ZFohGa^XB#wv#3FS{BLo6OZhn3(I7NvuPK<`9^1P93{Ig5h0c3NG=NQkz2^xl8* z(6jupXIFNMn-Iv{x;Qo*{#;bD>lI}mt8OfZS{I7h^xWYwfvjhFTg2Q6Y-}lu6Ta^F zpq|D@rxmeq4GApg*Lf%J$l~@J%T61Bd)9lKqK-e1N2X1?v@U-;+r-)1CJsK0rL3s- zO_bIg>fIVQr_$A4k?S|A_HbENmFP=Z36XoGbq08$336txUWlwC@LWswCcm;SBa^O~tr{{Ug%^O~-ID>_^w`T9TI zAIW~0e^+n6?^The$|*myH{bV_U52`>;qs!6EdKzHul@4>0JA9MdTgMDUAZVDnv+E` z*c{M{D$g|@^d{vyi>M=-?|l^Tta!Csu?qO}QNnE2IB6rlkXRm-DCjA8k;4y(k;e7{ z=CE10x!Gv0Ax+|ZI^5|#8&zRERJ2DU;G-?$CZ(Qthksk3beEe$u&?f0(*hBrwoSinn(umhU<5|)&=4Wp%#yV*p{ zz;yw6pJ{3(MltSsuVty;tmW8x#WWP=wrs5fyyqTWO5`gmYPiD^Gaa;DBd@%#jIcUa7d5xs+p6)HeHi1=@r^zST}vczNiiO> z(RMm9sdG<&<<~{@&MQHQR@8`vZ>eF;ZQfx&ODXApsywwhS;Jg~yh*7I2r2@AVNzQlz{F}5;VK?j)CKyh=fO@Lai^3{vmV)Izj-nGwF zsp5_xg9M}!7>v_A52$<)I^ahevVc5#tXD{gnT zgBD^OOS+Zoyco)CI+h9u=M@H6%+7mAEn~Fq>Hh#UTk6qPNY|8at2m!WJUfY0aa>ro zFGoB=2ALY^23x;jr@!R7tYy8XEi~E7+S@g^2_w0ROBVPZ ziLc>;NJ7dqweFB=6 zXz7?kWN6XN@cY&j^Gb0>G3MbuF7ns9rKWG(`JWp$y_|9fu zTNR60hOw-cNF5%ZEi=A{r zNVdBv8Yw2)AU8k;_t`Dxo0TVZAd6X1G0Owp;8lM0tj8*HM%s4CXUO2t0qU@+HBK%} zyAMWHswhO+aP55t9fi5oRZ%hW$meCf+-;`AUP|ozQ60~!P}EKSC)zgr_4zFoH8d~_ zM;O01b3SEVUM{3m=H=#nGLC9=)E7f%`a_60_Y^ekY5l29{y|9MO4gqC9}9)F%Q?Tz zt5Dxrk{PNZ5tv~lI1+OkYHX`xvott!7g3TvMoLoiH*j$*U-ybSn6J5Qo<2tFVMUAK zwQkD=OAG%1Vcpk!4y%+@OB8a8NgH407A~4IRb-CS5}UK5k?lH$=(uM%z2(H6PO9r? zs;7y}imFb?ix}iNo9@1&+^}G)W2Eff3~s)F?0kxtLBy`DOvQB#%`6NSxsV@#C1&a_ zwYAf-nxdLX4V#>{{Vozp=;|rtWHT6NZ?YYw$Uik=S1OE=Rb_u?BcK`Mm7?Iew`;x% zaCqdZkjWKjrXcs(6HdP!6%^mnH8BZk#8OKcRDg(!ixk%CZFN3sNVy!4skQV_mk6QC8=?2A%AgMT^H`a| z>Ws1qq=K%Hsj#xJ)=Z+xn=6)3LKAY36acGKhTmi|MIwq?3qfWu>OWnk14rTa-E9RC#mq3+N$3h}2h_%u2As z1WvpZa5~L4*uCFa^R~+Ebg>ADk)Q%Dd{xxyN-HT;qPICZym-CBj|0Qxsu7H#;AD-y z^{=4eNhhrp_}tBNn(XE{?sFU8Q`5;se;3UBMbx-$6m!7d=ym<0)LW9s;ORJsRMp3i zHYZZQ=_%?nfOS5`QPbV;x~;UY=35rvv{pJ(RQVm1t+mdI^kK~hJGDM4+lwQ%TilLH zBYF0o?=ZEW#i&lj=7zT94oj8d{w|LRkkQh^+f-!-F+Ilg@g-n!w-ZlCIf1V+u#2-U zou`f0msevm;x#UoNnGQ5SQDbyqlR*Kmc&Y4M)wiKv8-9gx2=>CbPaWyJb+g5gT;Nu z)8Taj7q-Gkqt0LAPPX|hd>#f=*Hh9yQ4=J14w25$y-M~h255a<^sz`>DTs(j@2_Ar zTe+>GHKi2wXCdg91eXe;#4$S9A5Bp;nB4p18s6T2a=KVRe2;b9`;toQaaow!85q(o zMVBQedFAX`rn;VsC~J1jdat3AMTPM5@RHibx}dq`@9jx(z4W(1)h(^LHfh1QMOHVLX zgA>GEO;lOf=LFv5*=3gY60y*b(Bs~3)jD+Qu`s84-DHr|x3pnt(ZgePl_J_t0kaO4xf-r-44Wn?+s;mF*~N4<#pTu`xuG6wV~4-h zMu!$(!^-9wDY995GsKXAN?8d+qKlv@a!F1|hzdEWwThb!)E&_R5GesolmbS|lc7>J zP*j2zCN4;#aT~0|U^iM!PDWMMHjqhn0h!<)L;cpiCaR@P$(xuAJge7?QPaVSVR&5x zG}2Wu&yF^N#&_MfK(U?08NoF8bnfV7A%pQNO$<@O(%9o`8{idAaBCdnuoo-GI7atp z(p2P?k+l6IuC@I}pUbvCl}k95tNx}K2>$>C;GdWaOnqgMMNuqlY%>rWXI;YkU0nAj zNcjah`J4E-mW2NRXo{wv#nI*;7Ts*9tLUp6nwF+1K;J919%GW@y~^9*jm{1&v&PP8 zvG|3Hri_(IEzX;YWh|l$Y0<}3$_+xhS5sUm@;+lx8+8ItXnz+!dc~xvj&O4KUN>pn zEa3|xnzPKwgIr0(eMqc*=lzy*jhbz#=(P^5j-IxmuJ+u(@GZCss=C)c7EMVw()pT4 zFD05x#xqG2Pl<_`=Cdnxv!j)V;s{#|5*eJqBP)+({{V*2Ncrlq>Epyh+f_{qC2PH~ z$Bli(Z{Q`-hdMJEKU9lZcQ|$)+Q{>j zg%(nX0t7?>5fBba6rutGn6(@SmDbCg(AvAOcg z3tO4FY~g>B^e7}S#XHCsY-Ie3;<1cL^o6aG5@dTr^*R=vkBagTZ*$#WOCDa<#LQl< zCdJ-sh%U=(i|KWRAj>10;%Ko(jNayckfTSXSpK?Ma;^WAc+g-geA$Np}xpUTdc2mXGK_eb(& z(U0n^_xp!yiX448!YyZwkkjhE)*zrcO#R~d*{dNQc`8{9h# z@mPq`U4I9o(NV#K;O(QQXlo&lAh%w=cV0K?5*Nc=3m@%dH}ksoY+^JY ztZ4v!ERPxubpdWYC}R^~JRD)e<#4K%?S+qE{aZ%o;4SY_7kv>mVxeS?e;>y%o*!iK z(PXH^_GAE;y8T>vby_SMvx_m88dFm=l1l96D0_`y_iQ}YE+4}9ki;d9nhC2XdAsUd z(gUxp?pLDW95Y)-!jnNoR3XGCkUCidt)SVU{{YTuXi`^Nwji9flQFQ&0!%uXKDQK} zIoje#68AyBEAw0GV%l1Fx>}heJGt^c{{ZY4oN;C~B@Ih(YB*|Vnhhj;?#y2Exv(e0 zno}HRrw@HTAz$=TSoSSo8GJ9lxpXO0&je^zn}prohgFVa_+5NbVUbM@RFbqaCGG|G zw^QV~lfZ7Le3i3Q9GON~z!{nE*<0Zm@SG!v>rF*Oez0O_k3EL^k$y)&u{ht1>gwwS z78N92j08HOP)1i0Y#I+RtZ}!(j1zBE%(meaR=?7cG}Yh8F8hb*>2Uf81LeAp)--XE=Lo{ti2tk~JE8vDZ8Q_T$VM?5YLiTZ*K^iyji z2fn55#jVP23FxfIO^wFi^6G(IN^1ie>mv=-3Dd@;)KT+rYS zi;v=*CRp(Y%*I*=kU_S9^j))9;^F|;lGE`PEki>YrmAzC_cz#UZhXqgYD^nP4J2_e z*n@H4t(h7QtOw0)BgQb-yo`@$`IxZrXF(|fIGR}I+&!d={1!=>C)n0HqKa1-+~~7& zzKZk|)YTEZ#OCL2nj6@yG}u&G%$=j!FQ{8w1~@6(BV(1vF&7WA$(i29uNbMUr*(rF z*ytZ&s=FNYH8QqFy`-_g?d-GS;69?oJg(%w zi5+8^avflN*Db{r52nRoe0m1Amm<10m(Y`gMYdW>8R;&YbGuy53;) zj*17h&S`9o%-0P) zlyg&VYM=$qsx7*KasWM1PbC0zQV0iKQo&RkaCJ=v#X%%;P!(NNv}>va%64f>XsXkF z3IJ4)P;X)e>zc~ri#|D{CE@*`fA~PPz9n>$y|KpUJb(h#&|%o7Ay)dRB8`wZS(3`@ zTwhxOt(Pl`$|{wcJqNSUo37eg6#|5XvHcjVc<w=TeFw^8tw8$rEhAbjTk0A)+KS}k&7 z6^-d~)A%Un#42($<9!r>wol=TwvVC2^LR-J{0LYx;h5bpc6vzaT0XQ7*Wh(hrxr5F zbSyF>Q&}B1YGPpp#lqJ%q%j4cJ zrQwu-YMeKb|Rr;DEf zamx&CXdYtc?^)i3X&W9bJ#?YLj)l<2Zf8rA;ivqv^Ei4RrJJej>Qzc#8#^Rbc-ky84y7DV; z15+%MDaO*zPD`U89$$_2`8Wgs0?*+{*XLggfNKovk{zk;X%s)8<10o6`j6oJSoQZ7@d3T>j0 zmQX-%H6r#vG*STMr7|uxvRlDc+aTw4BwU~k63Vp+dytuEjY@%g`_)I<-9S3~)+My} zMrjJ0Zm$;VRRk=}G|P5T?^i9Niy|_)MTLs#y&GU-7vdQEW(QM2^pf9WZGz^ky`#}C z5-2!#)@87gtmm=h(V+foo5itS9}OnAdLyyG@SZCali6y`=Mgo}!ktY30nW96(?Gl< zi9v2VR1W>2UgeKU%gEB=&<0T9%In3r&4Ii}QqVyFfpO18=lz|!#6IZs{?jGlS7yKV zXzk#Z(Ok+D3tG$B9v0=LHqlL$UPw*KEIFVTRXL!G9g@}x6Bjz4MOAI2;>feKktA+r zpYy?bo8n1Ke><0NXU6FJq>LM^9HI?+lC(7(x1= zYFCN&mKVfF?0e5;s$UBwjPAd?h) zbmk};WiD{a!)>qOvf!{h8XhF$if$#Qr2`M9rYvPcg^bV4KsMiN*!cM?{*+mWS5?PM z$r{QigGp`AdEI<$7c!+qD_I_n6t3)LSMl~4J##28Mr)<+f0AO9Q`OMP zCL>ntpH?WljrWtO`7Iv?@Y|a!YhN2#1a8dNxN71yBf)EZEaFvln5_p3(A7SkDcI-K zO404y8#hlQ@mR&*L@Gr^+9scgc%mFWCgJ=tV4kVYw30QsnGotu#HuiOc%vU+PB@^R_9{jQk1MfSpNyIQZx?C?0rNiqdih`Y=)dm0W{-zm&m(V+7Atg5K1@dzPqC12Y*Fl}aK0{;Myis;6Yl1%4HZZc`J zeU48>#W`rG@=jRd;VWIMdie#T92fl+0Ci1IYFy*qi~-MWR&N2~xJDU(%EndG_TpE% zV)7b52E$%r!{)i!xRVm%E+u1QtAd9Qk!3UkBm9MY#uo*S~^C=OLJy%I=agVyg`IdJ3A`) z;b}jj;f_xH&&zEE?7A!~vW|_B zM*Piaum;z%OH)0Lb=C93h%{C)jfUj3v~IRIS*3khnkO`uf&m*lnw(-PcT_qf7|Q0| z-Uq>H@FpBOt<=*r7MILp-QFT?4 z!Fq$h+=NqPvI~^iO_IuNY=n@AmP>*zflgGifI3!TlDMTb?mX9?4Qf3Mg3nI1Y0b&qlz^610G3ik%4~sE?oa{~ zaF+2?WU>)*ES6HG1bu2hkEV=v0qx0bruK|+pXdX8%5S)4~2;q?Zm*B>AZ zV?$cPIjl-49X1^k$-Y~#`Tg=bJN4x-LfviO@+`Nb{>mc=*|Lcx6nr z70!PbrJoNpW%583O$uziZO@++SuCouSqQmJlFC$og5@?q6-cC;kd{+rAR&#)Y^KVj zKtKovs!<3`0H(+{QixoD6o8}!Dp835DGF_(0EAqNDoU=(2vKmEXoXAthk1S~;oVUn z`ZpgB#aAztolXz@{U7d+gid-mg zoFKcN!`U>{s!Qx^@OWu>Zv|{tVV%IbSK7vTPOfqDB>4rdrh>B=#GO5D{Zs-n><@re zC-t05i6SqN!jdNv=C|tsx4P@6h_*QcK(lh`&;{lpc6({bL20`+yhTS(9t$g5Tm2Uk z24~94HqGWQ%KcY0!)FRO3u-XCeSj#V9}dg^1QtKBB6h4WxTo z3q_kD2T}O=XuC=bGLHwqV8ba`$l-yOj1If}Nhjj6oMY2+rFEo@bWf;tD@{uyib6GG z2_SpORCdjYr#atCDk>`@bk7ZYUSc_38tdggJqpor2NGcza|7#ZB8;7zd${|Cr9>&p zTcRA7LmP@2h2enLOB`)<*JvUzUgOYda#sy3_^m)aoKeukbq<$TTg#HMigBhZiepmG zO-5UX!qO>P_E@~1tZ%Qv%bKl=8O3HYR@6vZPL0`(9!sT#hbcR=R=4Usi;!T{n1>p- z530qjNh5nn=V%7UUheyweAe!w3@y)mH24(^bYR*sD_rN0HYNAXeK%<%i%{{S_eM|X1SFtXIwRbbST7do68Vfzui*?qv3%wiaLrKxircW4~a z<8oJ5QHr_Fb112^fv0Hx>wlSAii#<#D*Jkxk$#PCgUM$M-Ad|Z=x;DDQGHVb*aN3% z%vv(sj;pw$s5JDBrDt|9+cw`-d8{~ed3#e=IcVjc-*TpR)W_eZGB{gOWFVC+p~cH% zqOGFE%~+l{X3BeogbOY0CNWcoQ^PG$bENvsZns=E9bJmHJk6F^js2Ip>!6OO)?$tI za}ZhqA)?JCLP@>Jo_lJJ?YOKJ6wR6!oiw0W&TvjS= zGh;@M2BxDFrhj8QpV{8+4%B;=ZW{4a(%E7mj~QM3!r5bVuFsw0G;cPs%~y76>M%NbwmHoLDPwU2w`+3IXK=khICrSYA$;`iBVF>F z*=;P#z0CsWe;@gEp}-nP5LT0XxkbnP_ob|3e94(kVQDNpv?w;RyFL47`Km3Zi`7zJ z0zQ9T{;a<2q$QPBLI@fw3a(NR4r*+G5TKF(xi>)H5~>Mp5i5(7+Qe~VQ*wJBM!{id;3+6abFBwb2@2Vs2>rPj)8gP41?zRS z638kmDjoqE2W1}sj-@Vv(i(it4JP?-w>zp;D{jq)i1J5v%F1Wx$>DLmtR4!y(k*aT zFZvxlJ`V)&#>rmh2T07fa3^1S)kbS6AC@WVDaby^I(!a`6&TBAWa>^oGCS@@hGPNpdc9*iDR~}FTXAAEUYeCy)s5oM35dhg!^mG|5TJs5Rc73j>(xlPMVG7k zH1BZJMfNWH*OhL)KheBmP86A@{pkx$jf&y%_536IqrdFjzl{F?4DtT}NL4!ACp7?b(4~~y#Xaan z!$pqjp{4dq1siS62;8V9*FdJ;Do7zOrIl6+l7O~(jTAQ7hnlItC}{5wHH$^G_eQ{M zqjIEL!ADhLqC%xqqeTW+Dy4<<)JF_r?t6nk>vi-COn6QU17>ZU$lA*{t(Ta3EWl;2 z#o35R&+7E8-*fBbEoXZv7T5VMCmwTOUS8Msmt#S7?|Tbwy01u85mdti%UfuqYgjF& zyZ->s1;n}Sdl*3YMmsxLj@}l@1N5c+%1C@#a9w@4qGF-izss{Aof3 ztj8G-kPF=_ChTdZp5p9n!ttKb+1HPnN4)k`HHVjWV%FC~g<N7jE_P_z{+&w3;mBvH#cHc-99+|8#KW*W&)gRJs}YKZhNh~a)@3_0 zANE`*CnMC&aQc|)yso&f^pX%AjTXXL#MsVChx>GH6OpkHg$nV3F>fz(djhi&; z#nhGTW$^+q7v>&US>E(N^ z1{(`0@mPc6Z*}Fa1-I%A*Gp50RZa_OX@oKIe7pP>t_(2tua;`FoyPYK*6QdfTT+>| z(CavE8V8dL8E(ktXyv-;@d~PnoH)eE10-(6+ZE?g(8WyABkCq|j;;DaK0#y8J#-nn z5i^=i?AZ>!1gS(s%%5GZf^0jj&A7-r=rK(M_kHz#Ext1(m=jmg>cw* zC5lA&$eg*R*_$VN%XHZxeBHFOlH;&;fO#ZhpHWjkRCd)h@npPmf-R+r zKEdYsNV)(Ed!!I~gb2(y-aPPl}_-<+}6m~5PR$nxoTpx?V63lvyIjl z0mAEDh|)t(GD6qo`nYQ8i{pD;Z4ZLI#V2D~zNa&Y;EfdKzLCZ) z1FR0mm|YxIQP<&(nU1-0MsM>C!m7E97-WoSvr9?a;RGv~!NODe30flZRit0+-&NU%^9c1r~U`b|0jgHj(>I0dP@IRZ|vv zimBx!n+H7GeuG6@Fqc-#1t^CvtVq@e<+ZMLKLAyHwbZdzZ)A6@o+tjUXy5)<0;|8x za#-IB&xR1_;_V>h_BOQO9EX#Obsj}= z7}fz(Lo1yF+~yN-9jIP~eO0;QWYL)9Xdv}jMr{~Qnvvv_G@6(jQxlj2^>N$cyP8~v zot>Elw$jSZH-vT}&yAtcoyC@hA6lY$eI%D}IGl9%bX|@gjD;4|x}I;0aJrb3oL;M; z)LBLKSa@zF4Qoq4ES0{~9lFhEUWyZp)#7-Hw5Li=Gge~CEUL1FnOPP~c&eiiisQ6LsmIoIjkUOLg<8uMPKkJB=LM{fj|22nad0V3ouk$Z3NUTfMo z-W2}ls`g%A9Z#{~aj}wOSzhm>GJsv-b?qEAH(^ay=X)7PaC2T;fbfnzk7kz*qLI*- zAEkK=VE3QFdtM2{)f6~Oq^y!G?PzIWb@^&mi>(OJlpEEZ=SFg`39XgR7l`4*=atow z!7NVGH-6!BcaB^^@*F(vqd*3%BISo zmeCL>w}M-euF5Qg6xmIbgtC!xl^`hrO_2+f*-D#epe4WxprJ@aMai-tQWSy^Zl=j( zF(%q7NLBJwl>oLzrBNvQCx6ar;Z#fdr+?0BxqPhZaDV6M{{VDP8 zN3|rkBjLIDuC^vo(#9ffyA-F2j!w<4k#@Y*3gR58s}kO?GrvO3!9&hR`&hlXh+rNeDKYmd@ZJXxc`qo0{p zD{)%d`?`9mB+aS2zXi~7&7#p73QwuqVq=Hc=Q24dNs-ob8?CS6xQQDBDrRJJ3EIb& zjJs&4!eOed#Hpw#<8hXvK*qd_wVhmi2J5(Y1K~JJOrmLJs6VcfNB3NLkUZ9LmRFR* zR!cKD=wp1+wm86MW0zf)>I@!~G4^4Z{^U(eias`FfGdJDk6%Kn>4|;Ccs^2<>RPW=Js@sBKCFNt-KY-@irA( z6JGhA$Nt0EZax|+rwG~D&YY@UX4ub%5{ffsSTvn%3focC(M|)KC@<#M9aj}KeLR!6 zz;iHLP%No+Tx2=goT`N>tuAcJl{$*&pj0qP3z*YlMZ)LmyI9^?W`oxIE^00!l9k3c zRL>aX0lL`X*t4tVWK5Nlx#wamK%IY+cl zg3wUcLi)1_&m5ynt`;k?YsReyUlq#NwXEV#SZqzOXk)H7@mbN;YGYGPjlKrKhrIKqe*k)QD#kO#kWt^dI|@eV$Xm6%R^{WmQFF{k>Gqnoh1e zd30HvGGO)Dol%@LFnbLrn%3M{th1B4-bnay{quKFHGY_5Yy_Wh~_gc(f2B5^@dn&0Rk>qINEZ~34 zHC95izNIptp2wcx{7+|yaUr#>P{E<|9G6oZtd=Ip6PotBP(ipMay48ljZsw8WTcJs zZaJ8HU`QTj%UyG(6CQ?8OK(d>sBqXNG()}Mcc5tN5iahUhgvK`L7n=jB_MRK2>^NGQ zD2qeO0VmIO!sGL{8!wwZAG0vcigNNqaQ!Vt9LGMUc%Kxd&T|^TEb?!A^X9WK{5A(g zTTsc|CL_2DxeaaNvENJC$9Wv-Lr!8`x$5kD5fyTJr4=L!7`tNp8s>+jidSnVvhZDWXvNZ4#xOHGJfllYnSc#w(MFpg)F^s&C| z1Z#U+z^-SDF`4licT-6N7}#VlF1ZBq*8XdyhfQv4R5$v_$nwNdX? zSwYoEL;$A6EP!g40@_(d`rTDz03ih<#Hj-5&dN}mk*`3O)kwMDl3PRKmmm$5Kv_}+ z`KsEWf-Ib@svw{q3nDH@B?n_|l|XNF14RTP-M6}ii#U0zh_V594=|$TuzI5`Y^6sf zD>F=_s-cbY$jF#3=QuPDw@|uIM)+~B;+k^i-Z)Qa?{?ocRcfl0H#gAP!qIi=#+vHS zUg1nOJSzmJq+rV6!JEYMD=MXtW$a6C!MGy#SE^--o;%4PVAx%A99dg54{UVPX!duk zzH2Iutw%X-&#qFWsKG)zBh9@f)zi0$qoJoQvok%d<*B#eS1`uCu!g+c2RJvtUiSH| z^p!ByV-*nB(zVqzf!&odg3;(RhT>~*dWHNyH3xxi|G zj05WyF6-S3x|VP%gaM8xE!^%wcpf=ZHZEPXK9%hCESM*=l&FiRmyr7NZlWBeIFN8v9P<0P!oE4H4LBwp-&~C!^s`AATiR z0S)fQ5O4+N+Xdoy&mQAEX341Nn(8W73rQ4i?>HaYe)jMd_pK%|jB!UF@f9^STLnRU zgi_On<&G=vNavurx#YcLf&Coe_#rjeq`%S_ff-5KCU^nQ%&p9krmpuePhC!1gLo?# ztHXmQ#O9@;2fEh1z#j&S`Rcn|BZ9CTC^FQdc^plon^NPw?flnJ*(sqGaTWtcfuIXt z#5l;OqYtEqx07H9(Y`BESgw~ZP|Wr<821d(RzWP3bnS|Ew!l~hxPrWA(o~qY4cA3M zG;ze~V(l91T-xM*3(;{bV-k6M&#jmSFt~v1jRVLpBgG#l72}ds)JocVb~h=WM-z6m zorhlqZWYR;uJ%S%;Hg8qCxU44?0Xe%N66}Co67h5Aaou+3)vfl;MjH)>UTjCV}G|K zjsTO?lDzT`C5sKi*@s|FH1RN5(!ceOJkLP2b(NJBPA{Hkzs1hF-*9s5XYxGWy-)~1G;-l>v6Kq;XE3rh^ytp+UX#sjy&}e+jidBTgvD8u9kik z!mw!jI%49@ND{j-y3P{2%2z2UE3=lNrIM;{&o^fn)Sh;_+(m>@3*0%*Jj<3yWK1I~ z8Xs!{0>s8KN?b0OPb832R9#0Q=RtzQU9>vsk-vuO+1% zcMq&(btA+i3puB}3b|8`VHGd!1x{k&e)A2-fmF_#O7SnHDc|EZbl9XJ!Hys@+^)AY zlF_^eLo;4{?pFfZ*vpHB@)L2Qrb^Jpm&czsA~Y(cDeT#7=u?)c?{O%dENycvZOf|B zO!;+dY~G}ET>Lyz_Jb6alQe^C5tuF34OZ+%QqWl|8ZPIBjH0(>(#;=+<+{46ib`kH zILP*}XxznQ;5CoLXhlqn$XrMo-({JIP+$(knsE;)j^EEKk$qN33N z$GbQd)OaiCyV~V-6}B_Dk;RxS?O|vxZ+ppV_%0cZJklHXZ*T*lvfWluvk;|xW=96d zHyoEYUnO<}8|fmHz9+WvzTVGUEvkx5=I8+PKn%ZYD_bv9tdW977>Tm8OG?TrDHzDa zV4K?a)U8ho;u6nKl6ef0HP*Q|Hva&ZTiVxN26&aRg<0xE=i}z-P@mYquuxS>7p6QV z$g){Yl-UK!Qp&3+L2@jXRars{izu?I+=Iyl$g;<*sAW3~orm z%8HmM<8C2|hdyIxQ&S!M9Pjz3n$yMN<3c^opA6yC#!t#Cc4X7S#<%)Y8hc`ZYaCDK z(2>`mTFhsQ>ZWmv4FU*;f=3Iz-tB_W;+Ta_B~t0?q%QrI4`qX(3m7jmQOc~d)OTmQ zqZnc7^64ugsUIYgI$2)l$m4S788YTB z?`*R>w0N=X+kNax##TtOlDv+Vj|ztp!DEG(MMMuQ4ie{VZVnvxzqu#Fc&3hqCpD2* zx+e#3 z*NoD*oB8auxTYD3;`N3~Oe#7^A09_Kq=4Y-`$4U_xYx~h01H~fby(=JjFfgpQch~k zo@&5DB=}%A+j{~XKtVsY%6q;M5uL%&R~2=O;{ThOMO~%pue#H03-Mnz621sX|Nn( zj+y@e(o`|FCTW~X(%TMtkf#I3=cZ?~Ek!WW&i32nPUFE?>D^u=LaR>FJ7=-4X=A`3 zu2UVu4Lqhu$I+AUT{RU{6_mnyX#?2qoV*W3H4!#=T^qn5!pgYG#p+u)siV&&itg>A zIVNwi;rOkt4T*}I!B8?(H*j`7AzQ^LpGQ#U5#8i^t#r|6v)J;<8SJ<&rVkk^GVE|T zj}3+@Ej|3ss>&?2_$DFiQJ7{RPR$%Tt(Y2JdU{o3QaO>}tI?eaxJ_zPV3t(?fmw2! zl&P|tDY6lAgtD&608w#rn|L4!t0j<>%4~pWrpN}nCB?{6FU?JnK^Gw`r4*)3$}Ebm zXaWKl(p)Sxy7kvn)yu=Qba6GKJRy=f+XmaGHRd=J0;3nDh1SaXS`GSLdqs6SpA>OI z{>g#5k+@!G+BxY6{{WNM`zs5%&+Lm-t&$8i)KzmvU9@hAxh&pV1&xl;wu6NoEj!Gw zbFCvwj=7J-Su1kUG1V@B&gQbf4NI3ZRm6CtP{}u`PT?hT=5}D~^!P3- zig6inI+oQ-6C>{Sc4^+%*XFu-cH_CHTFskjY+`Ghvb3lmSW$kfBtgngRf_l__f}1u9givRr_cL3Joi z$N@+Qfk6a~l#NgYHbO1}DFFadMab1b*;Qo+WdtJKl@kx4f4lEjY^}}um-!F9V=tAR zUJv~JAMTIj%AgYDJ^uiCSM^y#Lti;B#15J#~=$;%S06B#3xmx$s zdc<#-3wDmV9XYGmwghT1N8+$d=a)0-Vz&BP>k1fzP=+wLvq!Qr)<$c?5>&aHgOw(2j6wz zxa?qkx0AnbP9Tte%v^M^q`Dn(mOdHHU!ewJyOSZUtRQ>opR~Rvspq z`nZ=i#I24OT{Tu46txsir*rkn=Um&by=!={h-q*d5mhkE$2%)n-Q0Qw$xw2RL$`dg zx;V@m(P?F9lCrcKMgf#YEcc%yx6O9kMPAG|4zy2myC5%TUEMV+&A8)_A;jq6g9XHE z;iz-F@y6Vp(hlT!+nS0R>_PY)E*n*eM-@z|;j>FTnnxQX1pD;SWm0f%8q6-z&m^NV+dtA-AXZP>DPn^s0#JT1n&NfdRadVD^P zM-tfMecT22C;iq;{*Edz(AGCJ*~Vu`!F_ym-FpoMEOeAn(?ZY~#@GOK3dSgH@ zyRT=T2I8z*GYx$3)3vVlq9KLeI&xcF4~1#zAd!{x8sPST#>#UB5xEx&VwGyJO-bCs ztZC0!t250wI#*$Gh{$hd{TxqUHMhiTWyEo@MHy&SVh{!&Nsj*u=we53@o|SRX~E$?8Z3;?Y}Y6b4`v%9HFG2CDy*OTFOB| zOlNiss`~?V=r-xX$Mb*|*f$STw{j&SQh-J30E>%c8D@ zl~l}lZBc1??>Vg*kG)^Z(4kJu^}33xYB+mps+gjT>K`M33sG6c*dqm^l3J6?v5cRY zuv`O}UO}2kCUDRh99&1mR4uT!i(WVw?wf)+;*yP zV5W}qixNbaAbHtiO-%%@CRe%Q`xl!9L-6=o-|EedB6o3SZ@p|rgkrQPb)2_1{5`~x z#{S0;k~R=MtlxU+DJro1UY+cQc&2NGoCB^!^j>WIHShMTA8w6k1LU&ss);aXm(tG& z(!@EN>)=(;(OK+QJ3V@vj6Vyirs6h4_?&6l<7eg4);q4n?aNBwHX}vARdIzw*&_`+ zMa~}ETt&QWwoK!SH$oXLB})(ZY)9a;p%})ZzSlKzZd0QqwRSh#=%u4@S2aHvQ8m9q zOFPf_tl#FV!!cZA6`VSnk}7&&MrkAj+;j(-UFC|V-JZCNo+O(bivDcK|5 zC3$5mBQ&lbCXW)iTvobFLQvw~&KSm6VjD5P&1P{7vNkGuBXOC&u_)^2Y(2qh7na1= zb*ec%x*tTqVOA1~g5Ri7=A}XNTISguR_B3ViwteB;ZsK)OwJ7?#vPS|Qg!6D4QX)= zXeGqh0nD#P^k0HS7B^8;=8W{PHH7~Fjn^mOH217#?H0>u#kngUj{tKcXnXUzz!w2) zp0-y5da77JalNjqCEBiW(@MY%RCta_Ztacr*&DG?NGDJNi)w6+(2ey#0KU7T2-NW& z1x1b1h${O*lKEW6+Q-Xd?+eSZDq5^N6_SngvND_>qLxq_n0Q-4y^?VA6Z;o5KF2O? zuj0J_0E_U>C#a{ATKTExrEacmKXWJ=-@UKRUqQ6ZdeK(7#MjkSQDRWkQp)J0Yj+&= z*!5jj0mZbnxnZrfH9^o5>^S%yOOuw6)`28*IjtHrIg42=Zi-h%`v)}ZW4hXKQZ-dc zLEQEUnH^g$9*d9M!hC0R0sDu9i3GO<19!smH#qhj-n8F-l zsRKygp}&V!QiP!U7P-c%?sL;b*;$n6Mxc$sTO1P-E7w(V(7)4y z`<}PiKdCnR8VowRqPV^}oIqx`Xtma(7j7QfxdS9JkZ$rCU6k}Bb60EY=b@ylrH%&~ z%dMS_B!PPqZvm>+#alrHF-IJRPSv+-V`+1U>!R|Rq>^bK?LlT~ncO);g}b$@g3?Kt zvDd$MnHDQg#JDCKG<8HlcfF@>N{k}0_&X#3PUcT5p4jAWT%F=HzPy(B`n7c{rGn1P z-MOvmZqDq~n&^1*>5dbMMgxnRoH$=_FS6ggws8RSTHZE}Sn-h8vF&V40AFjJf0E9L z{k1eRTz8m0JlCS(H6CXlGs=5KOEo1m(UPH6q5;i!Zg}!65R0j@n<8Xfr9!I8Han$& zPZO%0)D1_90tq9MG@B_pi=~umNam#gCdDUmpU##6sg0e!J`n)*UrL2vYuBfne?;97@ieDPfbNsSuIn} zV_|%wf4n3UlY!FBB`JZ`F*U`(*BXW4p-reM`JYMAwvJo+Rq+Wxw2{i^TU}dntxQ47 zl-yeC+?+h>5i8p}=B9jrwA)sYb}Fp48WV37>i8Otd!x#GPTz+A04Sh^7FB!D1?i6i za+@WUMFIIX$#ngobBX%Pk@R~sR2&uC zRY)U^ndNajh5rEAW5>plOHjsBVXkv#eptbOefshi(R|y9Ms;y@8rM_nd?6^{siowO zgB+)?t|BP014~L-mH8WYy8GDjT23+HXfbR8mkEM*!yHdz*ylGj%Rv@D71VaY`CTkM zo!SWm-p8WlxTlRU{0k6eB~Xx;3zEj%v~{x8jX6}ZT@C!%Zfm$7(ftIc?`it90)el}n@wR`EtQsCUtwXV4Yc<2WG zO55UMZXlD?f281oHVnnFYU9^mlG~jrZ6~2pmbYfi@oaRIlU7zu6YplnPacmX^(T_i zRPpn%5hVr{h09S=MUQ-BZTgk6lZ3E(F$|6*GMooU9P72#xh2>6tPe*=`e%zwET&_q zgpZV#vn`r0Yuntbr-h>wX(JE z_TkN^tz&B^1m0&3@fXuy#cffGqpNUje z)J{WVhhu&9&;`(9d?is0U8tZF!s0b94J{oNSceS3HW@1@<*TEv$V*!+V6>1rjW6#j zVi<@;-91WWMpF5fhbttUJw-d7_@!*p09|^ET=lh|#cHf{P z+H_pCOwyU0Y8fDuXhZi_p{a?F%Ol#re`u?&-%=D{p2ok5uy^3t)YL)!tU}I;LG{>m z1#2OKX&wU_?>lI^`6Q{uT@|Zv@W>+(G|N*QebI6~qA$9x8b)XAq^zNnTV5HO{{XnG zl%B+8>TB@U7RK1z0U%oH9gK0ecP=)Ul?I5aS*bmr^Yz!J}$E1ax}cXjiPERHUanF;-;lBj(H zZUio5O&gBLJMUX6ic3O=S-sA~2I6WL(;r!yC|=#cc(L+X_?102FNM3+q_M&^)p z^ImrRG?U+}bDPW-fELdT#wsv~J1FF*e0L`+nn&DK(0XNi6-o6*?}KS7W2m3jp>sCM zT-#q$vgs={3~wQI!ncf`Dq(Z!0Ay~v@;}-Zw>7hqjd01VUj<7D9Rd7R*f$tdO}!3( z5>u-}N($|p#Q}3uag87rhLUHW@en_n&cQ0Ndf9t=s%YuyNbZXq$Ktzj#Z#NKbv&f- z6{*3_YRkE}0WD=9DOZ{|BFSK;$fS#rWfoQHmO*lm6*3UU7af(r7P}adPR+FO8%ZO8 zZ<#h&PHGWyeG9Pk-CBwZsjbATV~85rz;;7wc#h9_=6nagr!nQz3khHzfVT z!DQpJnXxG&{{W={>|-4Rbos0$B}yA0h>Eh(mzQNZZJUzry%Ncc zOH|5uC55ywlKO{sdXj#iCz|81`d8LgMNb~@J>$>~%JrW`cvKWPG_`DPja061H~N6s zeZ>3Kb!BLm;o{tm#054~gMC7fPRl~aNCh@h0)T{(;-hs@*s1~52sxfH;c6^Pw8S%1 z`pX-3wS+i2+=EHC+`Q(T)iz0CtEDhHCtA+XpBr*s$BPR0Q8;0afwdgFU`u{W%(%9b z8HPsI<8Ew?Zj5|3%G>hL1M#}qp+1JSXsg{E?FKPfgyK`W2ZzS#4tSlh{zZ3KE!e<`q#+ z1+tWCE3M9QRyaMg#NyeRwT-iQ70}@|&8?>n77rRZyun&K5J~MIe4UR4skIas|4G;x|gW^!vL7~eq_Lz5B;>*%goMx{UcsjJFMotq} zWF?hIvbj~tY@*7vL2{cYwu+*lAt{grkPX#V)hvSLHYftCl7NIJLRm-(Y!FV$$xhb5$1&l=hYiMyeTL%RrX#~@og|Emc4k*-d^B0O zwIgPvE`$ePP(fSt+eVz#&nduj!-&a9=U(kCK4ERhwfe0dcf-UksE|3iruy1b*A!o#Ntn&uHmdQK|k5V)s&|09|v;5Q?iPKvIECkpU_>DMSS*sq`@*jG}do!uQ zzn`Q1(fp$$5B|u{f8JH#tzqN(n?3&kc~|YF`K;mcqgRW+{zAX^%l^!Uf=#)va^MUu zI!+OeDI6W!_vC3hFC^hSG1#^>4JZ!Fm=};QX0KTT6RVZfl%P`4Q;^Q^?@MpEFE#BJ zBGHW``~Lv`9+TNDCbF*n%l`mplK%kl35hzR8;1m??5xAu$QjpW-{!Ww4~I7m;Hpw9 zBy;9-oal0lru^@}MaFRxVyWW{QlauY);(>}G&@iObo>{i)!@+K7;O=Pw(jg$WCZta zMz#yjRQPD9quNtR&9-tc6|wO%+QvN6nX(&SpudH`lEZOt)3l!Oe%===tS^c2hq>C{ ze-+A9mOe^}m`M+NM!o@ccr2T$k;mhycuJS@G0%b?za=+On?t9)doG8}2D+%!Y?-dz zlVu>5o%K>I0kKqN8Hr6x4m`PP8{05MN_q|U?ViZxN~8+^4sQCN24q_;kaa&rArtpY8{f8 zIPTkxedq384*2jgB+L*hMBV{3fcP!&KIXIibE6)5g{-%Xq^U zs^d&{lL5gYJ)2x#o&7d1cR)2;o+aU`TtkcNaoVcMWo*XLHHRo=hF!+{f9|lo8qJ4b z_~tQ7E@^AbnE}h7iMAjE%TuqATJ&I{Pcqe;vXhjoUgAt658-YarlX;Ol2yIgT{&-k z=H2IS;0J}*DMTc7Tud38JDl8^wAT7A?}jPI5y?@C)it#bFDzpYt%;+My3NFJ8X9O^ z*U|QlYf1L5a=w8W74vu^5FW}Ly z+_u<9q}&2r3Mb+Rx3SLC06}& zJQ*GC8#H-YSvad%GZ-g(v*=0qr-s_%!;j%@Bay3*`K}|E7H z6}(%-xT9YkZxL0!r`nD(BX7aBTCT!3Jh|Y=j zz<$Jr6y;uj^QqjM-tI@r(Htq5wm@6Z* zahcOgE9H^G#qT=XqO(&@OS@=nB^r1*bSrv>DaYZFqhA4 zOUUN?$T|2QotG+fE4>p8Iw|QY!=%II2T(3!zWQ{&z6+Iy1gWa4 zk~$YQYIeK3Ik;`VpOW%bY08Y;WPL9WUKqMcr88KvC@}ik_vNI4&lj6oR6vQ7q%w0C!q{ z60>ls{vpFL3aIHQpmj9zIoaOfy?_Mswwo?*i7KR@6P>cWh@y5@v>mO_&g-wkJ5h$y z_Qdv`n9Y6fWs7dtWt7xgaa{`Nv5LG7xYkxV^>py%YcR#L}NPau*h8XVUHxGLy#Nh6qEZ-P|TaMUejFKJgoG?Ef-_Ur98@d`Lw ziYg+kt`3rF`XNx~3*WVkq}*Ejj#lth@`-gVqdg!Sd8u=(-G+;c#rU4D*5Y;*RYff< zpf#Hd#W8KD_x2Vd3JkjcD2^X z0y(Rqvg|@x_cZe0Lod+PO2Ro12>X_c5x^>2A(YhTCqsDcqV0Cql83ZB7PtZyYHblJ zF=+FbVU=wsBchYuLa_Quwj9o;aE_|-!LXB?eAXGKnWO0HTznqTf0Bafn$jhMFg)0A@+#^Ts!?}? zHF0<fEmMHUhRGADswIu2WpfzNE;(H8tEI#-928McjkYMMXJ$^u z08e83lbPh|;%}{%Mj?sO7JB7nL~+LPc*Ks%GWGFXc*Vi!dQ8_fwG@=>f##ymVAC-d zBgX4NL66emlD(A~*vAbGhPLOSP9@?9YpbBcs2<})P3M)O*{!g@PZfz-O-m&dk1#T* zF{HFyd;#RPKIJcSSHwNNeL<{(R#Z~ITXP$%Tp{1oj6~eV>nv!osH3NKEL0{ah5rER z7Z6XHs{@sru zi7KJ3(#Qt8DIhgS0G&`OfZa)r$QlBgsRH{ODH~X+1v}`3a#aDY>P?gjmUab8Etq+y zl9mIQd8`W|x-u=IfG$;Btd>@qshJo}F|5QPrUu3D0et|z2#P zJsII$t#p{I@jdZUw7IQl_MOpo807f0m<4t#R9h5L)4lA4o3sFIN$R|Jv^b7sRZ1^! z$@DK}aGbn5t1adDM}~SrtCNU0;&|eFdl+6JZcUr6zdNr`uB2@)85Iw$I-!h(y1Ajf zo>AZzoNz`LOdcXXKn^!2Rma5qDllCSQAR55 zvx~z`f2vist~mr^5awR?3@k{ zgMrU9+2(zwOTs((mXIm9ORrLV^n^lD00gR=xE?B&fY#Vw-fpf$0g<5dAw|hcTOEfN z%_S}YgHT3V8t6M`x2YBb@mD<-QPtFAl43Gz4J1S~0ikoW-@sqwwqBBOqU-|;tcNL* zFd?>=aB#og-bp}k<_|3OHxCH*lqY|7tU+ePBOObzsdG2Ei9DcyplCl zym^344MUq$_Xu5-#@2U<nmU z<~mvoLOe4Hq>c!i8%z5jZ_oqo0Q>H+xJlpkpK04RHb&BBbGFITUZ%lzm=6y}SB0{o zW;&v3hKVGoCe9@5zeR(@_+1qyA2Z{_-01B;V+}37n-CnNH@?n`Y%6~8$4bFY_>3EmKMB5=4KbOg@{;1DjKzN#PjHD zu^fLH#s~eOjMP;Qmkl2V*=yTP5B?Y@snu^PaQa$}WQDoEZN1lgLf6z`)esB9<2yfO z=;80?uZ|&0MC@G*k@=!x7~*f$VD|-TW>U`5$2p$kvaSP`q|`^*xEq%Mw&?0HNArifDeoI*f#UBxY8Uh2q5f2zYIb)xN377 zxSh%BRy>fH9A60fGpm`?#D68wp^95b=i+b;M>IdtU4k1dd8*=xw{yYp3j$nG#MzAl z#I5zI$Zp2f=POCEBn^VceOzIuJZ}S?!qmxKJFnj($y#*MI9bmmDY1rgHfpM34o18m z011~AardeWxxSNNO;HyO>-p20(#xUv^w8@1) z_YeAwH*oRqU3U0hD@TdMUri`39@8D8hq-y4A5zLXmdhj&Pae-?j1B~T3(&B793oiZ z#3-p)!r^w7k}cr6I2x0BD;yp%Mv{(sC->-WLMhn*=(?wv0W{StrpiztZlwYsA#3Z% zinf|(j_YM#?{%=%TB(3kKUFJT#ow=IW7k;C}E5k-a!EK$Wr983|3^8)68 zHL&L6@C%cto~El5f@3S4Jd!rnI}7dQW!{V1b&R`~Q%YNDV)qSWhYhJ_5r`W^?P=#H zd;M2hSy`qYbW_V*!cHr>kzSjN3r#ed{lT zc(u>NDcgz{J(&P)P!}Fg=zLZjre(}aMt2uj^_4Nw(#cUSY>~9N*;{jA;JEoXml%%{ zng%xysb$NecW6dtav+O>sjcFiY(xWaI(ap-ty6oCfc#UG$1ydbx1Wn>-%ejc4OLT| zJEg41-#fW+{-Ixp$Y;i@=9)|0jbQ<-`778|HLRLvOB_(sJm!uTytu|sE7)ne*eept zu@R1Sc^WE=5@6fY*1UBOU_Z%o)8I7_5)8oKVp(P1U0RwJO41(CRk52!GsCB`=WoMm z+H_-HJRSVima?*%PSugm3)}UY4xaG4I_d{P;#sR!2nSGiRwkLO=~&cL;>FIjURJp7 z`&;4`!Z)?z>~L^A!BxHpo(_1L?=f{?P(a)ELD7Ga*7+!DbTP`wk{5?Mtsskyl<8&9aLy)VE~J`3OAUc1QWrs@^t5Y6tTROL7`!a-)f^;31tCZQ zTxyVj1te*82m&BL6ab(P1y+a@f{+y1N+2MG9MxQ`memE$$I&$#XUAVNhLFd9iL&%s zy1HtIR8z+;k-H>>8x5|0^~ri3fHs!4rrMXaxA!Xez8b7PzM7v3gV!C2N<-TtyMPTz zaT?q3UMq~xnTu=4`bV?0`FJG!^)~pX8%bS;x{x)dJi)~BxHtE%YFs2zR7+0Uxy)z0 z)(bVQ_*rMt~C$m3tMZItf%5?7^xpgJg$aOaNNT|e-NPK}aSqCS?iJ~DWen6~G}U49K4Tn=ChU>6`K7E@$J1cb7iAPPmuMK(()7b&uk6o8fp07W)Z2B{X_hR-ma@vKiS{pKJ|pQXH$cJKS%qc`9@A3Z&GK! z?<*qQmNp%KQ)j>LD=IdZyf9wmfEAGWQLV+5_=SJ(m;IUR9*1z~;lU@wWB@)_kPW`5 zUBK+*h~yv_ivkwA0i$jgfm6~D8pz=p$?I#Cex7(7-qbv02TN?edBiaawjy(HOP@*M zm~Rh-g*3KD2^Roh)HuazT%|=`h+(%8L{=(7}`vPNv=; zCFvYZiLg>j7@?Y~Hv-o>!p-rr^NQb6Zf6N(Wrm@~#Zd`K?(TGzlDVqk>~K}o)l;^d zw8a^457_kbTJF$EN!kysA^9wceTX2C;ML8ZhrZc2hyr>fvM zWld)T;q6kIjC7u#ne!`drmfvt(JQrty@ZJ@KQJP8$c19#0Nb}x%yw2rj zn#kcY$t{@1w(W5{`hU>y914}tLeec&IU&xmfA=5^;JjyqyDJq(X&T@RE-H#bCe&$t1RU?e8$eJiTJLroI_EM)V4cVwwbMf9$!=g z^IB&@C5^Gp`DSB%mdPP_9}=%#;HesHt97ROmMBFQVuA?8qlJv}XbR?0(O01x-9oNX zZ+2#)tUwy=q8}AEP@s}6;1bpB$FuFJCeL)+8$gAmA$)ngN;_i(gP#(*XnWo+NnR@d0OrQZseP7)lNY2FF&D>UBQ>z* z7dl0^U4)&av$}eT-!!CJ?${3?v^eE2V?S!&W=;IpO9fy0ByxC;5z0K&wKb@Sx1mQgh{&x%3Krpn5BB5ekfR%dB}@pB(&aYlwaZrP(l z<~e(pQBO2g5s4v@lCbRNn}y_l7uS-%Ls?Zu{?e9tB6mEl-}$ZDIO#)4YH{&g8l7K? zpThqD;Ps=w+?LYUTt*qin1iKkGgGppojZVse3xfSB$7ne$rongFO;1^=~2W&ugZD+ zRtByY=dp6fq7lth33q~XvbmaNI$3HlJXO)o+FCffYKMC*2j+SOdlRUU&utwwyJ<88 z>^hU+0?ESYA)<`6mwbfX@;lmj@m$P)Kauc9bJK7>2jc$#Rmrpebr^g zmX?BsvlgnXmYt?Zr3`7-#DFy;Yuv5L9JE@#8ae4Eke_a%L$~;f+H=sAFH;Ii%HUg2 zP+bm}3L0&pKJ^I9D^XLy43Cm1V`PuEXEmS~d8^1ZDmEdc%u0+plBPzU{5)Hh$-RY?fF^4{(EE2j2BMV4@!qpD?fD8iz&)y$Z2s<_B)RU>3??ZkEXEwvUQ zNm$##GfTf@=tsD%04m$!Y>o~$4;wkA#4Y+fN~At*QNqRhJBO>SKZXAQ!PbMOs5!1~ zpA@a5KTbVv4xm}%$Hi|bt10Uu&rcwD8}%OL*u&zf*7;fF@w_s=4g70QGa&2Wnj(RF z_$`!k$+gsV3ak7)lnqG;KyOt#Yjp=iBv}A&HCD&LMwTT-^y+}@y%Yj5>0fT>gx})2 z{4SbvRXgfh*E#ZEAvXrb;nrNAquE6!9bH&l8acS^&;ccNoDEY;iqafX8i}0l(b?Mf zZKi_Ug7I8!=ETYQSo%k^uyDaedFoTexD-|NkxM*|Xo2QO{j1xIIBsFZrbEyritLi@Sm+Y-6_dkkY*OD)`Y zaN5=@YMk=2rwq|(fnk3glIHeSXynYtwZpu}+g~fI;4fW9r!oph%(0X?73ELJr8efI z*+%@;rm_QLWgu8tMyhUr4+SH27ZLqJb5V2vT?w{>LZs}Cw!R2~0^wD@ z#Ra*P)1o2(w~DIzsO7O!ZmS{(HB)X7Su6^Z5J9(9NxG0liVG+u6j@AXz2k9Z2kzZV zJ)!0nEV3UmGKjx0rL85wy-k9oUfM0k2T+_xi72Uc%4H6BkktLlDa}F-PoYg3Zmmec zb#^_EgYfupz8j;3z%|Z{Ir?tns>$Li81XC;rw=2$GYeb>njIERM67}UW-V($?uAI6 z7^5z9g`kV;s`;IIuB}N;z1j90JrzovV3vs?KIu;$=NbV~s zwjAG;Ur#^<-+cTro)c&LE+u zXufHie=F{A*5~(g5o$AhH%~=!hLF*IZaJV zL*$lM2S`EGHv3!4=DuT2N>Xx{_&&_^f{HYBoCS$u6EXZl#5EPH4*EzU9h`0hYuR>8 zz_7;A#X}t&EToCeA||s!LAbiAqZOs3rV>@n9XND>q`2q-IvcJFioGGrQ0XYRXo%t2 z)y{3py7p~6zr=mRnzmA#TD=S+l6oDkKg75;0T5+RarOn$b0cz4JZJl35OEBzudT^VE~6RRPHCwfX8FDPpC6 znAl>N{{Rr;j4|Rk&&%{&+a)XfVjB<(7TsvbVH&M!YZtM)}xt1mL;2%^+* z#UHU78{{mj0^2DzODtTQCdh%dr~nG91hR{QjSy(2!7P^~C6uT@VB%B_s2!w4M>}?P zw0D78h8KsrIT~2@n>ZEIEDTnN&cP%@>6y2P=vK`d-_tFLgq$9RsGDzVC=ZRpN3@SM z5xwl0ld-Y6&A)b5=5NEQ&UP({y@i5UB55D=;kVvOzHVv!D*piF+0NfXn8xVs{bDa? z>jBHfYFAy^0v;aYA&}k0+TC*%)aII{(el2YORs~inPq1Oh~aX6qFa^`5pNujh>Ac& zMF1iq0JAW>QnwD1H7upA`pi1D-eF;=W#l}kL^c)w8C~IvULz_!CM;__& zKh1B!1ZY8CJS=qPwm4=lh+*gYwL`Lh;kezu1;0xk){{7xo(T#3R9(9spc+b$F1cI_ ziK}a75ITTL@_nd@0D11Zrju*gbZJ(NMR=SHP8Oya<(RS?s(`pqbO!u_u+}JZn#Pwq zKo**ON~*S@)Rm5fEiy>yRy{A#&JWAV9(?LrEVS#~+ZozS} z{7KV%x_h3#f_pxz#a6GkL}6jLJaD_Wsd1^O-#fS*FRr<_uhD&Q*x(|ZOQO!s~QcGe1KvdaSsTDavrtGtG5?;sPq-PXIv@&kp4y3}HHL}r#ft}YgASd|Q# zGNv!$b-wkG;>jZ*YSYn5b}?y59Kh&=S!Ci67-sM*8tT+)wPp>y>Mdm>R6FXVShFM% zOYN{G5{ zwx+3qqA?^AHSIeVmCf!5D%gm|{?eX91f5x>{KDu^;&WP0Q_tf4nx#=ULFIq&b-oFr z(9z>>goa`f*}Hbk7isexmhKs2m6_vvUemD!b|~T@Szavic&rU*xGRSHwtPl1>`B?t|%~u_ZoF^HobxgBGB!g1+xC8HA zhsC(VC~1sFidu;zY3$rU?7`)Go~xgWhvTemE+LAslT{e*KyfT-Jb*lcqMOp~o2_{q zmJftSU0pMoBxaJG;jU%#Ir?AR6!8SmVMIjeT_Y`aGTfI}E)_>XjJCcP2n@{ZUmHLS zdA-_v4&iF};)B-c;hs67f})yC@tGZzICCE*u@;*tk~myejyjrZJV~*#IA$fF04;rV zJ}TZ4V~S~M+UrU)P_BMO| z^1A;3N3qm0zFLMpNTTe^9QHcftz2zKPYEd}Z4ItUtH&o6uDO!`0JA+ByB%%28m9)A zy2Y#)aUCo*_pLt=;M-_av zBAkHi&H<-u?7HgM>IF02_V$ir3xF=QjkaD}iQ|*f;vhp1?Pew2?`K{>{wr>bGyJ=n z@_BbPI8_vweRR1T9UOqPu>D@X^_f^nb9q^zO(jF?WR|9CV@~|W&FQzrTb$lUU3$(D zMp3(#=a2T9y5%TGt1ap8QFI#JI_$fLiW{4$@=yw&=70;|s@ZV8A+E>hsj}QjGePpc zza_02Uvj%oM0CBs5x$|q;s}d}nbB(FD)MMfen{To)H(Q=Q}bx_ULcf+y;L$sIpA0} z_TIo>TP?og+I^Lj{G&HU#KB z<#?wO@t!y+Sx<*Z_`PaJ2UIzl<~MV)gL?seuhD$+ip>ijT9%Bv=@W?`SyKEH4S9@1 zAT>1&I<(mL8hY!gT&+AY!xv{0aH*sT|PHj<)Ds;IjIEovW>h@0p_7q;uSU<-2nF|KNN1-sX#!!Yo)#FQ&hM_ zCpA7ufTvrj(#h2Z$$N{M{AL2^gzO#WdsgP&Ygjerx*{_R9hW;SW(tWQ)Z{u7`#hHA z30^r%Xv)&F7Uy-1iNI%|dk3@y+vc+4WRhm=;+9Kqk%iXyD0p)nl1SddMuF`uC*rmt zJhHmnws~h47u4fyTME9Mx3Vy*sH+XJ!BbcO5lWQJRGA z)yi>HWm=PrWtEdHuR5rGV2)e|q zs_e4G7;EQ~*l9ZsWb_K{6g`YNOUvJTxyPA1s+XCtp0+PvRR;D_E^aw)sGZG<2gv6D z8q!HU0wQ)-HC!qW^lXhgiitnew)WFrOGUvmii#?!4usUb#Ch1Q?ex)1w=1On8~SHEX|b`fzN))vve#8nOC0X2p>|nLuZ`Z!pUC*D)OD<=1-2}izT9Va z{{YUbD;OzTMrCN4>#C7;1E1irGYAiks%@s5sIrh64!1xD#YpGTM=gp19UDm00z8%+ zm~AA4p2eZvTcP-coAXizgxyMP#l=2`s-p{bTSZqpM!FYfA3LpVxNUqb?nuY~0GXQn zh+RE_3M?;WDr~LMOyk@uV?F3&aPV;-f~VGA-6W=&z9G4X$#wEX$BQ^!VoioZ@!h*h zu~bEFgIgTftbpiVS^j30{p#ywiNfuBUF25ETq;)IFL+yJt)7M=Z7n=!_*O}xrx`8E zjetOGvHeOG-y>Yl^1Z|HQrc%X*{PI&n1_Ag2-O$&z15z{@XhNKk{G4=JHVlis0%h& z-Tr1<@ll?!zSJ>0{ICB2Wt3#%?uzFK)Q(v#4c-%rHl^K#LpvGU^-0m*MQv|w#`-QM zeD4A7rwtF zfQ{ALtQve<4445OWI@|ydCGnTX2#|_ywV&GFmAd~sTnO9=VwBtH)+M9P5SPdfvQ{% zX{OwkS1Yh5MAFtmfNC^Lkz>#}ej?5jFfd%q9heSx&;`@sbTCq3)YMpS&@;2j=Yg&5 z-Y2WKSePX@VTIF;ZewnrKgDHNv_ULV39>dOxDjpdZhqz9F>-Y(N#CjUoD>y0F^cj; z;-s1hDXE#<4am{g$5p3oNAztZaJJ^>t+h$yboFEh-NROl)>mqn$ql7p&1~0b(Q3&w ztc|LB>R?n?$5~4?B*D@4jV%vjwk3I=5n;HYv!jls^lTPk0mY))6Y|}9JQ32(iOmJA z*#^4z(35>U^uN7THDx0wG##u?oN8DGwm2#p^J6-1v)RjpEK@ z_9v0>D|d_5Vv|xsTT=x)DCcWPFx-}&S+2YGVDwT{I%yz{4H<$T_yh zMY4x6jk(A!wxn|_(D1sgr%j$a+8i=cRioENT+s)zmgu19y62cG@K9_JYBf&23J5~m zrSwh5ifLp427>&PmY2GvMTshHkXZn*PGw01w42#A=9V1QLuDvv0I}6h>J>prgJfTl zk$Y&PnNlu;VbwseZPchEPXxF{H@Ce@ZE@zIO9kFM)HYcS%#a4l(LEK>3VIscY=Gy3 z*u~D>Pu#rgpk9OM`kBtddm5+6%6VlD${s*e5@A$_??Ho%SB$ag7kq}=c@0)=eh$L>cCV%cfJG?* z#iMOV)68nM)EG?oZZ{;9PMy@XEwh^Ux%nJ9lH<@X2T3d4pHX(UhQhkCAwfH&1<|pD zn~hhU@l6DEm}HVM!OXZW{{Rn)?KqsxPld}Vk2{GBCq1kU#n+j?AD$WNDWRkjF@r1E zO`Pu$;J0W&&HNjh(~^qRwSmPoH7luPaF8+K!0YfyNpz2QQm@i~X6;DI_W)cETP$L9 z^IpS+QppC{;XS9Wr8q$i5k~2C);zF92%r)dYv_WEO~g`FIB8D_Ao!g=>#ith7pnRo zr7>VNHDFou&6FOYqy5(}jMwDg=KS>k0B2{}{69M%3+%Q307l=4VQwoUu=fdrMrOI- zme^ZTJ~qFa#Hh=MVL2w7Gb!WM&$i7Q=m6L$^nr;~VR##=GsMAC{=xEG_KgG)+yi%7 z=WqqDuFJ=`zlkx7W~kwhai^fj*GU*1=^Azf_^%O7d<)4RPL}>v{{mGZ`%I=b&R)l&nU?(2bUgCta61b?{sC zXPO^k`ZE5ONLrpFgczAnKB>xlirlg(Ud-{qE82E*VL}ON)fyts?=oft+J*zteL{dORL;(>H1Vm6sW=71}9UEU`t4_o&{{RHScz+S1 zWmHscC+jrGt#L!<0$I=UpIy%c^4LHW4QddmT;xwl^4p5bv z?swGiLr)Nj2&0LElN(^JYi|Vr-0G(K8!qBWXpa)xle>2TVq&xUy(^yLMZwu+hj=Yk zGCg9do|tU+i;kchpO977pDvq|HgGgud_-yavo8gvH1tgl)<^f`KjJ^~%P<=tx?C?8 zDLFRT_6l)S;-a=hg*O(_U{y^l^16Vq~567b{)Fq0Ydo z03Y;;TP3RExx^S9Rrh-`G<79RcN2DtGw2BQNV#2r{FTzM@F_cN8j?=1x9(Yr8q`DO zDG6`|&VY4A4gt+ABH)V%qpSw$yF)0C!F7Yzcqm+4kH_hyl(@RLO&JNs&qV-YHby|DV%YAWMt;01a)im z`;{iCquY*Vd9eNqu9BW90nF8jE)^S^OAU(6O){rOOJkp9RWaIT1LLROt~Km-#2+HF zC&Q#`P1+nhmJ8@$z1>dGdVyt@g>Ees+;mP#$Eq+BmGdxk4=R0LR-3Y^{!Rd?FfNvd z0@n+JxKvX~Q-?guNOQz}xK7?m+Njy5Ee`*_=63oIYh? zbh?BKGXid|(zHHyH>p;Ze-6TD#;Ibp!=wQGRdr>SoS$OcJTujdeA+z%s)`EOsAy^d zbsHYS@!-*W{mY?jBepDSyEVci;X=VgxsLpx(|w>Nn#dZ|n`6Fg1&*9@%< z+QQ4{wHuq<`rS2_Hbp!_*Vi^S+RP8R(_pY_F(UymF@T1SXOdF6@14(Wo=%Uuw)ZM# zY*IbXa~v(9I|F50)V4*G+Ww#eGDQs_}Qon8(90Fa^m(fp$)360Xh6igR$jezT^Uekf_yf}UaA*qnH#g~w`sa|F1 zx{Z~%^#pDgYaC>EkR-2iuVIy)mB;`L*5C zi!PDohJirZfl)gU#i?l9ywbIv zTCaJbf;xH#;A2B0iJ`1*wgGvsXz^US3X0xegV%c}gU?;pmeKs04k4??9a!8hik+sG zc4w-nk%Y#`uij`p+(pH&&i*UJF|0;BR~MS1nWdC4lMNd>MhUyT+;#XbZ1kgw95;cn zNuwpNd_9CjXmdQ|7WcaT<>1uuvM8Gyc4z}`i^u12q zcTvcap#p8C)OA69lZc1}n=lA`1V9PWca zgI@(Cg&_isFLVP_p|V_Y^MDv0K{t!B;G!Zu9jG3FNH z1=rEd2k`tBy~e{$&dYJcjTxbE-o!0Cw;oHkhIgcoFOH5}M2(gcg+8&pq>>gy4X@41 zDx&~!xu=}C+eW-C%_L$fXrpd{tN~stX+-lCG4*r2yBs`>d~b6e($_TDf~i|xD2pXi zW^dPSzF}&I$zpY>Pnk_m%mn0y*EUX8P*@QHDIkR{abXV*%HTleqll7Q z0c$N*E<0L^cm~dqxAE5Jsk+XCYK)rx8hb9>Exj%U%@Ezaj;#@yFdch zSa^k7U?M2n+SEzSI4%An$?y0Cm`MQ$5UZ?)1n5LZIlT;>rQgg0L?a_^e9W2GkbF$2uw5>`K$9@I6O@ z%eOnBM9679%nEwfM<}JO%M||rRo_-m5PJA5@O0f;s-}jbBOL4xY2;S4zOxH&cs{O_ zA8OZ;gZ}{7eAMn@n}+7tYE6n>+Fe?ssi&)iO;00U!^|tBed-yK*HAPlNe=fZZ?vaN zp(Q%&Ybn!mhhwUZY=8@0NlObM8l`~doorJ2l=`Ru&?+Ar9ecEV6~Z}PKm&48aGm_7WV@t>3QesFE1u9p*HjC51j08}3?i z-B_lIofftge9Q;TDp>?IAa9x=Q-@3PIH#_-81Vq~=)h1>(XW|o2PIxQ|xg`o3WG2&H{ zv()EQ_Hzp-c-<@CZz^2iekE`uKk} zN93>BVd2ob#9Od*!{qc3iG=PiV{ejebj_ z70kxzoN)X?7e-oc=1Hr3eEinD;U%jwa=wV>sd6uQ`;E((~XozMWOt zTH1_L9*QdWQ$p85d(jMpyd40&@4B{d{1%8f)8cf`mCpJ{IpCKbq~HEsW?|GUbd8X{ zIT^S)b2R?|HIk^Uaut@BItp59ih70^>g9A`_t_!Map1LlS=;)ROz<(iq;1S|3x_vn z0z8k&XMau6$CfhY>860_xjri5Na|^%qKL7^u=IQ}N7G8w##N7py zUrlaeP0z9*1Q1@q_#)9_FD@YSbld|ei4gJM@d0Q$eiZ}fnjrUEIF(LR%B$N zgCUWw%Hbuz1#PM@xGG|6n(0K1_KRJ*=Xkz%VAQRaAYL9rTqCw-c$Mel7jxAobaQ-X zHEa|vhDwnnjs?MuZJG!N@#?&lkCfvPInzC|z2fHACspXpsTHoNmz-kudGCA|DN~0~ zONhf!MJHh(yPVe?+TC=puPd`P>Z_wVPVF%Z4Q5qXL>qgRhF7(~t5QB~$LD-iypc+q zAsx_1G`ie4q#Gg-nppu;8eI0YZb%E>_;!F{oHt2AGSp?ZhfO(Oo^OYbI$7#!CakM)bxiLvNBj!E&WW%14R;WJEv;fE1zth@$8MA|L@2 z*(`v7ifo|(S_=5PD(M;ZBpJutf9HzdtzJDJav8?$epBRs+y#CfR-L@Uc4?Shtx1Kk z8p@u{qQRm<1->fVKo{}cl~vF!w30VeBhch0XJ=6)XX?C>g_na?I)f61 zrKZ8I?+&Ay#86rZ1oA}OUC|CINyY5XV2SLOF(Wl=g~9Mu02ZHwYN@BfSjt%>cW0xS zA-QLVlH6P!m!PFQ@l5bonp~=~hmbp2YTzBVK3;Z;GJYfh_Z6~`fWmLESQsCD^;Hh$ z;Kuv4KQdO26rNfQd7ZyzDDyFjUPjwXcq|I4i6)uUly>b$w;|dw_@4z$O+?eoXz0zH zKU*!XBOO1?vgs+Jri4cmY&Rt8N$O8k<j%qW$8bEXa$l>xIit2A+snL1vC0Xm(jZHxIbCxswqfh3ur@2NZR)vncgkPVB z>3kcP;7D6rXtX>HA$AI5{{X|8!{e{wx7^k;T9#7Q2!b?Js)~zhps*c^*VIwIIgM2d zvPylp&#@<;L*lk507PQadzh3}u~cSZ205AS#_b&6<~&waz6%zd39=T1Gi#fUx zWs)n((P_{`=GpNv-eDq)#rm12i~N$f4~5m+f}q<~lAM;zs#KvrnI>FqU2_^kYRiu- z><92yBE_rOq>$6d2R4$^_^fV9IV<6etsSIkRN**Eo6|L89mXRMe#5iV|)WVVq*c@(dOCIxyB9ZaBD3bCuE^5%H*_%7z$Ihq4Dk`B zVXI2x_|!_sp*a{SxU8*v?ZHjDytOIMHpkU^WVi?*p-WgyuJ|Y?gpzU8{f@(E*Dc*6UuuQzTbR-l| zq-?uKkN}l8(Ly31T@WII2~dcj5)`NkRzw9;cT|NVLLaO5(i*P_eu&xN2RXar0hX#8_=*M-WcdvCf7en7?4RFxTc? znACTLjHdUY+*;QM!DBkd&0h}=qY@1?8Z2VqJj(YxH|bpYx3pi)CD@&cfH(Q5aZm}j zn&=*Ut6`#xl)bn4CsI(9be@eP5^;4YchnAl!KHgp0qkw>uAz9xqYZej6aEK}{H1$H zZGZyS0>OBHY2WL|?0pZ}B)lxX=a>3@t0N7Xl zL>93?ESlV)Lu;Y~ODCEO6jA_Cd8z86+ucALgd&M)t${{XW3d7MpW5o-)D8)oU?v~C30-Eq52HzFn zm_8;bTunw{5bY!J+xZddA9>*3rrtKiug1c@R;&x8f(&8@+n`X*% z4)f?!1>yV~5yN4s5WS9bd%=<&54~)l;fxw09qOgzY75>^%Vp8S(5(wfEm@o#b~gu6 zI&~Ae>}|6Ku((>*y3tV9fmv1R?d__b;Knc;+SfNHkh%FRs@j(sTZd3a43@Fey2kZB z3o{DCspujtiJ-ma?|I$lsZ?=nOmgzp{Y~FyIDJJoh-%BBULQzc%{0&LYGl?)E%F@z zSz^aqgyw?wwSTbyQdO;Njm_9XCd{8e;VmT5&bWPYzwKB@L!;?vD+MTd&DRZR^{ zMmgha+k1|n_3%sF!NS_axCW=9o~vDYsto{rRX_g#^k?QDHJ3?K1yp(9k*^yYay~s0 z%#|g3GU(@Z15Rpu04fw26MZxa3FcD#kXq_NAZSo(H&Q(8qR0_G{giH(w&+dtLO}&b zB|MYfpn?Y4pz50ffM|452;3_&(?;+~ZtD7gZ*ZkHV$EduYfZ}v!J3X}&GOt^bGM7oCU#cqPiSe5_5U3gr z)@CB=K^E~*&vXbu2UQtMAD%ZpH~!NOQ}R`tSyC=g#>Vf4IHI=#qLPkUDtuOv?k^Ed zp=mudwU+9GiKt|yeDXUEpp1eWOv2#yp9cQ`CB|u$Tb3x~7JEa2u2iEf$Z>Yi>3^pv zq^U7O+PddQWzlLeOduJ}MKtm>lbOvT;cG+dsMtjunVb7B+<6tBgj3Iq$18uNSrt@% z%o4jPf00uNC~RRjC!;N3EPN8oWRyLk!K8jGpr>PX(l>hqx&*sPid zxXRq%jzZyVVda*hW~L^ddNPk=J93`&0NX?!E7h$}n>AuZkf;Yl2E_=mJoHn23Zmfk zQVNtTNjfFT&=nWa2UG=DAZVm@=AaQ|JbjCgz znr&KTkn6G1!F815GqOAuh6|H@G+2BeK*}x_rG~^iv(Ei_k#(}Aji47=_g_56*5_g; zCFXrkhEU{TVF$WMz@HNONA?wz(KldRH~6h9>D^W;J!S2bNx2NR+N}D@IGX$R1=l*p z>sj9AjBDsbW;k2f2+f?qt-L%IlFfZiinl|QWd#*9^U}{m*o@$}va85NsIK zkdh8twT?gLJFiW}>qa2i;vK@!Lqmm#USmx~RLYZxR7B>-+GQD*{trnu%IoV3BWqF# z7e4ihvTC$w=vFPo*So%PQqU*zttVsN0c5fw0s&KWvZY7>lB6h8bOB;w%+H5R1<4J}JjTC*%T&Aq z!rrSWJ4rGb&r-5#nuzJCqU|PlBn#L9)Rl6!nyP|G}#T!>>Mxntj;3-+CRuX z^0lkEhIgcoFOOfZGC*w5O2*K$pyGR<$j4p^>jp!V8OiU_NOCzzy!BSXyvQ;B=)`tNa_N@RZAnJkKE+fZMx|n(u>Af1U=CSz99ws(v=3R{1=>sWV;%qFnSXD%o z6ilX|9rs<*%e!N_Cr+-nFN&&TCNEIxNN&nj8%rl&@Q)R_qNak9ov_ofvBuq+(Phr! zxR}kTN1@;LXNOdyP1T;46m-m_gR+Pa(WxhLdY=_}H9)w>u1dgJG_sXQ=!BS9^+2V< zr<5BzE>@otqVwu;mLYC;``1m!m2dv9MGrD$lU;_vbJ0Znpa4yWMRXOB&&0~|vC?o8 zzJj%fl&wDz{>!FZrvefxYoj9G!@l*^cq-?)vxfR;Co~8K>jLsMQh+6tf;p;XjyYp= zaxt%I(1I^@R_ahSb5Pnkj5)>ldCvhibvvD){{SiFY~bdAm*Tp5y?lAlnO!$;bk-^h+sCqZboRHX7#Y!*zu$5=LxVx>ZA?YqTu|W~Nl>E{8McqF={FyQssN zCe{UO=An`!vdu{{rv{8m3n1A`gPWlWkfg*QL6wU9Vld54(I{yaaU#deE_SyGmYlut)i|-j z!!X%eb!I0_+>LmWFWPHBaPwO@@Tu$Y)>lJ_$5PTSG(q-scJNk43L6#8$?jEwmqkRz z$U%8GxZ2BZ!q-P|MZwi;157mGjTbFhR3s4mz=vpcTi6+8td3_Cr=JNkCrc&N0*lh0 zJ|^fkP!i|~=BDb4pek%ES9BLtg*t>H#HqTZ6)HuE3PDtBbs(V@D^k@()PkT`xI7e( z6>X>Bs=k^jMm8%@R5jgE#90DGB&#)F+28K_)y`_&Pxg2FzV(FP!p@%t{{YBQ{^@A@qMkAU){}r2D0K{1;6WR@a-clkc6QGTSp?B*&l8uL*#ULjl?Obyu#ae;1^CsMiD@mKon zlQq)0uNJ$ldvxl%3jQ3Vb7YQ~82ed!Npm{l{sWTb@$4D+WLO|Q*wql5;xQ+o@O;GlC&Y=oVkq9}V_CUdQ$AtZQe7qhem+2x}5y7Iq5 z5C>uv(-W&>Ye4fq?7c#;NCR5O*k8TY%fkCXH7s49M13FGs(ElryF5SBi-Y*;l-~aU z)CbN-t}@qMr>7WX+E`)b?WbP;7~1O^n5~J0{xd zoa})3^Fl{d*6D6)Mx79X2QhRO*IiRUN)DWn0(=x}eRfbZ(5kr`pd;R#v`}wj;DXw3 z;)n|iDDqO8a#D#SR5#><VSXO)n`>0~x*Mar(r2C(+kkyC4xpGfid501X& zZ7AlIj9X~1>JeExsw!O|Yk&eE;s67!xufu!WBRP|JCSRT+;>|VSSGBkZ5=ybh3xP&N4Msl&SPYXJUxW@K8+ltvWGhu>2U3U^5 z28ToQS|GdpUXa#d)6>*M8$4GQ=;71PPm1818{T`7z1~eFdLAEIGp2C(g(R63razSI)^f{LU( z!=Y7g7Fy(ruF7BhC;gJ3wZnFi<`!Aw=3wbfbRiQ&QekF-hBdNG$lNb?54{V3AQP!u zJ{-fL#BmWDIj60T%P6ePBt)jE#mVfB?}jkeNq= z9`FZckrPW|Yj?^39_6aVNs|+#gX))p;ovUsz%JcJs8M$4j~#}C#^Vx~R%T$7W}Xhx zTbbqWNPK#Gm2aKZH3puY$0H4;lzmhCBdPnAJExkycT>{5vYm%4(++2wTm06_o*1Bs zu|m++w_pPC^OKaEp6vRq7)CKrj)@hInvu^`()`fxy1=w_7g2ix6!P6#tC_U)(oX*X zWsM|`sF63Z%kgBcsl?)^VFX0mpELg7dbb2kjg|mknd+&Dk93kxF0#nt=XiK4!s6;> zEi7|i#U{&lG2)aGbeK2d2wj6coo=|SM3~@Y!uN_szfS_YSlyX{*W4#VXAJiy+IT1& z)qJ+Pr^RAzXg3Ia(Y(To`_$|~7S%}isUUJoYjpsPJ?d@MLDV27=Ub_`L|8j*mMujK z9WQSSj5Au<+q1j~=Ca2zs+|ZoOR^kO+}6imBoYYm1_+7KvNq+8_wx6w_M3~ef;y;@ z7EH%7KnqIK%N1@M^6EdOi*pN(pTc=5Nl3!(JM3;q(2i(1tQ<2Gr>whfVwihTJXyo} ztosEU8K$JPASuv|E~M;K1q6_X!AfpWltyheC`Im?Y=fGU6gJUK^wCFD8zLl&c&X6< zL12UsHP>YUN{}}J0S9Fs1yp)|2zEhY%&^BMg`oSE4Ne)DlOCQ6Xa&NgoyF9~O&GYR zxz5y5O%ASZiq72EQ0CpXAQ9rQs%RM{%WMjyV@Q_ zXVPNy(!aBn#tAK}WYgewE79Sxw5Jt!so?S4CcPQSsNOw|myuJTRNQZLxLc^>w8=rT zrsn&p%sD9{#YuijlI1r-EL1F~&t*np3S91_SgQJ)6*-kRQOf9ritdVw@>6usSg+os zJ4Hi$)Q*Y_ZJ~30w@?pNOHGuMaHnx%98Zch*D9RFOAf0RWew5v#9}xpTLgE?+cXQT zOlJ^%4LOdTf%Ok*%b3_V#H{Hb9Bs@8dy>}8M;&))>Xwt4rKgsQ<_>D-*dVkyS+NSL zN>@J-uYA=H(U}+;8|7_%_gWTWa}qS=_d_e?aSqB|nCP&kd;^DtJ7;6$m^9@Mxd!+A z7Q>35e00so;PELDc--u{8XP{h3fojM@w93$&2M4WdlXh`7c;8K%FtFfGP3IdARB10 zEWO4J{*pdh#uc%13J!`;>b8z*DOF#hfDmYe?0UbUSbyxwsk+N=fd2q>=uRRwI@%H~ zb;$Z3gh#?`cp~yj@_s|`T}4}7`M3HzXa`mEt}it#T}FLVf>X(Yrn?_DaWMysanry3 zqbT{TAhY^aAjIDr*jiZ74f*e? zz!qJ17}Li+18bS7WwSU9+JE3&qau;w?2bnd29@dXbz>?^vFCBLr_OC_a@hcz*-g!? zueOS;?N2Y+Q|dLJyGig{IpgMQaw_^+j*9uBs~gix@KhRk#_-BNfT>j@=0_r`{+3%s zQHnvlZys$bn;v4`YE+ZzV(HCpf+8%8Y!*%tL;WLMDTBja=GZv$H(0H6Ng#6FbsP(Y z#VqE$O=%)FEVk<^Q07fUrx96Dr75$tp@hLn6fSmWF}X?VuyNU>cVkCRNS0@1xaH&S z7h5oNT6#$uak`3$Tm*1Me9k%y#QqIkTxDKO2V=}|d_RlEEc$$rMPD4!7$sw%s2j1|{6XfkEDp;Wx{4~O$dR`^h|#7J;fz|m$>(E(4A zTSN#z^H$vtc)lmPC!egtWAEy(SuBFa8>%ayscez~D+Pm|&F$hA{{RcDf~frzjeduo zt5;yGOH9W+NW$o(8$E`{{nm8ll1Y?SqNfKRGpE!WAX+MXO0u2VYFX2m(Gg;xQtFVUNU=9ds&B27ps`iZ6-pqnSSp}Gwl-6J6d2gAniHa=9T1fy zBra9DgLoh0KJ{9+J-Y|_54~Y8m7P8ezmKE+(fpp_=&|i*ql_@PfIgRB{`1!QEKZGq z?=!|)#+MwX`UU2^8&xy-R}Q9QvIfN<_O*A?yq!Jab+`o`41u)u62@hfq_!~o8xIBZ zoMdl_sJp+(^;(PLlkQUw5wfY>yF;UjPz-s2%m!q{1zN? zcEN}~Ss3CR(=V~%Zw;3X#<;#G7Azo+rzC6^Y-}Sfug|Ge#-B1)PR1#yYDX8=MAu}e zs_i1!mh%dp9>(FXqBK(h9Yb4YwCvzEw~E1%ih9~cz0x!n48Rua?^;h)tEI1FGC8v5 z1%z|*T^ccpR!>rj_mS4l+_A_lVzp;;&1|R6*iLs{&edzaYu9kr-8-K+1hDN%ex${y6<7JzHQM$hurK9C6t!eVUs~Jf}Hu@RUi=32KQ`P+s;bMma zePoyIYK~!kO&fnT+Drf;r0V0k!J>_jQZ_hSk&FSY9S0@P`bOhAZW*P4q9;_>&IqT0 zzgX>ebRYAo`Mxfz#bPBdGwV1UI>O=OO>{>s{{X}#D?M8W#A6OEr=8F|+hHKw``X`% z^8WzAdlYbDTw}l$&|`G0qMD(nv1qw1b9HO{vjBa|#%bLAu8wvX=Z(fWSbnR)u^$k% z@f7V8*F$=gtnACEg8a4$4)$7Q;B2DS)T)x?s3d`9Iwg};AZe;tg&S*hxH{^h;GcSf zrPPaCTcy4TK?3$bPPb33Wdm}jU^P;9(FVz3ZO{;W0&~>|iBYZm5E6B9w$@t8bDI*Z zknRgwJ;VLh#GMV6x{pfQ(Czy`fAWQ~LunXGbadPg6CWL2Nf&eG%YO!dKbq;t(Ceb- zcn2uL90Al%CH~P}5jI{=iOIZF?s{$>t%r%l@hck+JOI6>hW_@OeZ($Cm91fxHjNo8 znm#3V99-~mx<rMv>}IXZiLgW7mPZD( z1Gzu)>pKahWhEQg$`Rxg9p*)BjTM&)B-1^Hu*jx7&(Ylz$hTGf;l)-cIQGe+fwbodqfdh1)4&_F@P=Zh>8goIan+p=5 zz&KcdRO$)?@=>rf_^uNa?at6z_Kgd4Ao;9nTvDcn(ATxnL=A+XcZZn#S3_;qEoCHg zw1NOC#VhVq>9wp&uuB~AiDGzr4#XRUUy)qn>1wd)occ#(1l`Rd?RS`2)ELxHJ&jvE zUS33-vEE0Qy&NAw8oeZKvfp!}Tb2Fl8)plL0;2sDWvCqrpCmR=HPfPgC<8-v z1T}L{TZGNo7SYv8#$NrCo^5{xhe*sqCm7vZECe5CG1tj-mQ+s!b3|j2fxxR(Npxji z9-H1Kx;#pvn07zXQ$5`*993V^)gx0~Gfyn>i+#%U1-NvXWQ~r1og@tax6N$op9D0< zd2-|e_qOX^rZTi0uKxhp3kQam{{W6Z=)Gts1e-7I=JC7N#1bg+-}6 zt-6cofLixLY&KS!OmJ&+gm9BpepF5`>ICTCtXnyVSAJVyfswb z*D6>=!hQ*_x+*L(N{30B?`&W*Tas)BijicW$Z9NNgp!e(!M4{ zA|l*5glemXH%lX9V7r_^0aI(PqtTum+U_E3vJ1yd-q+0BTjr^+RZ*uYzJ|sYgTz*i zHPxQK!dPoCt{V0yI6(}f2WUO$0mnr>Q(k(=-X>4`W?3ISwxwm2Y2K-kv zy*JX{6IEZq)L870hT<51(#;zO{Wp7U_X{84US7usv^Wq!7gXY5Ye?CnEz>Hxgj4TY zrJ+DmqFDh5ifp71h!pvtAp$8tK=DKFFAC>*lgZYm@;dlfXH7fwuASCr9T&;|QGaL@e#tvF= z=p5TyvuPg%kpBQ=-FTc#oU2K{HhS6#DoHOR&9R7@)?$=|STWA9Jb@X9-nDR$=$h_i z1-Ie}0jkDizQ--Rm=>Cx5eoqu0KMK3w?Q}LzXzL*xzhgt`>Arl8UWc2+92^(mx~1! zRVcrTkzfX@3mA83KIK)yDZ3)c?pb{-4+K6YA9BH|!YSU;Vsn`9h+9QXycLw{&M!t& zR}V^SSdqcl95U0*Ep^{m6;aSd?1q#c>hq^Y~~MY7Ll5s#+th zxH~Rq5vldeLP8DWgXr7R{{UG29_5ZFucL|nr!jc9>g6PlapbJfJ~u)d+}WF>gSQ8r z)HRh9RjHX+ziT3ru&NsAs=F6C&0|@ZhMQd7U{kSnq5X|bB=+_vZ_iJ~c8u9@FEUGn z$Xs(dgxTG4oe#-&_;kIs6jT2I;zrkeLd&7ChI^v;Je2jagc>L|i34>AiU1)(bwwa1 z>B$rT6eqv2DUxb8yLBhLXtsk`ey^N#yC|R^EdX zrl|p!F-^`l=zZN(IM|rfzKqSXfTrWBEK3L*rO+aRNlOH3l^~@+@l|zEWFU(vM6g5x zCWwTE7E*`+0X%{rx)58ECQ2;!tQwp(wk9*G+58kKQfS4+J*R`ZO6R3=h+nn5dS3zL0t0>~B0KKC- zb~ah_X0~Ns8kbn6VmBD51G5-}l7{mUf_~*&F`Aa`UIV&G82$)i{r338$1tHN1s{{Y#Kfx^i<(~tTTxbxfnsv!3M+&cW0=8~?S zsxH!=R>Tjy1Q+QwQ`_?k~S<>MD z0MF6>=>AU2hv}uM;oK`M5lu6DVE`^H0h!5udvCA1P`bPu52mH6ekBC0igv~$%M-2v zJD)XgfT-yzJs(iIdRXcn(Kbx%2QSh;s+zg#*#qIGqz++jQW;_H0PenRkDFMTKJW5< zX~ynJd7N%9Lt1L2mTHdC(!9CPE+*%y=PPI{eQ3zz8{9S^Xjep8JRy|z6FJg?K+e+B zsX8mnr_LP7qqyXDRzj;t)tx&#ni@P!zz8Z>VtYk_I~9Jub~;Kh%XWfrLGb3Hwu+je z?}?He%|6K+`6+c3IWY*y4vE0;d)sw<8f_R&H5O;$Z)2ctUSi8vYXzNJTIj)VRfYog zd_F2PQS$CNCh>B)O|>d4E^Mma;HH}`;|6o;W9X__dcT;sPrqQ zfHDR|2{{@YnDbsE>3;o5iJp>ziG3KP|qrhsMmMF*sJkwM^dc+bm z3IWilp@BKf3iM=SGF6x+~fw=VcA z6*VwG+sh*v(&u%J+SOHQPSXT`_>UdqIs_ zs|BWA84fRY%)S}Kqr&TDr>S;IdWUCY$*^nrgVO7%ti>qlY27rlv8@9B*8c#_d95xc z$G{t17F|8Ow`+%A1zT#cc%7M!i!j%?+nTzm-S$5@#hjz4VJkIOS{c5K(oF|dDH?VQC+v3>hs;FR!GwSg=_Bv-iT$IU8Ns2=0 zsjVF2+6VC;iu4#tOA7?09X|&mtClKFQkMNlWOrK__Z30Kt8Js0KZRhTEIl>Qc-rs! zj;n+*xZ;t}R!AD>ogPJjU5;iJmx2fa_Y2SXR|%rT`$kkxGae3swq1Cpj}61j5z8aN z*u30@+rYUhc56e(@p^RSUg^B=a*Q#CuN!o()s*cg_?@@P{{R)f_krihYdB?u(7vRP z?GhJ_KCaFA51QH?1^z3|<0`tfr6b>PygI|-V;;m0lG9>%vCL`cZ1<09L#tWg;#NK- zT_s$vr-nx|orJaSX|Z`5i}YBBvZsKZ8paEs1zaK3m(Hd1MY$ZbYWMv6ehs6^k3+PVo%x%)_H3KXLI@N*z&KRxVRP z9Xm@SZL=GbxhKtRcum%Z!3Red=^TQ6n1mS;1-RaPV47ELwLKy4`cs z=%9hMmP$<+N(r33H1%{Q)bGt0I>i0G$CBOQ_?1q(6&~WHo*BU z4MjbjmEg6&=thKj6>3UGyUk4M#^pfh7e7Ub)l(d^-l8Bk`s4Yn%^h47ahKD|*MXt7 z0tq~n>u(iEBshg4=!hp<5)f^@&~K?r3;zHmB$6#<2gMMRWeI}BwCt1{iypRG zn#w1~a@O1}=Pgua%m^bzoMmGPK{J3u#>pF_cm=K&Agp{i22T7wrqVDR(HCX26+={ASqp4xc2-4(!D|Lca zdhG~%+mdFSvN!fzt*k1UABWWc07yd8<`5e@2R8Nd3$?;HgP~I--i+b#z8T`Exku(( z8|{fu2H>O*WYD%|8?ns}Y3dbrHeS&?tDiY(#o3fv+9inhs>a9%R3haz(Mqgy2Xz+e zvN5?x8>jR6$cHUb>iL<6$e^xt0v^4@DzJ0E9^RH0;YHB=Q*=8coI5G*qiLeWP_TT3yVFgeB7 zEj-syOXZcoNuA?Y4UfT9Ei_U(?EO|sAWKxGg@rnYZ2zMDQV)0xYRRZ%&r&lTQpQ$kwt6dWz0~6Q>LSJ zhC<4%)!?_7SmYjS+hHS?j8XD#B-_PK{$&6J%BrwSErU+wAX`Egr}`Iqz#l?oERC9v-9=7)>1}#yG|N?Q*zWe!HiK$hVQ{y_duDaW13UC~-Y= zu$%&>v5l5lSil-17a)^s+rszvE@y%`Q`O!vC+BP2{O_7wWu4c#B$e9ONC=X}r%gq| znPtnM7bB|i>JB(wX4KWoO9o@u+dQSeM|TuF^pdj6qWEA8z@4L^k#_HqlQlj37hSJ=~*<)1K zQ$TXbAkWF8Qhm!E(biUbZZxo;s^4sn6Uk&!QBzX3(L@0|xav=tR^)^}Xa0;cN?RDO ztFDw0O+w%~K4X-8H&!r?(9=yvQUhjVh;_Cg>v8d0fJj>GX}yF#yAG2ufI2)A?3HaQ ziTnvzWohPY>9|7{iL`9PYMvvgfMpqtgW5JD-MY`mF{)}BR|dVZR5)5Vnr>Wwmx|zp zeGNkcYT6@rNd}kjJ1Sp^VN`LxNZ%PCY9np$?^+c&H9D2E>#tA$0B1rRN^qrS$|VD4aKVg)zP2fRksGtW>q)#DVPZery-Mvwf!qH}JMQPN`{H!E>R@{8e%G|3MYyy^o7%%#^ z2A@7^x`|l?51L11V+GuN7nQ3%WZaqbtSu!*j9|JVx4DdAbKKUn3zAKMT>XA0C1Ekr zJ<-ASr5nG&y$6c1Sy3(`;^|3kHU5qt#obSa%O0j-1Y*t1=NznOQl>ETF`Y~7MrK4= z1Wmh+z;YbPSsay$NDNnegg$5MBfNSK1$4MyEyd3zVNxYno}V%8V|GbK&K&#?g2)J> z#MkajF+YXGndd%~~nFe-oW0>kbkehWnDq61kNJ?m$|awjHiY`zVY9Wqh zkoJ!?q{MLI%jipa9%IRLBFY@bxLANf$x6j?rlfPUn3Y{FlU}9~z5TZT05!X#tEa1v zw5O0fYmAlY;(m$9-8t``c(&c$-3nam*O zwsqKjuISda%yTXr3b9EuUBf9&f|W=lsrRWd7gbxuKvIMjD=FJN1-m(>?RPL$cvQlt zy)zrz#oZ>_g>hm)1wJ-3?##^(h*aVsnhmYVTbqO}1Q1Xu3y`jC+UAa;l3X&qxQ!4c zn@tcpWnEMcWYDr$+#JV@z=eX~2=G|AeE$H^wW5vsQ%>SyckDRs-y*#q1>!C;k>`OxQ6TCc&owWIIhtR*>_pD{|v!%hG@$`SXKa_XeKaS!!e+1!l^t6$>Gun*O zA8+X%O{{hbmvNNhrMP3M>DgT?Z4OtL0`Gycr-$%tTNU7{2ha%J*ogyLUK&m0cQfR# z;5-Duh*Q_%=4xt)Np*{uT2GiaUpU3mr#kf<{ZI1Gt<{!UI~8I4M#-YjUj!mpo&W^* zuX|<}{1y)t$u$(xiWvJxm$xfU)+d^~#rz!hvZkhnvD4n~F}=S12w40%!`1GCAgGd4 z8%JpQUQ0pn=Bte;#i>XA6z0sDW|A4>ZAWP{9Tf6BN7?i@-u%M5Q-xJhR6enj8RB`n zn`;*T05u#_h2oU;-K3ERK@Es>XD}WmZm_IEmbRUiA-C?ir0njCayl%?)|`zz;C4Xk zuB#cG)^&3-monNh*0RCoy{8YA=q7x_k1JzjLz`z14anw}=A?5ZAh|wEbsTrtHMVzx z_Y5J77)2W*?yyACE;(6vtrSLjn4)d-J>U! z+m%Uui#lG-JM&mG)Ws!Clu*<&wvB<$Zsma9+IyD9t*wp{_UJ&>c-IGG?*9PhzB3H4 zR%Vs2k0=GeWOc)c9(r^HFELK@z4txMtgd=nV{3Cq3v5oVC!dMxxjrSNgBGO4>lnv4 zLrC}|aoPRTdwc@kVslnc45nBlp`vR^e2#Dh;0vD?i+lW+n_wQ0Xescz%rYuTUoUAP z1;*`jT;fN*#aj!vWzdCdea=S;er!6O!0XvJ?pa#cm8`&I&jgh2(eS*qj|<#9{FsM9tnyTumjqU~wl7Hei3^jBCc(eOkMl}D09IQ-0NX&O+FI(TIP{5Pi|WiW{6@$6ycYie>YwDJ zw8SrCO#$+h{#BW(Y420aUX(^x=3(}@fi@J-j}s~WN|JFxcBN=OEUS#z*u+-9Gu{H{zBb$?lGvI#( ztgpl8qj}6T$I0#6-_c_7vf1JIv!iEYSl-$rrfXb*}OTvM>rVb2a}`j`8+Gg*Lv=e^fOkIYM311@Bch?#D#Hv5-1!87)C&Sqc%*Iy#KIvB-nKG_Jn zDS>&v?Hvc=R^qIwVPw(Gcxhrdj8j@0`e>U35yKvhV?$a8K&m>li{&b_V0KzuUmA`U zJ~~p_Bp%br?laG+UUyb|y&|k?sfI=v_H<;i-eYx&drGSJFzHVT7q{1T{{R4}46Ubu z_>NNesw5U`$q#dn)*c02!k>C_*&{4)ak=EoOP^Ph`_+Tsi*$hxx3gHLU1ET162}4*;-ik zhcxIxQ+-n9E{5f%(!kc`Y)#X{RW#Wt@p>s*&;faj>H9#dy4hmalE_5Ec%In@xZN$G z4JE1BgL0)&83nfoLKQ=z*Ef?S0j{bn6KjB^cM;${Azz*uN zd{M_mDcfTfu5&e1?|_iu%~;CjNF|0xMJUO;JwS*g??sve8x3J_!gnAzK+; z8q%j@CW9C)C76RlI!e*qK7Bsrxog`ab1}id>_X*;1Q2xzO!|s97g9--6LTB2Vg6p^ zaPkqVQ-?4|k|kJu+e7Cf2cCJD3~@BH*oE zeF+zP1;Vy7xkRb?8qYKu-=dc=wAsSQHd&&Z5U8kNnis@*g>z)GATU`>lr1NA_f}}v zn$_VKWo=AXxV~ZUTTcMF7>MPl(QP;Il?6jXQ&kOv#BzAG+I{w0&@{65Tq6_C!>jI(oO?rrSbS5G+FFrr zN^;ptTYIXSIWDQ^$}N3T#_Hyq1OW_gTXS~-KxrGBtAKP(a-k`fh$@y}GPqO#ZY^!p z7D4<-^sIY{v0;e10Yd{LXaqJ#8-dE?9oC)PX+2P$Ix1+y)Sc6v}rmu6O zbe0oXwe081$!&1{AFh27m9Ngtav7hi{z}+WjW={*n=;hr=z9sA>L_L*@-V!(x7oid zbyP(|SBE@9Gt9BOM!XM^Rtqa|tZ&yb8g~YgT5YH;=nCo|B|Tjm%O2O=x!8J+t9lPB zRy8U+qo1o5cpU&%S}tr#zg9H_bXF~;*SN#G(?`kpinc0u^C?mV)a;stea#bP!is(bz-b^Lu+!wSuHZ~?U*SXh4m!)iN;eplZUJ2iIP3dr+E#G_l}14@v`&Z zLb%|l;o8^*J!FoGrOyK?b9?&b9WCQws^QbTlV`1J$nPH{6!95I?BIvI?K*M`%snO0 zF`O?RDcR+G_=IvBjamz=JhUU?x=%n6*b-*Nz&Zo;&#PN3= zQSk=^I}f0vm9DdYS@j&!4wmsB`zvYQPeLw|v7~LZvAUjGs}xhVqLMk8YdN6#cq`iT zT&cyzO*3gU(Qat7$s6yNBd=?3p$hLM3f$AO2%RLZ0j=gyUFbAgmoLp@)YnqL;Mrzt zTy|*H$J`dOS*j~^JHdgfvg&npr@BE$l;xcy57siOk>y30Qku4N=v1Q}iI zxA9!l+~>Ht$1{o4o@=p#qT9^PUMGr-Bg>BLrDRZ6O-C+h&DedW9gq90bPJ^@DXTMu zPNb>JG+mj#k_t>-Gc`MebAhNk`~Lu%(^S*VO#aSx7Q2^2TN?Z(SV5MYnWEoqK>Sv@Y}2b6is;d; zhn*K`Ac%^?Tqq*ofxjgo6cV&Mo&$nd@Y5^Jn&G#Zy2`t2F~}hxyDPg_cn0l%de?Au zQ-&8KZ|v#6{OY$nFAjIq*Ae>1c5FZ4Z~NVC;%j8WB)XjbABAGTQf8cyDV^<6Afa=Fv2LR`v5M9L_iS{07OIt z@+y#2rH~Fu%XJq{NCE^%tCWLPNyL}cRbh;h2JGH{BQRnSK(#iaILIyh)nUAe7J5aA9l zJR3502^u^`hwxjSHM05^0>3_lW_+`YVSFwsQ0clT0Zo-)Y2v5NZXC;$0dl7)*;Fma zDN;qtZf%rVTq8wItg$6B-Ic0=^bhxa>mth4NdB(>0C(P^Un@F%8UFwuNBg7sN27W^ zmbxAkq;xVpv5_FPwEbh2PAN4*fNYaJ*>=ost?)K8OHIL;Y!9S-@`F@dzf+_RkT<#mezUoi<2dzf_44^6>0Zj=a^Z7% zyOUFo&4^<#VU#UrXEU56bBQhu0Nm-a+~Jr_1{lNYkT6c+XUtkNzpc;1;I%MN(eTw2 zn3YimTO95jhWSO;n{n5rT8frC58=iZ7YjO|8NOoj+)QFt~bon>1nUHwAjf3Q3J%)gukXD;ZZi?)c?p$g$Lob+-1~?p)8MZW@yh zt9KLO@MWWzkLd`QG>PQcN(V#F$6k7K>p|4r>TJRC-lrpVs>Wq=q-7Lt07wg@w)sad zd0Po(jyQ|n@Yb|ko>pBp59rpr7U6kuw>8mXlUekT$##Jd`lrR(pA8ilcr4d_464sd zBZX+n+W}w&fLlst<%AA)y4N|cidV%vZ;nXZTJ|_tw2i?XR?-q37$9kF6_}gY#)Ym_ z68E}`CG0w_Esc~;ma>a*pGrj?8<;E(dYb1g;#|b^>0iD2gwZLA9Rp`$c!Q}q{vJEaG18!OfWS8f5 zyHA;3eZ&;i6!nkGK>8|%5+;el&2i_aBDbkwsr1yX)W6JQVu96B2h(B|4~W|0KmaGD zg5Pk*2x1t%2`(z?*1=5;K#oAjZbNNy>yzRKy>h?_$uPLXGfmvb4t^u?T?Qq`@=FKXybmVZmdj~FH^UXFRGg_NE9h}p>!CQL&8Dc9cq4XL-t)b==&)0+ zsJd{DRb!7*ZgRU}N`z8iI-(16MIgCPJk-*5kVsg5N6am&YbY@mc6G6cW!Oj#pC7=j zG98swD8_pAHmG9fOHJ32u&u&sUly>_(t9VBfgvS&|i+D=A~aQsPBVk$TAt&Q9s9x;5*rnS|WrY|9i zAX^^JWJbV$ng0NQTPi#PmKL^J$2Mm-P~Di{cRzZ&HZg`#Fhfsi9MNGE486V@1*OFC zdYaH;3=Cl)IyRDRf7^E<;I(!))r#?2!--ZhnvtWkVInigo^SF4ZmR3Bc>PtZ?WQk@ zr?Yl)GM_D$RvARfNRGLrKHIwZ4uNHFb)i=h^I8S5qMG=Qe-CJFGb6R0-5w74x!qox zK^rq4aOQjh*-uLxYJU zJ6&@ur@rn(>W+%?WdL(lC#$A}<(6hJ^e0uYV62PbO|NjV8C2?vdaFrk{{X1w*jvM? zS#9Ul0(T%CbyQR^Nlzm`X{0LjRLDbGNgxhnpt--m4LP+Ix zAd3;I6dHvn5ql35x%i<7FJhqqt%xWTABvO&Ug}$G6*+C>qWrFeAUYirPO2;vq9lRt z3e`+4m4qGauIaL!!Y5-JU21ccRIY*NO%;XF)I!-lFZPYhyJ?eQZ3sF8g z6&FFEL1LuElE7v`!Q)M!Q2T>&>y=79B6 z$xVgDtzr$rgU_Oos7`2zHQ0q1a4%rhYH}91hiQL@n`KF}AB*+cv%<)DX5KRm{dOj^&j0XsB5bZ(^ic z{tHnSn3%gs!{sA(fZ^^p{1-&PG6H$7e;2UBDlNZee&xQSCDd>pW;T=XUZ>gDq|xI2 zu8-4~+^)oG3XyJCQZ-YQa$c1lCgnC&0b#0I{LYF_zDjOlQb4waQ*9N(2^uJ9utHI8 zzyp2M0jO691*gGM%VxJbsAh2ak?S6@iA7FhGQF)j?P3Kf!bK3jd<=Wb-Fwta#8-})P(F2rhUoZTZ}V^4`*g^O1~K@V$C{cYW7+^%cU%Ob=0 zKvlek_K$Pkd1geik1oq{r>>jeuk=U zD6Xrcn=Di@HLfLu<|LEdC&(^_nv#-+nA6eI!%YCy!Ho?X4bQkPe-gxSo(scAZfwUJ zlW+@rmmA`@;S|#} z;goL3&@GkkwVd*K^#1_ePXbX<*3C-^h*A(8}wZ4so9r{Kvg>Ytqi|)Y+#jnloGtw<}9mDXPRA(te7azya0#$?{ui z9^&RjPQx`st_+Gci@EMQ02f8Xo{g(;E*pasrp;3;7+;ArYhrcG-vP1stZ>mw;$pO} ztd24!=8>bRTULtz2FqJY=82k4*IPA?Cik(G1guJqNQ+pwDe_c;r9cV_d({%l98E5f z?O+_-Y!*p3u)157sJIu_%Trg3WxHu9zuZCzDUDX0mx$T?hk z28~_jbX!#Ll4|nN6uRkXjU{$BM^ARJndH5!&4KYd1&jSDQ0knu5A|AdGI=#`|V_fVIuEl(Z+i^ zK5ikv0JaT#PK(KAfe-K`hO z-!praUNeUg38;=)-g7s$1=r5Y>bBIh@zX#eh!D}&bK+IoU8|ogT(jOg7jhGgrMahN zvI|<=tgTHefGmsyA=n;XC1zJq_H^>gO#aNZrP(swr`^e6(#L4Sp8WDS0_Sz|=oe0n zXw_GVr#Lt}GN>8Zw%Ln`)VS_SxT3gMFAdb7PgVIG?wV) zmX}hUh;h0(iK28)A;DX{_FMY;Q8Z+Y50cT#8>4w^feQG$nzMzASv%rJxy*Rk%{C!y zDDi_8qpk+q34qhyIV>w{q8kuGIHqA4IP7%|aC1YN;NV5U8x*?cXzFSx91J&-3+o9w z5AyW#Tly->dbo?>cs9|^JGAs6RN&FG3W`Phq9&GDmY|%GI-vsSp!g{W2nOmwKoZIj z7b-%eDQb{UB)SAbNaUm_2%r*FIf3o7h0~IevXtyb=9<2bAueU?umRMro$U@5A!=*r zOLIuTEUkp@Yt*N0QLj;Jpa)y23o??N8M#?AKW0L<3txwKYN{F3f<6mi7bg;}QI^x# zkTgJ^3RMM#mJGPX6oaeSeeFNVZ>$$TF}5K=V`6G8@++guZzb&b3;rJ6&!2l$8)Bl@ zkw6GWisgqy4ILM7^2H4rDX{9Ru(gzB(FiTsLb+`eTSONqww6|E#i^g}`_@4kD;0m) zWcPjHM7~yZ_%r_iDVB7WZTRcKYF~+(W?8>-7%NaKk3+rzcYSEf49Gr5pjOKNQ zdooDr!ET$&|X4}2Uu6m+{&uMJ2kk&Y6xYT==WgSLWJ{TC|kY*$e7R@SZPVBBz z%B+r|js?#nV|9g<*U@B9ml}J!LzI_&G+=^A@Bwmi;txq=FLz?+5w2=fn2Tt^-=RL&oybc}+M zW9w1}TeNVvu(u)NxG3PwJ1J-x+PUrwV;R??++dg;R}tf~)6vS-8y7xVLC{}&4r{%_ zcta22YP>#YOzPU2iJUG*Pyk`n3)@4ly&hU=By?kTQGsBXX9&_oQ8hGkV$!!Ue)&)M zZ?~T6iu_i-vBb+en!|D$(pum5_pH7znwFiDSJu_$k;5%CEZx?6iqYf z+FMN%ts^t`Z2tf)$Tv3dHd^j7ma=BlX9{agS*7F5dC=8E1|L#GmVD`C1(q}9zv=Q@{XQNtdOcxw(3*1nc{*R|Q=^|zOH zT>xp*LDXG!Q{oNG=%RQzO}nDX{XuJB8J^a)w!XS8A!(ZtA#{FcsMQZ55a{t3BRMMvbOnL=K^zl zc`l=cIBN~WrF~sx1w4&~!p(F|A;-r>jcQcsrrpaTrq<~5V~A1`=Eo?Iw{Z~8egRvc z#2<-N8f-R>qM}d<*fF4Zl5}4{K}^bM#B|Xz1`n#nhJo%2O+N|5`s#}M0>~z)4H7iA z%q6$60C}ot&Yaz{lA`acvE}e^{xwlyJoL1H@@3_4`-k4HQ}BcapgO8qD+^EkXLo+c z(Rw9+4C7JLhtax{X@J%@IIug&*!X{spJ28o)yB9{^{%*GvvMmxu zS!pM(rwPP7IXhycd{punp3)+XjJ~(z2f229GlpUuEr1$PERU+GEs{pHnp2B=Kj!MX z=2TKg3uC96IUe3@1G+i|gHbD)Abh31to;e*9oGF8YNL{~*wmey(9=<8{@mH-bj>8$ zq-H0b$ygFpVL0t%(_+{~FqE``JBz?^8wUoFb+wL;qC83MWMosm?#$NdZ|1aBqt%@& zpJ3RoUQP4^bz-%&D%9ltAUg@exJ~gp2*c^>T`l685_?0?0`B#?>PLd{mc7q;aV5u_ zk21R7NqEyS%BT!Q@xu@yf!|wQT)99178@>}7M-JZXyR&rNJK@pX@o>Tha~buKoJxL zAe0(xoRI-sQ%e)C9FAfC012|pj~T3ur!$!FIk~$0mI8+hw1TRYD9dzTOA}U~%Oj$} zYNf^M#VaXk^OlpD?jTruirxN>S365kx6C=;fKkFYF^SYzoN_m_bQ-Yk3De-Z+wxiy zQH!)r-5k@6rR6 zHg|iW=1R_OP9*E)!oUM!>W16yy4Ri_4qFw*qe|B_@lxWmy3L_%4gI;~A9HSg<)XxB z>M5~WhMKZw%n2=Jm_Zt8_}z96hZ?D{byYnZIf$5E?}@M<0=Z5vrjrfCB79RxFK-`x z^EkMY)9&O#*uugPkxn7W#^yF^hc~|~7zX8|f8@2#V;bAVqk-*+9LFpBm8yxVp3H`D z(Bc8g&Zf$01?pwW_kciUgRP(oZf*^vjd;nZIWp`nbu6-&-0Y#j`F9R!>F--=Nt--E zMjZ}>a|fc*Ng0+Za@RjTv6~(GU*NNADmx0VTZ)!=<9F-YZEOC})nN>-JL+XGf_Lc6 zi6vU9W96rF7~t2PiR*Q7j%1Ow?Kf+M!3vhia=_@^*1q{1Mvk%>wwbu$he-TA&zCP~ zWqx~gy4vq`so|Hj$59i0tiN~*Z)HrDrrj@;U%O-)4Ut9sRt1B}4>TK{f@`XR0O$%0 z`l;}})C-ZKl10%vsOo^K{OqGe2hBa`fhcXg)2fYk(5VFKN8F71fr8^k4bDFA!(7d(E-lQ%4bu(sR zHo00USXk_&Szi}(R&dHv3AL3Hv9HwL<4{I~9;&giMJ0AKaNJnLL>14tC%ZAwc{|6& zZvg~oZ*|H%HNwsSgT2DLL0={wa?0mPN^CB5F@G?tlrOPtD%(bM+>VGk?5Tj=EJEv3@>WWE3n`PYjCA3f! zk2D~IqF<_lbs*mAPRJIcnITJ54MvJW5{cKU0HA7l*-nZGFl(rrCEn3zbJKOEdtApB zxM~+rEJ4+4aY{n_$jvlX!d)3vNOeYrZ|zj({{US5%V^%0TDh<5lV#NOdMpS?F&)m8yL25{vIWeQ;x!hx1GG>Ef;2J&V%cfxN zGy|{!dY@;OlV^(dzDm^B+yHs0ZTX`?=XF(=q(_Quq}+KR1zuzlIk|%zM%MvRmm`hA z1a74?LyIZ3hUx&-RtdF<()%IR-Um8hH6A16|aaLq>L3yWN371o)wn zN{WUbqhm)dXH~}5)z4BM=;>I@+P34p=X-_dd~H4-M~l+p74f=OmX-$E;iqtHcjuzz zy&+=sReq>w9Sf%HEaJi41M2C>?!I-0Syso|D$hBu;pyFqV6#(7>DeP(=-l#2*ZD3k zvXS()kEU=rnBp(hZ}?vmG)$_Fq_xxK&urGuuA|LWic>QYW3f6c(hSy?GpnOLd_vq# z%+|4`!m681RU8)$0`47e(RDawSe`QH2RBUtT)3ofZpw+9VPXLs{MOEbsq%>56C4?s zvgNz2igc6JmCmJ=k-vC8tn2M?u(F%1<8w%L<`yXD;JqdbN@vda=D3oO(nai-9xAr` z9MvptXIKM!t+viWN338JbJg&D1vD;eZZ6{Ox!dnsfgL^zhe+cfERHiI(jH(7pSxvi zgh~A!pa5&wk2TBsPU1W&93Hy`eM|j%R)N{FJJ??~r(v-EOXv87%*4vxXV)+?YY7PU zN11WvH5V0eB$$Mu@le9S9XwJyrTfGUFU@PXe+Zu&#bd*17#!E0`~It1H*(u>ZwA%z z8J1?%#Z5@bGP&+)bBX2v_l|4Ocy|S&;fz9~4Wn_AR#L|2Oyl*5akt&@S4pU868I+f zG3lFy@T?A@!D$#OEoo+OxhKT_8!csiAyGR_wUsU{Z#SDXd$v}%(xxmb1KG|hu^C;M z#s-ZCcOSmXLqo%yS&U(>#XVisFuZ*W46TngzSBY6ef+Md$lkJM(y0h5MO@@@?kBE~ z9G&=eWRXP2*@ccG_7*=IF4ux_!^b#fM-AiB%I6G{Q_CAJ_P8CvRLw zTrlHW7qkbMKZ zbk&~iJQtnRzIr+3hNcpGB3fmK=_7ZDBXRCspQZU9Nk-b4aVn769>zA2qRqCso#J#{ z?R^gp2xFR}0@pc!v|Yi@_X4)4QqNEIH85$W@|u{j8W{)-s)(M2z!h=zRPAluJYaRq z7f*-7MsV1hPfXU+xLvF)`}fs#yf4C-Ln&j#X2Yo@no)L#K+}+4%XLL)Q>3o$T^P-y z$z{aoqm0Sg=V;uqrQdR|4SjYg8=r>INh1TYnI&+Ip#A6Iz2-`2ola?;1bu^rj75Vf z9WAoZ)9`GxP&N!UMhbkywX)vg=JwDmXiA*+j-;sT@jD~UV&TkMc9T(C1u*@XSYCe7 zx7@OD&Jw1MaU{{2scryt$2s={pk1~x!`x2}m}E3{8ORxn$T9ekMx&mZ_$}rOfWd{* zMg1dR9F-t@PtX(BUDn=gn;CwR?s;`*3t|;~N&O!bPc;&}084wUZMQuD3(y?;j3Wo8 z!Xl`V@l(f^NyBa08}jHEO!?`{Tq&dlqyYCe-S0BBvx6a)lAyCQntLJ!gdfFbrscV% zD_=ue+PQFwXH~-Y%p5G{Zqt6DX(yrK`sxX4nSs&4R$Xx%l1Y?<%m78amf@7OVuGQQ z#zR?bptjet=do(&u#7%R`kVG`uniiLPbFe&pw!C3haXuiZu6vJsi!l9AHVam|_;^|;KM_&4V2F!g)VM@M02D+( z5fKRqd!isrzfV@H$OiHe*PvS#@ZD419RC1QXH#PH_${{$VG?0as}6e} z$zBTx7B&Nz>bAfOE_|(h4%8H!Z!OI=9}iM6gHt2w2>Pzkp8@!*_|+?2M$;490fp^z zTm^$g_4!?Fb-mS^xWv@b#D2R=Pr*Txj)pBoHFY^Qr8N=qbS?z@+HLZ>vwEz$VfBZv z(OTaUwpc}GAubyXkECRzuw1fR8;v#~YwuURYZH42W)>KK{v_l70Mr$$EIb?7h}Cx7 z)v|*Vsg1+4ii~UCmD$hP8hqC=PaM$38p*G13uGL@H}YM>=&?GNmsH{nr;nU;%+&t? z8Q0(f;PG)$hvL;VaFz&|`>?zh8y$DQir&IT5V|#SGLzJ~RAhW^?Op?R3~t1ouCYWc z?FenVGCLA2rNXlu)e_alC6qaW?kx?r%F9cdGZ)Bg?BHh7`>U!rw`5ldWr}aBGia(! zENl`v?vGa3{Xz|ny%ycB4gi7(D^UYn%veks>0;7HFcGLAgJ4z4Y5i8L)4DksPa*me z@CIM-om54sM(CFENv3T1tZMepZq^62rL1spaJ|6_``*?xxZh5Smpeac8<^%e3puV9 zBI#o%vD464(ZE0e7}`MhE5mh%g1A2mr*-f2U@XP1Zo^bcl?bsiAufo30+&FD0wN#) z8A0a07equrC<;O)fKjR-Kmk&s$bfP{qUaD3Ma7mCeISxDS~UwbK)T8<#xjl0VeKq= zYk>tvCAP(Bb2Q4$$0eu)jSlMQ%I2iwm5o(7UdcqzJjW>6!=Hg1!mR?66m9UlQaYPM zJ497B_IW$R6|n~Ela?mPH3Si;a5fEVq$> z4+X3`5)OneptL!*Jl2;Iq%p`|2Xw1pE9lB9LfWHWM1SomE&l+93Hhyx*H91pMq|-{ zEr?v~SJY%uS`s>`7C@zI78uh4aV$6i{{VR(aa}JZ&a@X}czZ$F?s*w>CT=K;&xj9gSuSI*Xm7_Oi>sxy(V`NP-8fc&k zgtEFll}(PS3`;~TdeLfGJ>Pg)mRQx}`kbEcyewq&XH$az0OTltbbl!H9txp;A;9>3 zEU~fFgvjYL9H4A4=iBZxxIqiJy z4$Hn<>+)SM5OAEdc=Z1O(X#d;ET$6YoZ7dl>fH<&e2#7(MGXsjwSzhHCsm>13~7*7 zuuki_?C&@M-L``N00o+pmd35s*{{T?DqV-O*5_=MEgk6^%(w71-_22h(q)3KS2r_W z+hw(hweGJ?j64QI6ik*mSU!;QzuvHL%u=QJ!|0?pipMAb3t4U5@~lv!@tYbe`mq++ zSl^PfVo9*QmQ+^kBpY1l0<^|=9BxNd=r9^mx#0Nxlf>J|vKmghs+ip3{{UOXS8EbL z)6HI{jyFufD~n?;?+`W%dCJP?4iIu`C#Ud4U(uW>$s~Ii`7aE_^7c_vv$g>KvBl1?@Y7S~77i&MCyL-Q@ei!cM}|?v@964S!4JK%wpS6(=Kfzi z4@Nknsw9&Ns4~q{Q8AEA_XDP0WSf(s@b!K=v#WFKI7&{92vYJ#pkb7Fbpy5mNu)2QEIKvnk003KVL1{Yb4(n5KLi?UkfbjKvm6X_r5mq)T z`nQHb1KV=I8c89$17W8^ZfTM`=T)q( ztEYe$O(R&*xpB~*i!9lhjhTbQPGvZ4bngwPh!@CR?0_{St5_Ej;XGMQQ%#3OG_k_w zwqrCFW3PJwe=UxyjpHe5_`0ZI7<|Ff%I1*~BsM78ZeHts%h2#FE{BIOSg`tEs@oTa z*uC7`R%#!l+?|M%%QT9y96p}Df@~&mUj*$fm7v?YbSua`GT`jNzoT&MB9YC4Ph%)9 z%0_{sP4&N3>%FM~`AP3?Rs>ju2lR_+4OKa+9p=Pd3&)MQ6-^v&MQE$o&Q!B%-shS6 zKEN>?E-JTUbncA2HO*{}7j1zjKy+Jr4l=^%v3P0XAkoz5>BC42ee}J?*59J(F-JCf ziAWvSU8n9|X~Y;=ekUFsK?~mvBw?o3_MNFD^*SwxTN3{OQ>k2=rmYrwl>9-3j3%bG z8roWh!5MjLW@xz=(Db=pd%~PdGUY?5;=9MX~5xuE3)>0`c{EJ}V9u91zSd~a-I z<|Mzn{^fVvCBjtrc1niFcaN;*>;Az_8dUK2v%6w)l=nJ^*D?xz(tF=a*mGD%8K$af zW80M8<2{w!N`j`OHYk|ft<}c+m8Yx2CV&j_8|({p3b(zKEfC425O=mN>85VA7Kh-_uHH#@B1BMB=r4+SSy#rewB=5--e!<$jxMX@xZ|8US?ecWHb3 z4gUat!EDi4>LgWCSz_7eIL;?giq#5=fg5tLF^yvb8X7OiXs|+^E}?g#tgLZl^E-s* zh@`}uXrWIf3P}ivfCNNP5JU(RfT8}$>ZER&a}eHS*+DVYp0UGC$$(J5nztCaU=riPJ7i=IjcUSSU2C_HyiW@2`=boj$tNgOgZc!_Y4 z#kVayjgKcR{{UXD4Y0x|zl71-<8`aXq?Q<=tAv3h5&|;~2tCpd#a(VSUfUTcBa^9) zYklEYHx;=>o!yMFQ;f{pMTbKG{i&zF$)Nq~p5uxtw$W48)m3)SWSKIxfvjk73xv%^R z*cP?zAc0~vzcqzg-|G+m02~M8f8At4^5_`w(r(af6;~~n%M%(nDkz?PS)y1;zh`?E z`6z4WGKrrNizu+|Ww>bY3nuk46O=M0jWs!s$s0=$Ii$Rf>hph+u}!6^QLx~-bID)d z&EIQ*%Wc8_OQc-a4agge)Wkl#Ek6Q(n(0ODWs7&z-NV0tje-PG&dLjsJ}B#RLD4`x zR3J!Cxd7Z- z&}yI#eN^>9WE%w@YHp*&Ng$`1leVfkAPZZHQkMfG7Rd9^-=c>A=8!^|%El5`M=z+* zp;?%fKW8a$8Wn~{s`$I3O{SfQ(N0iBh`38A7eqo7bu;0w%@8tEZs>WB7XJVx(o$7H zRREd?hcUx-&Uh+mW|Iz`)4<%(ypGmBz9Yq9INY+F+Cj-9WiZperSz0Pd&bs*CugwB2G!BW=)c zVRUaorv4~_K1Dz&%S6#gD%>b|4sDLaSv4CWBXkEhSp%7iM&diUU1G98(mb;wM@)hP!kMH z8@hPM{$RR>@3oeWj*?7A9HFC#W+Fo?yaPr4`!3p-1e?}CkXkTxxYVy#z}kfuCU}o( zBPz9_7_EyKZV^{ol(Cj$jjlrI@a_+Lev+h@^8jqN*gG2pO@l3iM|7@+mEu4e!EG#7 z-F#%$+Zs4d9Y)udtkbgzW1`B|wW8Yh7PA%MXzE(|SldX^up6$T8T?u<7oB^jggsNT1Bk8 zG%DwX+2yggbw;J5v0x2JC;`kZ)m(7a!2@hTy|q^wu-zV!jN!Dkq}1bViImWbG`;13 z8|$&TE6I4Jw4c(`I}MMrrM;tV$2A0r``Ckp3!+0totmidFKLPF=Kp0SyIQk7Qo_M(nX!18vDw-LxAG6 zbp~2W$lxwNNq+UU>CJYLR6df-q-0dFwbv0wzyQ^9^J6eJx>{V>GRbDT+B?I}>t#vF z=u-A(COJY|P$s>uEZ`epPg^U|Qy4HYp z@>0c0#gYhZ!B^=ae6z;JTJCTI%%~Q&qe8Q=dYWuHskPNHzF`M>k+*ld>W_-Dtwjhq z8kkxxwP?Y0XRb2TIDIW7ayBv=)?4cqfvvs^fu!L~GF~FC#A{3DWR)@)VsY-+IE%RR z*KfsY_~w@$!|>+gSdJwqudk7;EQFS}2!mX5TzHZ5-ER0B6lHb-;~g{IE+0%Yv=9ug zv9KHT9~I%$ZF%2w>rh!@pt>DgETyA|C~QzfEnom>AM(VnA;hYc)+Bx(xu-uT7!CEAh#ouE!|ZOBFlIpr;PaxX`V&XR(qymz4z{rB zwVo%JcC{{4^KN;!3-GiM)yYp^Sjx)N5R$4g3yqvjm`UVpZ`Z(Y-_pa`M%LI~_OKc> zbX>;|Q^P+S;uzi^P$#9SXJ;*)a3pSDmAZ8+u5Iph)ln+$cDpQe(%7ZPC?p+ky0Bba zNCfS_Rd#2zG=~wOT3kyMrlO6~z3uHjqY2dex-4^FQWQ;oFNx6b^<%5?S&J#dvb2y~ zOOCc^=d#%0wX{4*K}(5JM)OVHbS{=Gt_M&~zWqm4=ikva9C^g_@;;6~0&#dvoe;aII-9aLc$T^z1_Ub86{#<*kZ zsxbPQnM)ix!z=r(do=5}UnP-?QbCB*KANL9WLyaYosHL>ONG?p_^nj%!uK*sU6IzX zAR7;LmC=N83Fk3#lpT@j9CyU9;k-8biVBFPnseDi_~it&>)su0_^ofF9xBH1I+c;jEDw+?RMxFr0~804iyOzL>gQL&9y#dO*le? z9Am37l$@Q-on9#oD|^>3wZH>)hb|{eQy7uuqbS!f7YT@AwRLq4m9U1e00qj_)zD8H z`##CR*1p$OT}9oQC3J0L6wjv>H0&)7+-x_t%TJDW&aP>5h>SP5T2|_UoW(;NPxiOB zMURUJ4K$6B;jeD21AD8ZJD4?Mx|sl_%^@YNZ+M=1FB|l!#8J>bmXZjWB=I}8B1Q)@ zP(TD7`maf=s+yuO*SrP}LqNPA(!FghXB0h@);)tmBzQj4zuRTCgob&eUc9nJvz4o; zlB%X!iHI^t;^z=8saBB}aVsN^-PlWMbVVctL_iS{07OJ2A|e2<;jJ&kX_(#2%^x*n zt)B|R+i?{WZEz$GKJ8W$`B`NZd8B%%Cn+kM>#CkaD6m|!(;>+~9w?VUV_|g_&^oG` zI%Z8AQeBppE3EGJ#9Nu?$!GfQUZJ>MNj@)(fBP*xWmQcMEZ5UAH;Lo1YsmubJAygt zvRjT-G-Y-g=XkPak@K>ya*ST3F}|qEGUGJ|D=BH|8h*5r7r1+xE%RJo7*R_}j0a0l z`QJ1_e&{tjeevQ46AwXyNejSU{G_FZF6|@&5qbXUOL@w`&W}Ky0c-l{IOY zOf`@*vX(C0fLJ}Q0Q!knqq9nUs(JPg04~Oi>cJM zjOfCfDp+$i;Hmej&4I~6ln4j~OHf;)lmS2}fk7moP^4_61tCHq1xTs7o1i6GtdF#X z&G;*z>ZzU0ju*Y&%RwbdB3h%HqGOv^QJZk<1)SSoU6v*uOX2ODNpy!XB~{xzRfuwT zZF}|q0A-Yzuh| zwp{it!j>Jh0ov{W*>|!v#P@CFshl`czaSZhQFTo`RMWl9nz$-cR%r36x=E>LFwDm> z!;uQfZiRFlNlzrTE~t4Vo$j=GZRQtpolMcYJeDGlDs3%`0_w&hKdDRPKJc>aH?qgX z$Mp$)-*{6ep}E0V{{SIJ`=j|sqqJ;MDYZM@`m%PWm){ZxaN@#XG@^DF20h_{HT_kWgsa<#dP)Z#?c#!Rxg z#`}|X$KuqnR7ho(M`dG8?aVH!o@Px*+Lr>@_aWS^)pK>Vba2$ZBP(Pd;nWbOjAWTi zoL+}JOC?aLGfO$_S>0ef`URf>WH_}YOWl>Hy61S?MXcfi(E}L`!%K^_R&d&hYZ~Yu z5pZOB5q-eXb@Xt`bKaA=-b4$j+UDziXd^edHowVJhDRWxh*;c4E=N^=BbsjDO_y^E z@X|=|JXvPN$(9_?Xai%(W8%G}ICRg?lz=UleZtP{$!~NEb1L;75bS1lQ0K_UNDJTl zEC%HK7Fdd^G^F2=M-QW$69wHJcMxV-`6YTd%-<;bHn7;b|Zr z)7YFYh`4`NYxE_&ooIo9tyovbbgnDAYjAd(ov zs%3Q24R*6z;MVdB!&R!I7Zud{tRU8<*sCF&IkeKT&0)&m!Zah1T<;xJS4lwXDj21b zNyb6h6PP&Y4aUH8D|sADW@kpm$DG~33taV61TABn_WNY+wAD>^EOGKRJSD@>U{p+m zIj@^}UzA=wv!yjafsiB65`k)y9=5&($>`Jz0yoK zjWJ4SXz`3@iwu@=kVYAKWxn~XaNRGpm#0y~4Gjbobgd1F2%8%K8#D`k3t}zNR#tZ+ zSzg7wKMtV7BFRe=TcwM)aq~N^ZxOz{NXcoUVUF2eTz#JvwvSRl7dwSTdl@AY*)s#0 z?Fdy(+AN4kIbEJ<#+a@%OM=VlHJ$glt#N`ombY8k-gen@K9A$5lNl9cwcf7R7rFbm zxDjtXO7+K6Q#O_2D4QFA(!qJp5b;wfF?x(E4xlsCu=m`}25VgH(OH72nl7AUubCCy zrF3QSmMuOPggR)P!86_%!0)O}^|ytWE5JD0U&U}oh*w&gOvYzC*g5vlljmit#%k-a z+1pK1Ej=?L1=(EepdO^1%DI4W^i@T`VlZc5xe*M+4>i)KN;KiAth3Hq9{B@lV{=SV zFoSD2ed{%@efzDmd0BGY1y4~95gZaZ&w?>%q<-$#?p-rwa~qIYv}|s*q@uPg%G1=! zjGUtPJyn|5G*gpcHRh>g&KKRqYjGD%JKDzSA2mgLMP+?Vpq=hSlMzbh#x?z}i%C@r z!fB-H&L457SSghE_ zJyTsP%Y)x$Uz0|`eI4lw)#2d!`JT`_I(L>hXhF7%<;e|$jk(w^_6m+mwsP@P&7vg` z3kwuo3mO3t5Fm-k5duY!b5Nd2Kt$x6kbs<#0s=zJ;rek`j?z<`7P>%P28>@1h-UoRA?PTPhBBL1A?b z*y?@gVox+DO%NzUB6JCDR14iVLJ=aso~k!P;%uZM2zV$7s6I$H-2lF&3DBTAn<4>i zH%9c`0s*D&fOFE}Na(3jE#`o;RSRW_!rH9_(U{&^Lg`5!Hd^dfpF0eV8ml2I6;y@Q z(WknL6ab;u&01=rK+@^T$Olyy7UqPCY2=}(Gs4`_xcw|+pNR2YB`ri%Fg9pj9LEg^ zT-s4oKMtAFw=sdn@-TA$01#NpH!`O@uE$Q%rI2;Hh$N0!+ayj7YlXoFbyc)fqirja zED#HY88M`AF4{2;2 z?`_1n-ejt(nc6vw)EnOY71+Q7MN@v|&d&2@Dz=s?Lg2>SorTF(=AJmBFOlJ(Zb@5T zM;JtWQN$8MT^zB{QpO~EL9vvRpm#uQO}rLVXv(WFt6DVT+d98R_!Gq>*yQ8sYCvT> zPVI$r^eB#d$k@5H!RCj2~t$0WNlkBTn@Lo zg5WOTZm?M~jiitq-L4dR#$jL;c}(22HQ3`BEblhCBIR;;wGhbZSlwH?>?+|B0z>=W zE1ShB<{6p+A=)mE9(K^<<0)oN=;jC-sxM+MsJL5aVNDuWW!x`^tPS(?!<#>}3^?X3G zW;xExK+DK-Up%IpRzAP|Ov1&6U}r8N*3|V}W+_U@M73g9_LsbV4qdfxXX?)~xv}PM zh1v`5xjKr4Xy)Ccn6|-N47JV1 z+ZB0@dA-|Vt%y(=cAK=^_2j$s-Jp^4jAUG^$@ekxKSI)~qMNefJRnNLD;-qZ#tpBo zp8{^Lc4emhIjye^VKlPhabmcP?23+r84I7IOYQ@Hdi#Rc$5c_FE1SFyi_-ZHw(11+!e&}Z6+baIJ7uaO`1Aj{PN1%hIV6-I}%A29{x+MY)x!JCJd|szzr-F zaYoqML|_1Svek`C8QHCi7)BpYhSG{^VAjUa0B9NjvWuA8yD&Q1%9pv3Lg$yYpbM8c z*agJ#Kj{r!53KOrTVGR8Hd4koIg+%UK?h5X4fh(V;~Tpfq}sWA(jGlFABIZW3o@mp zrLwqPpp$D6&vmci4hzN2O-*+fVj`|daymHSe|5b<&~2cw(OJSUJZlu<8d-7NUV>Pu zWE0DW)3)KHUoFkG?`|*2dK9kS$3nIgoi&vaHlC=Wo*G&>L^QES8$rHSHo%q6V-jLe z)xPE!;3n;Ris@K1&}+=BENU1f5s9J?Ef*J5RckGnq|%koB=m`j;|}#|Hq|)MxunQq zVQ6u_#Pb%nK(aj^M=W@CO+jlzDhOjb_iuCaUG^gtG;~?o)-o_V;=V_9IG*d)PyQ259;A`7ejZXUds=7uHa<#6IH%@>p)&s-rbWEy?5^j$6pdVNs zMQ^Hbge=M+r#W37=Skp)3>YI{7%kEnPGs{h_oA6rF z%X=d`G-QpvofZZt<^tQ;3v*X{Vi|o()J!ItsqcNuM&3(P5oEIUEvBC0zFA!pTN{f; zU2VBqT8Il>d+*h53!3}ozJXhGQORQK5(={oN>h#QVNz)`h2vacVE8RvOG`woZdPga zj?3q%WRh7QB(5%d++5;$lD)_O0EiO|SOgXUvduUea{v|LZZ>dg@8IbuM&~OPHz#6I z5pJ465fB7KKoJoDL_`4*5DiyL=;8q`IV{c>>|!OSp*nrnT-K|$^kT*ct7HehT+n>A zRMvKbHtY!+{^kTv|RpoEOtT z(_;1EQ&HtQb?(4xT-ApQFz`d8t--Ne)Y9hYhvx`WrXbJ zkhG~wEYmHVb3vn!qz{UB+>kRy;pA=>;BBhbo4yz(77Z=z-g+DF@mU_UTFXku_Jd5J zq=z2@yE1oYE--E?#fO{CZ`!FA_XV*RSd`4oD+7;tfW7|!=0EVPvO_^6*bZtpCZ>%q zB5rM|RwkH&V~A&e$a$<(6_6e;YSA6*TrsZc=!?cE`=GrM_7xgP>KtQMHf+Y1xg0Vbh-hmC<>(k5H>)H zE~FBGpiW2!B^ORefLTZi0&_$HB62_l)PkWbfR!AP5EwX>Fp?tRJHcseK_IT7%?=hi ztsW^)*~(tgV623?8ueq<7Opv zT?inHh0C}C2sz9KZEbEx3X z9(ECcLkq0>nGb7FNA0_pkkEUU&Ujx9Gv(|hl&}+$A(_tb1FG4}Aa&XWukKzS=_8Bk zYq*QD!fU3Al8BZy@jSP*f7W%zqx>v=6s zHB4i}W_`|?NB&^8)YC5 zk}T$zY&?}7j@={peu5#H%xQhw$ameU*yC+IsVtD@C%g@Z;=Cp$w}_wjKgsnvx=ozE zBMHN>s)o9t65-to&+$my!{p^?X$VA4fL;bWoz0?0PecV`Yy{; zR!GL6sDiqU)URoD(Txwht&a}VkxuD5CbrHkJ|#GB52S($i5}qT-r&|>OL;BU84!+| zt)OTm)7}U2ThPQVoefFRX=-fn$gIb-A7l#!nc25;J}Sl)qaNeFi!8eLwXM4BLqvF- zWt~@Yh~j9tw)-vr00vWDS=`owG7v?#xLOyxpxt+zBT6aoRz1SfOWxPyw78vaT?c-q z=LDn7#U_@<&kKq?BL|9>o-+2+#gsG+>^~pHT#9#14{Gacuo{J1j#$X%bn-&Z=JvAj z(tc;XMTy=)%F<2FmRD)xb9>JvB4b$6UW zwD$0jMV+A{`>lkTG97L1R-q4b!Fk;C3gpG4`%TIUm)yglZIZ(reXHEi-fq5&nB#6S z!|*>-jz;HgM1ii8HJZka-Q#YY*Bdi9#;YEa4U(Qo=;C{?IKD^R-K25`*1x@NBJ^bz zC0g3-ZmwCf+bt+{m;mZW{P9<+G5)u7V|y(PRS%>ID{&lBrIg?HJv>bemFF#-3E!!A zA>rn*xElt>E9z?Tikdb;%Gq5fX!1j?eSqn&g7gD{VeN&Od#ECgnkR>dn!p%KPM7P+ zZJQI`@n(=Ym9Fs$o#RS2Y|b!m;%wri^lgRWHDL>RGPCeX+^e- zsGA&7wm8}v#6g1LQ)Jn!NqV98zgF@F+VpUU7vQtMiE_t_R_MFZ0 zTwkS1+SwzA3#6xYLkaC?4H=Gyx-HCe_XTt)I+|RknQn(cNyd~FbIAoGDrEt;6Nt!- z$Dk!_u*&C1*FDd%KUelwCBk?tkyFRp)xLQhXWL-g^0zM~bBZzSBZuRSwG|}2=E0GR zyT{z7t_^IR*_}G~+~3q!MB1q{m$}E7)m0WDPhvAz+v^2^hkCVr1Xa|}?ID@Dn(eL; z^o6&*$3>ku%A9OtCkZ>;<-IgwY&;V*QOH{9WMc;_i`@Ooz+TA%nD;b>o0gI-b@VqJ z@YK9P!~UmC_}epOYua8-t+DwpCG?p|9vh9rhD6blnwg9Qb2^e&PYpY(GeZ#zHqpu; zQ)L|1>7Wr2KtkwTv(iQ8S0I~eQ$;;@R%ehy z6XbcbTGCIDSea~coL^JhVlAf{wif>Y=0ELkip$|$aHjaZ_WMP1lg#O)mZnEs$l~+w zT}}ZRiwUP;7Is|5{v@BpSB-Y0k*kGyt2SqS=nquppb}2&kaUesH6LYH4M+zppG5xv z1GqnU_pCEa=Do%#GJ~mU7Z>Wc^)Rw{T@-@tBUQ@Rdfg=E37$wk!}&Nao)V&*az2MY z6BkZd;$*Z(O?f4gJcpl$KshWripi$CT6;LpP0GhEE_KPjnx*c_+waobmA;^nqba#+ zOiU(5#S?XL+woi2nj?%fa#*-+KVuPl{{UM3{0Bvs;H#AHp_F4{)0|_jqL2-zXg)_z z#dZSV6~@=;264L_*L(`>m_}RjD;|c{9qvwvs+)^hQ+p2;2GJwU4Xt2Q18|1L0vg)L zgJikBn<+q>**d7cQ=$#7pn^e5_#o3#qWWx5lunk>0u2;(DnPZ;$>M{Z?x2yi$xDlB zm(dCkhq(o>(K&2@phWUZ_^NfW^HMiJI_ZBE1550xV zhgH80n#7Yz<983(Jx7A+8uq=R%pig;2e9RD9)66I>>i#=8OHk- zQk#y9-?a)~OY%c<2Fi;YNFcW`p8}hp4kFgFH^B(%ssSt!NKQXr4<`)$ju7PRY-=+Yjeu|7|y@!vBR+#zK^nwevi$U;uXqRj5(?*WNW5(wC#gO zLEyC&H5Yd7V&vY%B9)P})Yd<=k)tucvfm)Ri_oqEB_|9!60B>ZsKjLLLkQKejTk-} z`_~`9d?_Y7G06p=hlV%9srL(&x|NM+ zML{07=ywlp8^iwq(hjkjyym#%z({EO&%JjOPnrAs*0T+wj*5n!ju1p}#?~}=0cDof zJf8)z7$lB8TCP%T%ZgENX;vIA0XwWf!@bnSJvpiMZr(F67cu4;t=8M4u@Q1+Z19$| zFeLaYV2U?fJLWc0_ZMelpJ3Y-n{xjEmsT8J+h(`;Tsf-Z`Xc!*trw=HjEk_1c`ZgS zNgG-o8>u?2iJP=&VQ_2jq2%Raw7KlaM|rz~tc#LmQi^Km*jDz?Wv7BRu(`YQC#vKt zu=%ScGD`B-i-PBFS5b!RoAg|LWfSD3`bN2qCf6Z!D7z$U zPAs=lV6LJS5VJGdd)ja2x7al~6!3t+z~BvsE^3T352c3-iWrD<%S)s@$hlieHsr%; z3BGK$+WrfEm2}#F;MA*0#xCaGk%7=Q-A(=~vlDeD+o_{)WiwSl-Rrn%vg{_$4O-4^ zvYyGVZp*FV>?%5}5K~UZx);jFk+t%>H_v6uK-bGVVqm#*fD6;9A#4#Z9Mz>eY+b0VH1Pn&hh}hYx(29o`@QRvx?CGH*xOP(RLIalv#h+MYR9uk zuw5hE8qudRvLcVOj>MgHP|zZ8Jwm9w7V3E@dhBG4CMiiZZBv7!CL35b`*m5keJg2T z5Yw~a=+upM4sf@2a>*SEBj|Cw?P|$Z=Yta}g-+1Le=(@KpFB)PM{2fyIiXhpm zB$66S9bVJ5n{9G~Yxs3r4hi9mMwb#%?9&E6w7eb?6Hax1c>!zn#>8lz6ZEi+3Y z?tmi)dwf3iw2qz9I_@L@bXxu=FT+V#wlK52nZVNeCc$p=JoQI5t#FWE;bqlPaMle= zB`cW$y(k@%ZbLyF@{I}8o!3J+WNaM(-DokaX|$Oe1r=3Wp6h)RE(N)gw&PZ%P0FmJ zdmC%pWvs_BsthWW$yYpZH0hbgbI=XRQfj7q+QP>)7Um|z0KB)1=EO0sD{VAUxs=eJ z#wo)~n!3Zny1hOCNA-L395J1qtc zg|Z4^nxM^)S<(`;_>UD}l-S!avsU8wkkaN0v844Y3b-}>JC@V0rl(C6d<|}2q`t(f z-_jJqGUmI=<5h@ghEA8+W4@HPOX#nLXhzm6l8l}1d3XN+5EbI0vkifcJ=Q(Nr1c95zBU9q9WQf!Xh9D5fB7KKoJoDL_`2CuhFeTW5lXy+-=%M96Z7Q0CmbN%nqJx>q*H&9M>>8q!2~H3PR?di4k=l1wIR1#C1NagiQ9E zJ;NhB$`L7LS2)aWtJf;(szEtiNN@Q@fpzqk^;oaIL4Shc1ZGao2Ja)9!S5@(XtQiN zEqr@PMHFCuDN015rs_iFodZEUA`02*+}p=5(l8!(+5v*yO#QO&NULRXH=%`(A983QxiPQ1&HiomFv zT8oKInaP81e^o&w>P^)*bDr3kF83Wjn%#_2)Y5Wnzd;+NsLIi1Gjg{I)hsQ75gUBT z>UyiXs%0$3aaKj#1?8CQ*fy36pD=&jbil4x4tHmcQn-C!=6tXCE~`r;H*oLa2!R$Q z=qLz*NgyCVfdEr=0T2tKA^@jV2oMD-5FJ!p1WTfj5fK1HL_i=!Pzmx@D&Z2uL05ux zQiy8$9K`XMr7S09O50+zw;iiNxLTbR@pnd?<7Q5Xh@`-c)h~^&VPl2CRiXnk2CsBQ zv{h~<=Fv!bj)%o=g{^z8T2=?Nw5_%YTxMyeoc%Kfg#B^VS2*=ArBkCeg2`{Q80bhtkMF1IzBecL<`m zyPV=|zKP*11}qncC~(Z(_#px04{6)D{BF2kN1QGF7)KFfrLojDGU#D;)a^UD$M&u8 z`?=06^t*`v08X|X2EvLWY+T)EHX`SvZ>_u+Qx8T_jo#-Y6;?H6mOC8>rj9R)f)CN` zB0?)AAJ(O5{ZkLs{{S)h1>;dQ&U0g6?>L6EbtP3i^VL+#RZ}abo>v#iBe!#osAdAH4NuOgLdaBTLT5u=X+z^O2}h;W6S_uAQQ!+P_EKX%|Jg$CGb%xMdcimjWr>B}%7-}MrwAhwB zI>({1hLMyc%d^B<`&^KDs^WqdFy=ai4lj|7lQ8WzBH9u^6=Cu{q`KK%^?~NGi@wFO zNk54d%}Bv{@S}o~uK~RS#w>N@VV}tOw5LRkXw3 z-7k#yTr@pyw(!u;Ow_GBvN!aDEJX9Zs`w(p`s%E}PhivGd)sw%66R>%HQk2D@R*OQ zC)`tqOHkOw`_2PjHR>32U_`<7TVNNSaPtH4XaW7J{54*WOLnryrPl+FRQX_fPiJZA zDUkUij6O-88<&|oc&n{;b_}FATKDR)>M8qIkl-9H4Ud6W0PLD=sj}e8DI|Ji$&uqN zw)0k5AafksY1K@Q1YFzVxb8CJYFrMUXsF_SO=z<~40b@{ur31ES;CW+h{elOD~mXV zxKWYMosh%`U~xLQm7T%0RWo7Inu>QeH%WNh=L4J&H3O3JnD}Q9$M~lWlNZE$N$RCC zO$Y}pY-r3weZtGz860pz)-(XtivT$*X9z+mZpLXcE1JpaWT(4;k)@=x*w~A1Hr;uv z8(V?#B|Q!qG?GN-hD#KVFTPTH#`_y{@LrE5VBIg6?65G*9+rjjR2bU&nVekro}}Gk ztrcQo?C#9WCQ6xUPp()v8vq+?k0qZ2*lrm1xxnjVvc+_bYj1sg)(hcrsgAN2mN+`k z@d{%nmduISy$t%e-8D{T+SV5;Zpfn|<3Xy!tHfZXZQM?}Uh9(M8q8x8pe@3qk+3x0 zLIs@h(WI*BP*o+F5h|8eH?87)KC2UU8AkWiN(GD9F2rPGN99i%l$* z74o&Eu8r)72W|zferwTPk?k%d05!eV#Yn1d$iY0tv7EcSLAteFOG#3~%8FQ}@N+>` zRF*M<&TC20y6RR0HT15T@I><@tN^%;Y<$)+jrBt4yxK}wA~|4+HjRh?73F+q=*Bv_ z_EzAvIU<%zPRX8Klb&FAK1&lS0jMm>S-b6nG{!MI#k6x520QO&r?2+B3*&;EEVXe+aFyz;~DV9`_h)l^i# zTs__I294Kb&>Nu81*zeBBOEWRk%u&cx(L;+2l4((YEwoI)T_l) z&gwxxw9&XvC1$#k3d(Z~&A8-wgVZa*FKd#fEydjtWYw9*;xtpxJoeUfME7JHA3lXw zg;REfRY*Id^+5gWYl_S(B{Z!!frsf0v~m5P=BNit4FFx5btLJm+nkD!f}6@n-&8@e zj;M@FRf9Dot=CqS)#1_!XrYt#;|JuqiGNh@CBNa<_LwCjw)!AG8Y$>shxwVDIg4F2 zBo0AJkHJBQfrjA@)Pc7B@*gF|r(O6fc zX}tm2N{&fln}To2Q6mGGT6F{}&dNDj>UJ6%91gYeFw)HH%NWp|-rlQh-K@ELIg&DX zkJ3hNJbH!F(n`tc*)uh3#log>v9U&X(U&=?7P2%AbWW=R;ba|dg5F3ktL%5k&TGBBp#_meNzfDoyg7nmX+=5Y`pC#naZg+<`mk>$R-sh^v!yFw>8-DY2D=BUEIq-st z(2<~B&!ZUV@W`t;s}y%f(vmiLA>h^feosJuGvu5F}u51XzGY)$rRlbwxQHgKP^x zXw#zPy(n==!0@kCrFb>f6oV$y=D^MxEtkbDVp})n2_e6@khkjw6;@mg-#Y zVZA)m`W3?sMk`&8&gV+#hh*0|*Cp=N#QVPW=M1x3sq-t^eG*{D4B_KjD{{|XM4MX7 z9?1NC>a^Qt{Yb`@CXv|9A!%%b>TW-1b5aWn4!Poft?*Dt)LBs1b|i~lCu{yvvunuH zr#_6aG-ad&frg>sm>Z=;mz-(~0SD(7{;wEHLJ;<4CW1ny*-f;8xSLdiVHIOLaN z{v#`COf(`!G&~In7jaxxGl!t7RUQtm5f!Di@^}6$v=%>3qlbc$jw1!wEp26*S@F1;=V2W5A!Wu`2UTH@qTQOL& z7xzv47kP%&nX+XLB=4fir98T(BU3);)-}<^RV!NK+S{`&{g62Yxu=u1q>m`DZ*Vno zCZ^m=P$wW4ytdZZ-pi%KoKX^dcMoF0Q%RTW0lKsidBVaWW^9 znL7ceRc|^H zW0=`v+(;WcXk9RDlagbI9Y_nV!X}mYT`{YK!!Kqo$2#O6HRYa;I7#P?C$6lnb#JOf z9$fHlUhTIhL8)G<{^$%F@>$f3V`#0+b2qtx#dI-ZxMQG^(y_6*vVzB!+_zgBa$I){ zS7Nc^)s$4ycJz_G#yri>lJ2+w?`_4e$#&R{GwP{iq`pxja=7>%{z`DXK93EjY!tCE zfuq{Xs*9woX9kw6%cXndreo)DY?*t))&XU)?Xz;Zu5Gs)6@e_xXdrGz>kg79Qq;ZO zrK#TB*+0ab$Cu(Tc5g!_I33%$&b6=cS88ftrGe5-BO{HX?sJWR3kJ6qrlu|qz3ryE zuRr7JoK~sqs+p3r324=f8tKj63mO=8Ekx>A?XdiMlNmC$hqQEYy3UZafZ^156`I$* zqbO+evgdsp7zYhgOCIxsBh9U;Kgb2sxv|_hxNG99oucewwL~zR*}<+@RakWeM1n~u zp?rYo?4thwC33P@SWamg(9w5mYY!ETO^8!X0g?wCfRUK#vPC;x5p+|F;gl74bktQb zwUEr)JVxw>-sR)i*P^<(aXFnuTEj+K9}DF6jn1t$>D7Acu^Jxe5_Zpijbl$g60BnL zLg}Ib&1P2WFSXXi3Caw@aZMf^{w2n^dU>$dQ~(u0>b})WGzTEhCEC&D%~(7`j@P%f z7?n^r)Mp?MD=gkSnmS%3t*4rwGhE>I+zp7m)~=dH_D#tH+Rep<*F`g0+MB#5i!s_5 z-4wGjt~0Qf_a6P%nAgbZaT=Gr09_-A1Cb`{w5qJ7h9db1ZH4`la=2+;WR>!M(Isq9 zTC$4oOA%!jQW0#LL?R*ph=>9rAP9(nA|e2w?PVy0qtQ4Y6>V-9+F4Kahy{qgu5Ti` z7V5lylBQ}prc_frvPPW>^gbTqN=!;I9Ik9NR+rr{hmRW9ZMZ8xh z#&un#TvTl)(Twl&IuDipE2w;pWKMhB16nRmg7fOSht*b1Q9Mnhr^|)9 zkQAs0wT*&S1~G-lUlw+d$=mF|uYvGc*GIjqVRM`S0_2sIIZ86TOlK7+*_=g0a?;3R zo-)}6!}h$ot&SN<*s#kjjIZCobXVnhtgH2>52IzoAdX+P?^iFP?JAOSSKQ<{#Yx*> zfdY(? za~mw7D;3T+M?N;$0OqTahBp?wLKU&PxYXF2s0UR%?R2n0EK0W{TpZaVc3Bv1!_iz& zP#gLRw$;-Iw@2*u{>fPl)UJ09o7F1>m$Y(sWFK)|5VfwVlCiZ;S&=-`s*XxWHHD1s z2IvBXBV;8zjz|;1IUyvhEMmGmK7v|_94^+Jqp9Q;UDuuQmMAOn4#Fp17!83RS=`F9 zoHH|D5m{1$W)(g&T^!O&+BMFR*`1hfR(yO-PzQdUhsn!8s*R=Z3>%YRwx@@uEm}Cx z#8kbLI=Jzv=BDjMC5HDe(QJJaV$ey))YD?lizjC%WM88g?4*P8-E;V)f}Vk}w|7~- z?rTS=)E#$J;poFzBy8g*<7iyay}s2&xu5X(E*Xqykh^k4 zltUnVLCrc9TQ@6c(S%f1g;%xB*R1+BZ66Qeba2-=vk}H+4rErlvfI1lEw8mBEZ?8gj=fIaV1PN(K>g+*^8fNHNw}wMXbWBsVe2{ zY1$w;4dXkLeoJ0*&mD|lva=V9Fr$e&nsx$9F4JzC>aF4Z*c#KY(QMvlh}6#`o7gfj zk)xRxxmx@t^%1r1`p-Xl+Q2zxu|_W{gJ(?`BAtL(kOGHX9S6Z&$z*G7tGVnKeLXCE z{(lskHe4kcem4#F7d~1qMTwdlaNs_c(n z?EGzqe{vo`1h|HQxw_Hf97%*y8J|65ZHh6O@4lYyZuebWt)Q#KuW{`l`vW)=n@LcM2(|3{DZ%q!jhOxJCEY&hn!6Xz=I5RW- zrxFiM2QP}n;-f`HBO{HEd&hLKgEOASXv&&5u+r!Pjhhnu+MDKWZmlgdiqpz&&X&MP&VU%1nw2J}E z>buNG7{Z~I>}`E6XzkiZ+5+%*0^8op!gyZ>#jz@%=_(@80CDa;Frc z;hM?}Hl)64n!7QO!~rDU*VKy*Pr+^Ry6Eui8n+NFaBMX1ew*kCT8&Egv6a&>ag28k z!{?3(B#rX9*=*?pb?7>kEvc`qj2IwoJVRpRa(q{kaKR%xggRmn)qa?3K(^(b7eS6EQVS6FYXey5r!nc$*lY z!LYiA)YL>K5tAH6;1X@1x0>bn-y6m&u&?_sJu?X<{hO@&So85*t`mo0mDJ6t5q8f$ z)1*0^9nW>MMXGSs7|N5WEzO6birEhlhdHlfYFhV5=M5jBIu2U%@Lr`np^S8oacnFZ zo_rUY()zt6WG-Z^WU)9ot<9)gE-B&>HW2vYnXJs*tqpKDcT%vD&nu!_a_DrF61NZr zzCoG6#gVWZh5`8attCz;9Ca`3gmm&aScaWSx#;*+Gl%CT%xg}uxyMV9zWOXYUx%rq z?COnk#JA0qG+F-u6)?+onS;4jc9C}jnDZq@c^>Pz?lu+!qOoTQ8sg%es1jHU^;Rh9 zp$(^_WmugpC2c2RT^l5Yr!}3Wk6#6#mX`;Gy`2UhAB=>ZR?fH?VSZw4Ht<+Z3vW`fI&FV;`o&yv{i3&M$LYs=CtZ?r~NG4r^Mp^WO_ECVPf?TiV+k> z(#xPfvN@Hb!+5czhF8Ut{A?E=1#26`n>>!1mV308Fgd?e8O(_&0YXmbh&8e=Vry2g)z{`S^j2_ zvSN{vi?Qu+>I%{lbx;M4W|Gs?8z^+wLV1SrO;|^Q-0+Df0H?XVvk!qQk&dpRgGYzk zlfRnkI4Va!1+f4Y%JHY2{{R(>i%8hR$vK<7^iT$;L>i40@>nB$k8%!(G*UXLAg20U z6uKT^NgR-bHV8@Fd=PX^2U3KQ%VjpQfw>AdJE#Z^^i^yuqidA|nLta2nqS_aleVd- z)ixlVlqK|0^HNDrCfk#y>Hx6UWE_&l$U4c-k@7l(F~Bc-kh{5PRXT_3mBEu;#i5b&6b7ibZ;$k>JH0Mi&NSCqjp)sT?#5g zsx_n`JroP|Qmwf`AyTAyA`rsa;FGnDFq5e_3s^K$8_OgQZs4f3(Ue`C&YTiLYt>`W z)CuCf``p$*76#=~)s3|7t}bnLL**=UTd#X#WmvWCba5Q)p#gqsLXKTjIqhppoe`xYvUr{ub6TW$!nn#Q9AEURQkC3=b;-ldW9CtoFM_gj1lAlTnKhUUQdb5>QJSh9>YE@ecB#^uW# zbnMU#Nc)zlU8|JMQzQ9bPbFw280CRDnwjc0is@!CRE}MILfo|9n$=&z9MuJka3ZjK@*nJS$zCo6lb9eh_q!E{pB zaaJ7z8<;kB$o(z@T5d`BEj*CEl4nv(*D_eNb4a(p$#;H_=A+^6AFAR?;xkkp$_9^V zz!RYJBjmA)xm{Ugjn72ljv%DKFvr!@yED#_MmKx81>v}+AyG)L6`zULPeU5hhxSfDJ`p+<$^T zgT-s`>FA=xStWduJ~+>6@Y8q5?n3@0Vzeev&%VdfFQ|$-XHNIFINIFKbIpJqbzXnO z9+PQetrU1YD{B}e4U%`eD+t@W*UfNTNyON<5O*r1Fwz5dQ?S?{7j-KS1;eDo@mhR7 zFzl~&jPA%hc^@LJsSLWKUWG+Jg`Q`|*v(CE5>4uLQ#u%0A^;n- zkWK6so_ZW)(hNXS$l7x3xr;lu=)G!OKL^8}`RnLuol^H-G)yAy-@NUDzh7SrluU*g zL}AUdg{}bT7oX;?i1qn&JX)Tq?T`mTLF(47+X!q?(L(054(^0?DvW-zj*fOmB^zdG z8Lj{h8m1jn4O9<(JdG@C^k&7Q#bZ(CS2Bi%ha171+-6)wtvOw1X|?t%YlYm@L@%zI zt9Ya8De#hNWNDID5n-?d?eJMRBxKaGez0=BwI8u=S>A2K{wXTy9j*(R2%7$S!=!H}Db$90WLIa`xvQK+S(I~)(T7+f!^ zm$j&PE_;aPNjA42Huo%>H@sZyGy+LG1*O8V>L1bx_;xJw)j-_OEdwhDLT`KA?65s3 z<8Q#YPDvuTo_PdO+o=TK-D~_7vW%~9GFw(MsyK>)mByAPiKex~1Hf~I_shMN_qP+P zX?vQ=a7K;h0`p!5#dv>&sm$1`oh~O-(Ik&(?IZ!l;1kl;=DLbsNjN4UGpX>{YG#lR ztkA*t-{h{989fpqNh6@8p=4ye@n)Z!+;e;vC+SZeqNU;aXrZ1dDrP;Kn%4qa)9q>U z_pKKm;<&X%TxOzap~CyEdth-J-+OMb=&*b?%$^t;O@o^AsqyhB@2bcsW{b1A1T0R^ysiGixq~XhR^w-&FPri6v-!h1(nc3qWxOyEG6v ztzkDTVbN})f}(yHrly_jh0kbf&gR_*Qn|{U5-d9qFM_f1k}PA(?5wHeX{KRznRvWr zvpcS~_ti^DAh^7^-sbAV23I(j7hkU>Pik^FG<_ORw{rPrA*^V0oUb#)aOc9F2Wk39$6xIngO{I@mh%I?4-1Xr5m zB9uTvA|MEefFdFQh=>9rAt6P+JyfE^o7l>3BZxL9L@Q=7xMeLaBoWbEpv7mTs1x>4 z%I1pe`xH_Nd=b%smR_z zY0rmJmf9PX_?1<@r>Ma+GdDC+vO)e6b#q1Kkvdph9SpKCgK%2wEv*+3;*{DtM$F!l z4Sp+1rwfw#UCqi|P7?W*j`%HBGbe2@qh_pcdS4!aV&S||NjS?=3=isc1!^lQWSV<6 zLzZ06aR+;yui&bogq&ybqT1M~N*@C@a@NyCa=Jlrp$*o`kLe0=ziIXg)MXv0U;qY- zn{`)LN0yF$b88)SE6ux55BPx}ddLJ8+z>}qq0`M7nTG6hntTnEa@Rnr8$43}rs4?% z7N45z;w~&{BXAd?OXEDLDU))!qVb0Ho!1K9{r{uA5XxhTc?U#m%d{iaY2;B&X zq!3C1r9eoLV%?}Ku;wDWjvKC2t`UcrzICsNm77R19Utrnt^G3sbROL)zCgf-VZsS3}uM;cYIigXnA3k5e1TN?8V* zm6<^YngVXBuu-MZknM`zVbeB900iBmP)gC2eu85R`HAkG)-qQzgsjc@Hwr;iME1O9 zZlPAHHo~Qn10iO&3Z$^T`KSc*QmF@9EPP6`8X75TXLeRGxAQ#_E0Eol*{I_zU{KJS zXkYziVPS8o-eq~{2U{$xPPR-!x=Ojdr|dsuatjzPg(zi53l(3REj9~31cyCWXm*cZ zdcj+|U@0)CNJX4Q&zadpd0IAINx{?2JkMlcV$*iDZUEh_&@3>QJDt;>ipWPSQYouG zWZapRh0Z%iM06jD*tx-sbB`f)M+no<)?#Lwww`GlA!|dUz1VNL@Lg6r!Lrj*8E7VS z(KEd0+%Efc9a7DbqoK;tvEha9J?Rc&Ixj->Ek`7n?OlFfqJ{$=YkhYRY(2pIR|MA# zq>lG3wYv1NipRkmAy0?JmH4$oOof|4IR+x$X-{kd^Ydn{8mg5XjhL##! z?T@x3g5h!q*>e~i5=)K2IGZC`cM*N<$#j_J4;5>pna=OT)07d-b1+iA8ouAW(#@=N zR?}(1#=N5LbXd(}Y3XOXy{O3e=&oSVvM8VoesOSb)pFSFQ8eM2=Qh2zA#@xuP}fsM zOmEsWwf^J(06uGP4IHMfDp!j~SYO|`*TF4&n;Z2CjNp@Du)2)rDI}3&)pi!ggl|@L zyaLkd$>acl8VA1Xu&Q}uMUBqEbKC+VZX8`;9QT`_xo>LAK`tjj)p?F1EZBy7UJ(Zz zGBsHKGe?2pQes$)&TMg>>l!ZSxa`)BWUm$CE+Vbs?0OR|KdaFPv^FOjmy79t4R%?a zX^d2HcNdyU2qvkfqs+(zZMZJKdFPO z3q@N}DqU9o(EDZ0z5JEfIC_qbF3d(|e69`5@DIbH-#Vf=>7$cJIqd{C`&=x%GMVyB z$)`4X(T(KPjAv`f=w(u^HS(hLEn^~VQ8Wg%pa2HLlFp7<=wOxb7q*}QscqWdHJOS~ z#|<+m=>wgJR%VI^-rb&^=?_5N{Omcc?G*(*9upQF-kptLW8D2*{WT}Vs;5^%npEwp zJl6-p_>YV+YFuB5=7t&y37l!E;%-;Ghi>l!lxuy5y?50{3W{o&X97q}WJuC9Ew-cJ zwRp`=7sB{AZ&y6gMcU*p8rYlI+uXEsV-?u#JE-__f~nN959<~6EHSen+%O$nPTmU* zXRkurTSR#aY4gKG@e!OprNOWQOP)KsTVA8wy-SC90}42|uGG_sevD;^HqB}LO1Z(D zF@@n(vd!5}CVO&#^Kb#_&!X<(Es8Ir0lrGwwPhPPkrcX`)?gTWBXnj4xI020sJBZj zYRU`}l8xcil+Z@Yla-;C>U8p3Dz}!wEbnu!){-^mxe^@nme*`vqIy1-K&mJI)X@Ch9^esHgMXBn>(Js=4IIVF54KvSzSQdNV7wc;owHy zJ>YH^IgjCV_+W(ARzEPkq62>`ojlg-Nm@75rkzIbBQt_4<_(gTT=`t!{Gj)27e!w) z>Z=UJxfyU8-hps!;y2UfWd$oK;{wO)Imf9huHp<~t-_)-5qiZ#z`Jd1hpD=zr56^v zmqMmxa{XC}j4zT#vA#MjJyt1425{L!$Ql4QJr^U2;uxe=1XY_ji-2_>6{vPCGYigP znZnltUw1{bPMl)5HRjxz+y4Md)612z$=S$7+|#p9OZ8b;Ra7sP&TrB+yVz{J`U$IR z3n}TT-7ASMYgpU3*lV|dD>Dbiae6sSbn&&tuDhdjH@}}Xc4(sE&(Lx=S zj5508nKmDBUU$uJIM)|;F^w9RLdbH))?{YF*V$;o*rt+N8nrKSLWLzwm4ziJ6sYQ; z1tCHOB-km@0Z^a>L?dpuh2}`W^k3c zpp;qTr$VeD1dOfR=oCpNwKJzCo`&KkGdqhVGO@kZyQ;jcK^Tq}#x`iOxE7(hfYm~W zcp$oh2@9#Y#3QOYdXuLJ0#!7vvQF3IVzTe9&IW$vJ9(o=Ot_DdMCOJX1}SUqvAR*e4_# zYM|_Zk)hNlGF2|Vwz`(>s)4y6^;W84?IJDe6~da@=$(PhO&N|?G=)c!+T!%&v$g|U zEl9f9i@G%Ava(S@DpaEqHdAhjJi?oz2*{wQFw5X~Tln1B7#jjiBR`{Q-DkU5NaQ*#{yB)nhGEaBkb>=_ZT+IW zzImmno%77{=^k!MzJ)x_?9;|q$sDV4+d`cP(GhPPQn+I>$QaS9jh5#TdnqvXz|U#J zFT0w?z+iEa)d$&bgT-UwllJv)a5rmvty8Z12hBp(C6LLUWE*{76EFMAX^B2W?x+m(>{JqQ6IA@6H zvABMZ=;{Zz6ONDS)=2SUEq!PRa9;RDa|$-xuUftB=5gAu-eM)HWP?8?`|DC zpUk*_HRx;{#jL8a-;&nnGE`0k;n<*U%>=&d61rXotf0Z7o=i$Qih8M?mowpU0fS+1 z7Us%_06_-JC}Lb)>{n8XsT{4Fx*Sr5vES7zA)CRk7x*o;1#qORWVR+V-H;F2>+W0y zUK>X-1<;1LY97w(f%6GXHZO;>B_(O8ZT*U?yH0`IkDA+9*iT6#L*4R&%?5iWB~cqG z-2scXbAjyx_HyK6tz;m^V|9a$QGaK{RohkwT}WC*%SMLxA#qr(J6TxgH&F3^CFUce z)b;76jz^4f7Sv)AK-aK3oC`Phf&NP$gW!@Ws^@g%wcs=|`gOX<$8c5&Dl3`Zd(FsN ztU5Q+7m=7}I)Zf3Z$+s>$g0gq+T#7}ILlB6M((&O>Wp=J6MLQa2HjFMX7>hMTw>D`musfpsC*7IUql>Ygs> z^d1Ch7(jNTGsy$NZK_`2^3l4n!~L6Z$XdZ*BNp;j@w`Ht3!tgQD&!4{2+Q1h+mP{I zOBF2D+3&D1$%l&UXn5a?sCZ(Py{>AS$%oL>vwL%K=r7HAJ{wbCkMRuk^`u21Ym8Y> z>aIqk$6fqZEk#Bl#8sGvKP@!!UB%9RQ<63f18?9J-V>5ov54J!M>lc9kstEP_*2Ul zZOxe4_hw1p*nMTsZBv9~+zhvO#_Ml{;PiCW)bTQ$9?QO7=7LGKmp*G}EWxq}U>&5c z*zyZ;fZ?I@mPsdl`n}fa$RbjTyqOg$!)T(2+UZ@DfSdFk6yq4CD}-Q@O@lPaJ6hry zBzF&YLE=7ZWmAR4TZl!4(n%~`gX5^Jm9F}_mdEDe0q_IGZ}DmvE2xb#+FBc8!q7Xm z=%}4j3RLZ@IGzf?F=35Q#hgn~6Y)Bj!x=rKgTi(4Vgg6Tcpo)29h0@eH z_Y&H{qoY=L24J{m7l-=2Jaaka<ZpvdTh0gf|es@=5ChgEIgLW96g;5t~uV|2)`xG%M)rE=%tOa zHsePNg=QX$n#|cnTt-J^bKFOPM=Z4e0MT<(MGJ+C%d8!JK^=5ltj+a0hrwelLmXOf zuwAYKL6Ue6EG1fH>$6C6F_jUnIA?u5P((3yB`=UJ7wf92AB2Eo*(2^;=FY#i#9C zPlZL=f-YtT%^n_WUD0u!i{m@1nRT+$L_U&Mu>97Zs~Dz@wuRlRiQ8*2e(4^$lM}r`ZrI$>z^08zlhX&)pbQvg}YfC{{SnJRe-jltc^)-6rc#QD+q|B z5QvBZA|MEefFdFQh=@o;L;(>L0EmhS2#A1KEbKOT3}&98<~wT?pR?2~6;(8StxFh3 zcXxR#CX+>!n@rlkEZoH0xZJCV0xe@`CnQAxrQXS1<^baC5{$U(**5Eh+%DsW&TI;d z^o#|B_BQaJGd3uQsyYEis#G8)Ku$;$5K4p!6oOGgC?J&xiabedy z#(hSW)R4RB<`%g6t?IY{wy^a70I8hJb$v1-PN<2=ZJeVk3#T;|Kp$bcxn*N@7jUO( z(Ylp?3yjgwK6!M^GZD~oT6ewAbDr(oZdSB^Qll|6akm8N? zni9w>LxCq|zt6|Ta@<9SV>DGpvlnrx?EnU$rr=m?dMjKr##Pv1Y&AsHQw=QdZN5kF zE7GVdXfd2WJWh^yWNn<%FYX~SsTroFspRi@49vlp^3_<3K*_T?+2uVoT~88lqj376 zUrPj)GyvX68hg=>qo`Y40O2yz2{7nlXc`+gywl^&Q#m+v8E$cgmk_8KVxy>Ze8`N2 zkxhkSOm0?Tvj(1K%g_deNb^*4nU+(5nuimOq?|rtZKbSNal;tC3x;73P(F84$_8mn z(Ux83b917+MweEljgM(-njGGD7g^K9xI5UUwjEVjTRJ)_%6Z0md83(~Sl~y=Q;*gG z!!`7d2P^V9hoKTS2?SPYc1{@f2NKP6p7UMSjcRGN6|X^TK}q;Jv-8{XqX zs9UtLaH%Ak)T;%7oh(&3McrL~PWOc7d$>-5FhfH-KnUMi99CW<6P*umj|Hya>0|vH zri{6{hJ88vZdtv%WpOteXf4rstZmhKzVGsSxv$iJbCu#6s+M7Mc5#y+wX%)1)nidM zD!LfVv1EIgFSWwj;`D8i&Xze#FL2@2a}i4|B+iUTG&bE`NoIzH5`Ph`#^Mmd_LG>g z_RVegS)2tVlUGSQfec`42Z_J?Dl4LGOb?73bMq^E!|-~o1W}gdc3?|vx2QWcb4wE+ zg|no0w|no&Q*r^g*$6p_7gUqIj-hr@;N`j7`Z>({d9z%wNC4BBAMCa~V@mq0E=m~c z-vjCnOwBfMxH~IekD@HWJ5Q`!T&z}K`cS$@W|uK`yoRgEW9sI_J9(b-gwk-r#{Nb= z1B20Em}@BLq77?6&f+`IcT?iHz9Zr2{{Ty7m%Jd9He%7G+;<-le|q#6I^~TTw)b&A zCFS)sHMs6Kh*wZZT~7>!q4}&ky8+ihbue;QcQ%r{v71|8ONPC<;AwDe*%&uIXQI#H z>9~g!rtN8PolC|^opwiS@2>vkoxpq`Yx_KF8f20+)^rfRT;Jk%hd{j{pfQ1-;bE{* zJVmtKk;zv%t|Z4Wt{N10hAzn%X1zI?j4o?FvGK7Wa{HExgS{ZPiZRNHT1+|g_WBq9JD$b(&}bFX3eUtQO8L~2<@PYq^6 zQX^=WCdJm&k9xu3Yy%CzspWkY6Dj1L+0DzHVX(O*`Wan#%$}R!2 zJ+H7CJXF#!4O|JbzazmpK-3jnot=C2S`koCf6fvI%rn+hdmoqw;MCL?3SIMt8=>bApOGX*+!o;nBJyQl(OYW z+`kdQ=s0>vsxZ1Z+94&fXBo-1ju+IfTY?`~Rff+~RV&=bNJM$Hu;*j%UZ06@H7#`! zZAWJLL}jqN$9$&Ckl@}HubaD$RLVVCT#Sfl90y)Rf4bM_Lo3wSQFqwYI|PRxt@TK! zF^Jk+`7N8KfL(R?N2A^rZWd{)pqfda{{URLhmRK9Plzi%vl_vvBxNlvT`ZN7J0n=v ziw$}I03}6dtUa$1)k~vE%O7+sY0kA@lSC$=9m->(;eHc$XF*8kO6Cyhb7y%S2`5i= zmntghX=Y01y>(c16@xhMXGHP%%I&*RBe!ex()_? zjcYmcKN)RMjMfWMn z_e&eqFSy7-KDxjvp z0#2wlD0a4~xw4A^rpC$!%0dfT$zV|{1LG|^f)_to35sV6SQXI%u(3!4k>&$Xtfwm# z)Q!=k2ntw&LFA!bYZ`>NTir^4h)%-VrO4E7qzwwBXrPN5oGPqH-pS-<0cVl`)PMk7 z%x)}rdr7*t#dz;yhBlfVCZ6HP_FK>5uyDK3x;1jex6sgWUMO)qLeZ1z@RB3(>QCxAI)fh(#rjHNvWK_W{ny=6_K$E8W75^_hp#6s&ce;M4(Z+n=6enQJNB> z`WvYp*SQGjT#c@K!&oj!unVBW=zUqDK_i(x?jFNp)8Mc;dN#UQBs;JGJ?nNhTD7L{ zWL-`+S2vg^7EemyPm6%~b`>oekMj@3ZgK1mlNgDWbkYcF+A~E^&V4V`E-NT=NN~72 zg_(llwOA~+iT$&4(ofo|#oE=BjhvKn~nASS>~>$G0?$Hvwl$Qy7T7 zvNYRG3dEL3-vh4TL$q9tZg(P%JBX_%Wkn`f9{9_<_SmYc=^>huN3zj4G>}5MjL^77 z^2tbVv;jLUOjR%J9SMEfM!(5#!CorGP5e&gix`kWG;d%x0{bqzfICl6?IpM}mpplG z_$>`pAFa;`Xv{;cm%(;eU<`C|fCgCdh0?=2$sDdB7s`>azTziDrq8w`c*_u8Nh9g9B)U zhP$#29vUuwjIpyx-tQd=Cih-CtxWZtk@Q?OJd_fCMaI!mwuoWTz{XQKhCa=r!pBQl zdBzceiaObh+2wRn7Dg|dI=iR5qp2wx=s&ziwT2fDeXHHMhx61My^>MT0*RtEFZc9nWUhO`7Zfr=&|wc8N;h+MKqMXq+!7JVZ;mHeKu6N z(`zlYEKzs4$yL-piFo@Bs^RElo-8U?ii)?k(An0wX}-D+U2o#O5zlEl+RaulnhHE4 z3}zoe3t@?u(W9O2NjsC`RdO_zXhpB_M=bkvA?Q`zIy7(5LxF3F$W{7gwT#WKVm=CQ zoyRW2achcuMP|sa2$c^t?-rt+In_k z*tK4Hgm-v(vm+^f*ZX9}&P0zh@IK6%!hTs*#c%ge=1DeJWrfyaq zYP#tLb8ttwdFLM2nQC1D4!Cdv=jx4q^|e9`wRTlfN-=ghId7KD8h9$g$bCEDqV41s zbi@XZKG7 z>{cX_h>IcuC{myWn}oBwB!`*GJeC3Gw%BuW(Z}L0RaIS)eFd${;_7UORq32bz!cVB%PE6 zBk06+@ty8|i&k zkBzZmS5V3*N$jIHdHtt~X4Xe5(hw~+>6*m-k^?Fhe_RaTvqmgdG1j(KL5$i~NN1;sND zLhF6YS-O|J$oEM7T;p<~Wl9+%V!TaWWZUQzgg_OBxhG9P^ha#!&FJIC%a`zo=TE*RD#=$?y+kB08sCD z-m;yt#j8I;?|0s;!~IzO*W|km^`ZA)lWm0J6tuWR44K{QyFe~|qPAFdeKgN+X8YXO zU0a~TX)8EBhdfMd#m_ycXM0DxeyW&oiaIzQAf7#4uUEgVy(>rFlG{{Sa$qn2l5 zD-?)K3j^|I9F~cca8pe4GZ;a$Z0@TzrnSy@b;B;fU`W?jNi36PFu>s83AUqRu%w(; zyBhLon*4pR;mu@>Hti3yy_WWrlN>Gv;_cU{T!$G*`DcVMmt}6=_10kxb8z}x=T?Zp z3!y_su4v*LagsMco1Mr|D&(A{{YtD&2Z-z zefCu|3}>vF97Bsvf=qbRkV*t~yGOlIIe!K3xWp<}lO?jV0!rqk#$FexS zD5sMamP{&-5)?5t*=j^h21hpAZ{7Y$!h9`Bg0NFkI!T!6yICIaH74IH0I;ym7RIUl zAkB=_x*2JvneQ^S+cCh|q#bTF9_8o|#@Nn*wg-^1NjqCMh01AcjJWc$D>l~H0mv(C zY0O;jHB+6HT9NtyZnfm?v7A-I&E0XbwV{2+s?@WGKPBwms+p>UL7|ZuE^S~|2|d{@ zt%<2<%ajv!h~|*jXl_=>v6-_tfJoF`W7OL18dw!=IW@V2k!qQaYYUuyD-YHhD-MTU z0?DYCJ4+Z(LPDZ82DbLOBcjePTeAnXkyv9K*GVaEg7-Xv)#DVjl@!8pD7!(*_Ub&o zOJglGv(m{7at4>S#`^BK>1m~-k<6Ho)|(OI)n`rF-7<1!L~Kt*vcl^niH-%K@r|{y z3sl!gXxxqGQce(S}JN?wsdCZ#C587;QANItcJ^*cEyIv*W+NwH7R=RpxsA6GoG0X;^opzW+-{|0<8>ha z09B0lN40OcWKQVt+94Z1SacpIs?uDNT;fZP>skw&EYD~mZ!N0P#%)D_ufDsr33i~KnmY!XUtGrHde zwH($i7awI#Vsoxo_Y3v0Swi+&Qo52jo*RsTsZM547C)MO{=1m#WQ{m9SG>JrCTnHlcFNC z26thI9@3Wfil`5Oe@``>*JfyNAc7W71&Y$+R8M5AXp{`ILj8aD3t3r5J_#XoLGxj! zTMbne3#`#087|Rl;;)U>@={3C6r)yV`t9l#TrVGO5W|>}eRNJE!Dwo0LzvM8fDR03 z0R9UQQq$qAW7#{2wSXq~_%3JZ$!WRYZL*wFjMNeubZPc_t!*_OFkym50_PGzzN;om z*M~ft5&N1%fcC_tb<+8pCNm-OTJyEVNWiCGr8)Ue>?{0j8>8Oi^NESZ9 zTqLGxxTZI>Uh|8dny&VQA6ag&;XmcJQ-qI@2%nvPKn(!%yOM_$b&5q&(@iTR{`9ZAMEI81K^98~k#;|^{b2hqV! z0RjBWjm`WACDiby6;D7Ria7rOtHBs#d4=|{2hT;L^ku_XmIP|!#G-^YK+L2#I61=i zBb}^9>$`=3XgvHDb4}>o(JFpOzVZVywCbq z04u4oxfGCMgHy|@#HE_$%@@sbu1@14#fi)JppBq_!LK!v?qF8-Q^y`@UmHm~lWVSj zh$&!>Q!H<@-)pz8irM3|Q`O=5V~}NO&6dlS0K(GQoJqcxHy%qmZqIQjUNCq}4?P9&ftU=T)r>=$+^f}K+-jLfRWfdL=SmGm> zHC9%F*RxLOI^UnfE^ipeYq*kQhfzfS$)_;^-q0OZ`w_uljn0mWk|@NWgOPx4qXEF% zhQLdWsvV=;)41uX+JtGStu--ocRAb^I=mAcjweE6nrO?jmwPQ7ylz)XiDM$7oI@dr zgd36_xm#Ho1o3uq#2(+8V=}&IM6YQAH|93Ax++~uSx;Z;#$3|1*>Zz>u7WNH#3rO|U43mmBc5``$F!1s z$j~cPa**Yj9(lwy8LM(~i~t9TSgs)L(R4gt!xdOCH8nkqy`#fJqnWNB4f!r6Cww?##7BW8-y;Sm)D!2%)zmDBJu zkE&HOlVu0u(fpS%x()_)r>tjC*L~qcwl*;C)e+REBpa#Zs5(RtsXX7zDoGJnsQlKLjYAfk|ed1X_5VU|TxhtKyaV{q0o2zLnvr`c*EEFMGSZyh(p2U3{ zb#eR^@{)?XH7V1S<&_zD9Y1u{NGv|D^H`XjPps7D2e{oE{MKeIQrOw*u-Iwdw;|DL zxh;C_ePvi%-MVeCLZL{C6I_Zzi@OIc?p~ZA!L2}BC3)rA4bG8;Z+#A_?~9pB$Z;6IoUqjm;m-A9r~cMlXlYah$y8W1nAfE!iYHI1 zL+suP1vmU65;man+wQIV@lZlSPTXyQn11jXE3$$2XrqNb=_mE0+mEN)- z_~Pi}uxU)Qn0&xDv4`sxOab4dCYY-DyCH=wEZK>c@wZ@Oo9mIgQBBKx?yX1$^7CS4 zkQ=SAGd14H;-Sa8tXVK^Y8qMc%CFoPhYc4Z7{_t1_8)oKBeN-_lw=}%Q4B%QDq9Yp zvQos@XiUNflm62HPa1y%$Fw87Xj#x(qSrGoozoNA;IqfB+}0dU4&1A`)C|^5dhKvN z7>z~O#!AzwM@#k&88(19-yOL*OjLWrc=AOmiLwzN@&GbtTF&mZrlk$55{DfSI}7Vl zp5pZ8?TDJ`QnUNYEa>l_W}-wzb*M+C22v&S7Ieu?vs4X^gU2}VP04AlrSTu{&FzBB z9gG&b@1@+$RW46g=|;_Sp7R{wWA=(ns6@3W8k3C<9UZJ_1dF{|8Kp_%E=@Hs?dm+I z177ar#m%l$1E(71B9rb**(DMIM2e3*aK+SM4GHrD8EbV!)>!`D10hKe`*MG?!W~o7 z*j;3R$fGRTa?@~QXGG<;uYh&~;r1=_)@S?Q0LS)h3y)Cpk{<8jsv~EhB2j=0T9;We zZ5k|^y*Q#X^kG5r?7_~rl%nBccG(H9ryJ4Lo3wiawJ?)$ZGM{2yo@9W34dpdO`*T4 z#KC4QRx`S)WadWm3SCF8?)_lAvpf$4KbI!+Yv&4VJ2b8iB`@yXx4){S>t*qAPhy_W zx*sO;ExK3vKsTm}N7ne)d#0zW#YGLzL1||!W?Q@Uk1U{p$(?E+70VXP!N+!NqT@~b zwGWre=9=YQS3OgZQs&m_u)c3Z@R>W&13gFh&YIe+@ME0$weSrNU1gN>q&@XBL=6G}APmRuA)9 zazxxzpX8_*zWK03a{xWEOs=ofyU0xzptwJy1JAcpURIxTeII4uO#YPS8_dW3Fin*n z9R<2Hy(cd2#abiAiZ{vee$1K}Y8d)PB8kvo>)cRFq$bgE zN!LuFsC>lC(Et`x(3VkkgAD|BtnN_l`^p(}%}UyAFVLO-+h(l?vdlRsIdw^{f*$3mIK-Sv&V!0)_23feM+Jw7g>EA{?;8Te?Q|r}_Oiw- z5qVeSv`nWA*bT8w+mw`!e&w8;f#A4GrR0(>ZoLxb2V2|y{%Eczo}glnmyH4(G$`_e)D5YoBS=S6E;O_#?scl8Hc>>R7 zAHILt*wKW7x;`S{A%Iq=xl_L55sDPr^n)YJmZ2JFot zs3QFAIkuF*I$(?7kt!Ur%!0r%L;DBCKaC!+GPg*H*pZ+XJrQ?b_OLKcKa!~RYKeip z7S-u{I4!2+#rNl4`&6lU%(UEAB^;M1syn5#?zy zf}(lx8$}^H98n{SZtAVn-z8&`KAY+g7LAj$2h>!baQLBd;Mxrqxr%8+)=RN#tNq{j zBpD*VMm5ZJ>9p~%BNDR;!u{s zAZB6QM3MD@Supvp(Kn+$EvrF4NVONAD1KA-pAc9mm_4@)Q>xJR5sg~WBTh;PHQo*WF{e9 z(cKjdMik$`LQ_)PwG2Qv@Q9D9E_y-=D_~N{%v_TEL-MRQzFfTP+7d=6*T#Y#;I6*N z=eKH}jR@rLe-(Hpo9={!?yma|R#p1lW;Hg7neHAh4&D(F+uOk#^9drG*=VTt&&sSR zT!I`dRqe=~cy6B>YD#9O=OuKyxLIvOORAR*nP2k1w_5&1_*yD?PLX0JMp&5cIJ2&m ze%`Uh(cEkXG{p-tt>=B}X8Ed^o3?%>dDYII+5@wD6kE#_*S+g-bcoE*Sly;HS zx&x>C3OZpEwGT!?w5gh5vX?67gE=89z5S-eLh7&8D4f`==^dpEMCfDSpWGe@y2m5) z(A9NzDW#`FTDimt-zWpBeOl|sRR@AJ%-#_7hJ35)J|?4ITjx;rm_NF%el}g>mlIAB z=ex(#@j5nl6qJ%}Hz#cv8tqdM%KFRkv@%sVwB_ZnB|$}d#-y=*uZ|0d$1%P!RDoeb zwS@N=wtQTbDAaS;6p;zY45>hbiD74WA$ zafNTJ&zlA_+g43$Q5!S?xZw+PBMx}IGFf%>1M!0{K@drAeBONRpSzZ-M@opc3|3sr z2XFq62>;%FDVha4#U7|m2n0|>6J#}CA zydiC(ns~o|Aj;h*SmXro*?iVXl+E8QCKBRB;fkW{$1>~VG1pLIpTJEPVbJ_I?Ds=o z!vA%-`=Gyd&yR21aqV?hpEATC?0!2b6F#VcU1Ma%J=VUP>NbofQ<68?bbIU+e|!aR z?iHlkOukc($F5m>8um@sSK*MPN|va=R{fb=9iR~Gj}H64+I!Z{~wwb zfnRm8Rc(F}Shi_axLF40LdEd|-bwk!8t6K(b3;oFR*#XR5)SpM=u68bBHUL3+QKYQ zm$yMeNY$lJ5TS4o$v7xw%V@T1E7T%hPRAOwQ%_~VY~91l^AIvNmlX#6=^+r9c)>t; z;(B;~97^n`YEH8WaqvD9`NHB|?xccwC@V3V(cI^B{R*34AlRe)Qsp##eDCnbeJi@s z2})znq7aPt_}S8pg#U$UHY5AEV->9I&8e^X*WIQ(ss-#Vsi&V0&7wSEl|4(kb(~q3 zW~dvH^!sgY+@30*Lzn}{Wa7hrWK5Nn8VDu91$%zFhA-?a&oqfWc{H)F5`|ADbse|x zkt|Lz<%@^A*Od+ejz1fyLs{Bi+)g82yZ7wM7m*sJ;KscNNbrPj+z5CEm)bzSeH>mu zKG->SNFzsYlQ_5R2WW;ohK6#4uXqYjfp+Qy+|{oOQzq=h=N=du4|Vk=y1kfBb6VO! z5oe}THH{|}7T0828EdaU^qFfAD2M4zsS~V!<2#uv56ye6`0k1K9MJn|&2;; zt=PsLWT&U{Ar*0rPW&9G+TVjdb7J~gT@RluFG_TBt|Zgt)NszoiN;NvC~7O&W~zU_ zmoR_LW_W5ngf+p>oDq$A<82guq$Q%b$Ko90A-|j1f2WXdtVZ*2Fy*})5QrAS|71zI?b4TzAR%1Lp+=;a-6J- zUD4YNWg@+{mEM-{3hZdFU6qJ^7Iy?gu|wy6XFq$gn8UtnUMTD;wl@ zU~ZcCTA~&5gVa9_T?PrTF9!3)3~O#IP{lZPS_`OV&Z27*P8?rXXYMtV^i}X2A-D=F z96r6cUis0sxZm`|y0o>E2;7U7hv^&7+54ZP#LROyLW2^p#HUCHiV=F>^ ztCsFvBx3|40$~|6PR8!$%O+xssKJNsk|fIGwviCriLA$c?$glT4HJ<=zKKs9u@~$; z5SnFY8pT>tTuI+B7i(fwlCMp9DRLT?Z(ax-1@P7kR&d{8{l_fkbPVg9+Dk8SP5dS!6XPGv<544W zCdFX>BeUO4!#t;Q)m4pMk8$R>=v0}t9tiSUrVJy|7P?y6DR`Ptc&sYL?PK0_Xy&^8X|kJT)jsU1+NQ$+`t$EJ42|26 zZ@kwR7N4wT$*xP&w3wHG$&5TA*N8L)J&N^ijZ6Jjo)TPh(v4Th;};2mH{3XSS$Dl6 z$rM3RSZc76N=zqQs$kK5HBmN|X-#IYHroKP(>*pY0RdzV%_%B|r2wi>Ad699Mwg-I zUf?C)&aJE9;l(m9uT;84X3aji5@7wHe7azhnp!gLd&ROw0PX56qVg z`{-3)3XEFIKE~7pLokll*mX|uVs3XaqYJ$y?hsh># z<>E3}5v!voqCO*Gh&i}II)f)4j0IKQ!>gf&fXM0}TG_nAO=BjhD3qI1Ih@4UuyNS+ zTL%6jbP%WZcTQ3quqI~q$gduz*RJueM@cp1yD-kYQB@P;ZI~#8=S9{{2!F6X4Uzs< zCHm#d91=slIzJ)uvsvRc0cxoRTIHC6bCGQO8m?%!k`V@#J@p?GAP}E0H*|sV>i*Di z;rO&win8lKL8y6ry{SlRUAt&jc=Q z#MH+q__(I}0c*T;@6#MXosuYnX)um%9S!y`t*FgIJHxnc+Btk@xf9c8C$@Iu4*iI* zT1hLyq)GX6nhSbpXte^h#e%WOz`|Euyi@je!3NDG8bv!2ar~k?j|!+o%-ckL@&^mm zdrEqXiI~-rrC{P6~Q<5=K@+Py0vhrxQBTddJ(FIm_dw6np(M!u0X) zKmDmP)74A=xaD|xW`+QJ;Zx|Uzk$lq!8-XXte$~Yih=oot^oku^b>pze?juQA|ooL zQLoEZpdSX~e15T}F(8Tx{R=SNXIcQ)TG^m)@AMN2m-FTuHq$+8GLciFmon(qWz66D zE|=IzrB%k{+i=!VOD4oDhBA>s9xgK(8qtbEGHyOkikv&IAu@cu#Skr$@LJX4fYG{w zdPg$jurs?B_*zj{jF#T3s=S5I6Xu-O{6;?RB6i&}ddqs|(5=O>Zv0AJX8wxX1(uUO zs^RujkV?;V!;A>A9~?vefV0*yY#x_Eq<-M-mmFY8>BDUyjeB(s9lNcJf-RlDt{m{Y z9?{#KAO`B}%+;-&JoH8bTL(ig8F!Zr2SJ-&cIov?7M4wLo`%TxsI;oNu3k$HdL^=J ztx%#CH(jBy`BN!+12Njt7hgG=#p>$!E?)ZqyAQ^}{5Z7i0SO7EW34GKuyvXnudwGW zbCqc@4rpRUaKZ<6K+RDx4fb)4R|}pEZLhwi;RR|dq;^S80P@|koy%S&x$n3$(1#bF z4YwUW!{4ZXv%eYrIz3WZp;ame67VX1P|Y~TsGpZT)Y(}rP{E}+`o}MK%D@Iy6Rk>j zf|}w!?hfa;z>)DJy{Euo7pVy}(u;JX!Ay?sNr^{yJ>&FhCEm^#v1un&BF6{HlU{h4 zw=~C2SV1=5xq?aPtnH2M9~z=%QtZO-9GQxfX$$AvVbTuC_qdls%0SVR<1AnzX856X z=guupzp)m?^{w7s>rx1blcTb}j5n3c!x0Od*ya7LPX^j}qbdpf>`;N`Lf3sa4QCf> z<37U?BImN`@kNV`8m2^Nm>WX1mz>3&Ehqp9a0{b$H&l-4Wv|Y!-LtE82cPYk;tc3S zZF@OV9WQ|t7S@naX_+u#okt==1v%Kd9KckwyQ>~_O+0^+(BC4+7{a$6rl`Z5W7%(j zMZ$?t4~?=lwq-m-B63==*w%7+o6JRnWm9&&E;pTeB{rC%*y0>RRza zmTi-p3p<0{+Sfi_L&#v}7$zMcHbR{spNs58riua|Qm5+% zJtI(q#{mQtXJ@yv`+1J*HPJNCItkLxcdqf=942U}jun}MFo=-=pZ0C}HBr=7q+tn4 z3?dJ8#lR#(RpNvCyon~ipo1%u`o}iC93m#JRPC9N;joG_P2w;wCB$PX3DB~!WDQPc z7k70(-8@aD_XGZT@mH2@S zW-d3R8Wy9YP+QDbQV;6O^dXM-7-(Cst7BOmwMV+$&%#IEoF!YKS9}rp#zjl@aS@M) z3Y7q$3hDHnf;=)d#-azK4EdsWHa_EddVlb3=<-HPxsWn}qW}|J#Rh{($*QiUs7&D^xz?QGhFP{WtF12RjZd=+Bp z{T0o}Izl%$Z{$o)MqJa@$&f7c#{Jp8RE;Q zNge`N0PYC1AM46jeh^k`S6#fRv7J7~tD_tAShSelQ?06wo=7P?wS#s{nUs@N!i(be z6KrTTdW6yrm$apcW!YE+{m^$xt}IUZ-$}TT7@LUs;6^kh3=DQ`kQ~Xi)#Rt%<>4vy z@KF_(989)R9DH-4Dk<+aw9Y_5ESsbIXne2_Y2iI~>fe@Q!6?(uTUvJF5CuY%SBU{X%pVo)?Jd{kpH1AD*+%L`-8$ZA> zLVC^YBwQf<7(j#eH{fnlJpWYeTfX}u%~k~oUR#JBjA=<>&-D{F!7SsvwS#QU75X5G z@8XVTGB{B$A&7(bpO|5o05LLtQ>?R`F4gl?5rY`m{}zSoMgIKnw>zFG9^b9_Y^Kj`d~o zWy`Fy2Y&(4bEAP;{Hz9QbY^rlB3bMtgqkgRuZTP~kfR^!%3C2F(r#;3k#HNtR2B!x z5m9K;2(_helIO_l9N79E#qV4*yVktFT1EHS$*7sN3vFp^w9#7pXg1qm;y4gXU!O5} z6be=9fnGk4Vlz*Y64UD_*=wB=sj+$A9B^-XrdG^UY|MKu={d(NYF6?X*m{DW-4^G@ z#nzO4(m1baGEMF&Fez17Hdq||NX?Q4-8lgud5S~_&?{3MXQmyndXFeqt91lqAd~ME zHbc;Wx;rmkcWUq?KAg{mPeD%7aGf_j~3eHN*hy@>Psl zL6rqrT_&;d>?VJdHgZz{is447g#Z;WfEm*?dnc35ee4Qj?w&q`1))Yqd{%uizfu&c z+x+0?VJU70WvoFgjNKe>t^z~hb)%=BbrC^Rw)fEUu4nGH;;rGM8zOfWv9|(o;0G;F z6Q4d3<|zmxmm1{lPqa}xGctv!{?x7(@?61qg>h}sIy`Zue_?EK;NXYItT%UZBomP{ zCoze9CeJb1?xF~wAf7kjh%w$Q6V_)ps8>#>!X}Uvy);``S9!2XtCFH}@g+rc&HjkQ zN($fhfoqaUo*a>^fhUUG6_zI6g7+IxcmUsi)7YwU%LjP zuw>b&KlC*Grnghrx1xwh*NZ3EEy~xt+qBEj6sO0WHpDGnZ{@doC!Y|olZB5+IHg!# zIgTY(SXF4|N14p_8w5>j;Ks*SNJkNd@x4fNQ%eN|5GWkJN>ya!&_!M7Ul;^lSKwM4 zl15f=b!OJ5@`6uY2k0Gg8j z69U_x(Je2`qlAd4Vi$$Q%o!P4Y6cZPVQv$)(~G zy`3lXvYWQlGIg*dn=@W28*rEPt<6kZe6Q*+$4kWjiYJ71{k2CT-=U;*atSw>!;xFB z6rkf8tAM9It$@iYm<)-ImGTG2*E&!^W9lA)`cmTkCXDh_)84D1zs z5-_>>W$x;cqx&cion#*2de4HGSmVGcfM06ZR@t6-v9ek5Sp^{=puS+pQpb&C1j*kP z&y7bi#p`4hII`3+N6V0onmfy`ZA&DZQXs*9QjtkjH^GRYrx!Wnf82QQ84`k%`Y~qC zD6s2cR&x%05aEXyL)ozq{NM(WNRq(-mF#+|)=u6B2%f|R(e938ekaF{4GUG@MpOzf z1ioy)X|R$5*u1Ve!}A`+kspw|>QPm!AjY>kYUtLuY6~RyD*2@)`kA#dT#~W8D}57X zIA@lNB=*X-zQaL3tBp%Gv=>x!Nz!CyCCF5{5%G;EkN3>3b-(#h0vep>X)4WNDC;~O zLtH#kNQp|eg3<_^K@hv)EEg1Lc?OE~Glx?Ds7{=kK+n^Kw~;Fji>r*Js)vZ2EC$xs zp$5_gHf)15rJh!eG)Qxf83}^3_aOk8n%ZKG;nkeMqVp^&lzs3~ctCX|e)Idd2dNq% z^S`9RsDsEE($f~4KCQ)gbF+3A47i(VKR%X?4Lor<2}!xMd2N}Ib4*2eTz%>7DAFIYW^;lJX9kdyVVrpEH_v!$+1sO}Za9G|m}k z1PEqdG^VH$IQY5kTDeJQatE7`t!u&5`elZ=YwjDoL}zQd}| zo}9bvmy^u5EMp5${3LMROEosO26(Ed3AhpAsJX%j8KlQbG&F82e|fxY4xjJLm&73= znAOTtyg98tX9yR?vF!~w&6KgHExBL!N!UuYoEMhc^m#S(E|pK+lzS1%-rooqn4v$V z--IZ*-aCdfYBvisqJDhhTFT&BamcDH2vD}Vq}lZLP+g^B+s=+^>_Zb1uA;>2eV+JP zsVOyP2-Ph>q37H>(61a-Zmth{OFe2*=|*5_$X6}bt4_+fB0_3=GOJD*g{{(-D()7< z4dT{>8jJJkDS`JN2eIeJp%d`>S|aw|S!yv_Q;B*!(4xw-sOT)sBj&s>nU&D0l`FZ{ zCE&v3Y1N?Z39==OH)h*FL5`am43*CTP{kX$}Qw8^-oEh zGft!$;Oom%ESYA@T)FmFb`@bd(e*tWT3QVw{G~}7Z9H8+mK>qZ35t!Vh>2yc3=NyU zfpiZa(Y%(>*9pw)wxa!8rviPS1khx1TJsk?T+Wb|_uulXMp`m~cVtbe)ks@C?LKA0 z7h^3RAbeGxIgixx0gQC$)d4mGyH+6n#?~@a(F=mu_ZVS@qON~F-*a^RRZdBbX^IuId`h412>ypPdqyT?OwMCbDS=|hkCOF8$qWsz># zIe0RH?hp@e^~+Q;R=>f%m>CilZXW+%)F z7$O?RV-*Mpst-#atknx_Y&I6fS*+lcCF8R<^RIka?B92hq z>gEvQ$SiUV-)(W5s&wD?7<>|_*qEZ(l}Zv}P-R3GOCf26G52l~UcaVUb3{zdvl6k=k0 z@T@uysMBScaX>U4KEAyuyI ziqGLyaAr*&%0NRG_mo6H+)?2^0LR|n+H}8Emg(NSq2}@IIO&W=N9^(%(bgApEyCsc zjE~)LPS9h2j4Oc-=hu^i}Sb&jD`jzU1a}gZODO zH#R2d=ef|UUM4~RZtpkX#gT2{Rd4=nOUo*H*c9TrWcv;&B;K$;Na{ZHE;+@lwh1L9 zxtdhcQhXmCmt6$J6z^OE-aQew3Nsc(U0o=1s7y|ri~7tOZ&x&Jq_f#)hv|Gm&3X8- z;C?1YU$d9U7 z6XC9V`AvHBi?P|yKCf;x8=*O3w3R^8^uu{B)D4F+qPCPpJw|hRW9jh4@3Tysv6~gi z2IFw528mBn^?S?j1i!St7*|%-Hq)}{W_g|20<37c%}OX50qO;*3Vp~(%)yO*zm;6~ zYp6Y`g-A$hp>zOroI=9Dt?vvP{pF*3EbDKu2%uJ!g_ zi>p&*kmoH1KifO_m%(1Yx`mNWkR9fm@7Vuiluq>c)%dZDyq_-xl7~~g_Wb8W7EVQ6 z8eMVa+bjLC1^JPqrhZ^R4niA5thq<%FHH4h9A*v1#eYinvT2A(}kKpaA~8Kv^$fAI}B%;vr0krkK56to;$Ed)n@>!_m9A%RU`b zpYhMK+KS6xZ7g1moJ!^;Ic#Q`qkL8#Z}zUqFF||GDGWzX&F|?LyEA?dn^_jbR@n^_ zy0A_PM+a!R2W+V4)@=6&%6?s?2wjLM@@-F|T)ggxOa?ddc1^4Cw)~kmv(Wjf=$zef zgps%IENpIN>jN=)20FNAup{rZB+)LIj`Od1Ve|cf7S!LLc8lT<5a%j7wmw_!j9)3z z{+to~^LwF#4ppjC%g|7ah zyv~R#=gm7G=JP0X*ZMI*Zq-5xVIt3li871kOp#wGDJgoD^*;vOMC$(tWMGLElJ2ia zj_*boh*+@ec-d{X=bYiOxB?|RV$WA6QZr5+PeSjK+}Y|5(3cjb+ahS`tQyldG~5^7c(2(=EHYAPCqP>XQ6XrriIkV7cK1Vper7Y zC^N5_Y{-M-JWpiNxxX1g?9kIMlo6%p4*v}(9lC}1jGG}UhgE*fNRx?twvmYE(CPEj z)$ZLE*3QKSNQKli$M}6eCKjJQSy=l(NzwAgRyFCPYcX(IwM*5c7Emh@S7!Fm;^2vo z!&bQ;{ODL=HH;yge64Tz+4_m{gIC>3e(%kA0A zk`UTXt&1_%5>XPeI&M1iV>3Q4;N(Wv&|I=#5uyKOmC$d(o@;~xe^B1YVOszu5EqKF#2Lr z9Pa0q%>|$qb|E$$s;D-zl%=IV9h|ZA)Z z21@Ce-RLv{Kh>athQ9qR4*0rjVaq$KRFTveR&(L6@9^$!#v}<{59ug_@E%iCs$D{B{R`y&M!Wxd zKlVDaQI9LtYIPC0GC$<0;@PRH z;=eC*2ljA(K2bAcH?}+j?MG^~Q^|V5JF1Vtq`j}Qy#SwQKrCt4?#+F9JotyZ6qmP| z)!G@=p@)Cr8z%&dQt*AQ z-5|CO=%fVSo?=pP~ISD(-4kQypV3Tt6M#{u+f_ z_*;^t#?`APn2i*-J8x3uQH8Db%Q3aK5Gq@CTnB<&_PLVo;S*-IkF(Dp>(-p z=E#|azT(i3vV>oLF-*pId%ZCplfQM4#i%jcU>Xa7Kle+1$$ybFS9*Kce+|BIwWxk} zbSbfZJ8k}hY2R%Ixd8eNc*-mP@+Yx{ah_MDV7u_UE2nEaAf=PyKRHr>|D;R(d-xC9 z*ne{!@Y*(#&cK`(m>s22&HoY$wL`Vjc<1EzMJm@1jt`2TdOPi;Rx1G}6*FRa4E z>F<{qgXX!c)i_L?Yy*Kn6HKSZG%Hdi$;Wwaz@@@Ao7?Nkz=i_zJ`y2TwRH^2=fo&k~PxJ6a6|lM9zyAsU zvatWdC4siE-A-%#c)st8NdUOdpK{A5{UkBb|DJMNgqBAot&)iU`eO1N|2rKfOas3G zYjKksm^hha@P=!IFaA3}{QrW1f9Hq)*Bkl&(<93NBtOJvbe41;n|`mqt&NSVFZhc* i{%1e#Z??m~hZr#lOegJscOCvSA@6|yGb2y`Uix1z`Gw{H literal 0 HcmV?d00001 diff --git a/docs/jellyfin.md b/docs/jellyfin.md index b6b2f1e7ce8..ec02f1722e6 100644 --- a/docs/jellyfin.md +++ b/docs/jellyfin.md @@ -47,7 +47,61 @@ It's not very pleasant to use though. - Select "Install from Repository" - Choose "Kodi Jellyfin Add-ons", followed by "Video Add-ons" - Select the JellyCon add-on and choose install +# Installation +## [Enable hardware transcoding](https://jellyfin.org/docs/general/administration/hardware-acceleration/) +### [Enable NVIDIA hardware transcoding](https://jellyfin.org/docs/general/administration/hardware-acceleration/nvidia) + +#### Remove the artificial limit of concurrent NVENC transcodings + +Consumer targeted [Geforce and some entry-level Quadro cards](https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new) have an artificial limit on the number of concurrent NVENC encoding sessions (max of 8 on most modern ones). This restriction can be circumvented by applying an unofficial patch to the NVIDIA Linux and Windows driver. + +To apply the patch: + +First check that your current version is supported `nvidia-smi`, if it's not try to upgrade the drivers to a supported one, or think if you need more than 8 transcodings. +```bash +# Download the patch +wget https://raw.githubusercontent.com/keylase/nvidia-patch/refs/heads/master/patch.sh +chmod +x patch.sh +./patch.sh +``` + +If you need to rollback the changes run `./patch.sh -r`. + +You can also patch it [within the docker itself](https://github.com/keylase/nvidia-patch?tab=readme-ov-file#docker-support) + +```yaml +services: + jellyfin: + image: jellyfin/jellyfin + user: 1000:1000 + network_mode: 'host' + volumes: + - /path/to/config:/config + - /path/to/cache:/cache + - /path/to/media:/media + runtime: nvidia + deploy: + resources: + reservations: + devices: + - driver: nvidia + count: all + capabilities: [gpu] +``` + +Restart the docker and then check that you can access the graphics card with: + +```bash +docker exec -it jellyfin nvidia-smi +``` + +Enable NVENC in Jellyfin and uncheck the unsupported codecs. +#### Tweak the docker-compose + +The official Docker image doesn't include any NVIDIA proprietary driver. + +You have to install the NVIDIA driver and NVIDIA Container Toolkit on the host system to allow Docker access to your GPU. # Missing features - Hide movie or tv show from my gallery: Tracked by these feature requests [1](https://features.jellyfin.org/posts/1072/let-the-user-hide-a-movie-or-tv-show) and [2](https://features.jellyfin.org/posts/116/add-hide-ignore-for-series-seasons-episodes-as-an-alternative-to-favorite) diff --git a/docs/life_review.md b/docs/life_review.md deleted file mode 100644 index 616c442d0ee..00000000000 --- a/docs/life_review.md +++ /dev/null @@ -1,109 +0,0 @@ -# Semester reviews - -The objectives of the trimester review are: - -- Review the previous semester plan -- Identify the goals/visions/principles to focus on for the semester -- Identify the strategy you want to follow on those goals/visions/principles. -- Identify the philosophical topics of your life to address -# Year review - -Year reviews are meant to give you an idea of: - -- How much have you and your workflows evolved -- What roadmap decisions were right, which ones were wrong -- With the context you have now, you can think of how you could have avoided the - bad decisions. - -If you have the year's planning you can analyze it against your task management -tools and life logs and create a review document analyzing all. - -The process then has many phases: - -- [Housekeeping](#housekeeping) -- [Analysis](#analysis) -- [Planning](#planning) - -## Housekeeping - -As they are time expensive, probably lot of time may have passed since your last -life review, it's a good time to do some housekeeping tasks to have a tidy -environment (and data!) before you start analyzing everything. - -- Extract all your media (photos, videos, text) from all your devices (mobiles, - laptops, servers) to your central archive. For the portable devices I use - [`syncthing`](syncthing.md) to sync all the important data to the - [NAS](nas.md), although it's usually untidy. -- Once it's extracted tidy them all. For example you could group the pictures - and videos in a tree of directories (`trips`, `trips/2022-06-Glasgow`, - `trips/2022-06-Glasgow/2022-06-10-hiking-trail-lakes`, ...). As this is an - unpleasant task I've created `claspy` a command line tool that helps you - categorize the files into their desired paths. Do the same for the documents, - music, binaries... everything! until you have an empty mobile and empty - `Downloads` directory. -- Update [your ledger](beancount.md) so that it reflects the reality. -- Update [your task manager](action_management.md) systems so that it reflects the - latest state. -- Update [your digital garden](digital_garden.md) so that you don't have any - uncommited changes. - -## Analysis - -To do it I gather all the information from my -[life logging](https://en.wikipedia.org/wiki/Lifelog) sources and start thinking -of what do I want to change. It helps me to write a markdown document with the -insights gathered in this process. - -### What you have learned - -It's always interesting to look back and see what you've learned throughout the -year. I have these sources of data: - -- [Digital garden](#digital-garden) -- [Anki](#anki) - -#### Digital garden - -If you happen to have a [digital garden](digital_garden.md) you can look at your -git history to know what has changed since the last year. That's cumbersome and -ugly though, it's better to review -[your newsletters](https://lyz-code.github.io/blue-book/newsletter/0_newsletter_index/), -although you may need to use something like -[`mkdocs-newsletter`](https://lyz-code.github.io/mkdocs-newsletter/). - -While you skim through the newsletters you can add to the analysis report the -highlights of what you've learned. - -You can also check -[your repository insights](git.md#get-interesting-stats-of-the-repo). - -#### Anki - -I use [`anki`](anki.md) to record the knowledge that I need to have in my mind. -The program has a "Stats" tab where you can see your insights of the last years -to understand how are you learning. You can also go to the "Browse" tab to sort -the cards by created and get an idea of which ones have been the most used -decks. - -### What you've read - -Each time I finish a book I register it in a document with a rating and -optionally a review. When doing the review I check which ones I read, which ones -I liked more, what genres have been the most popular for me, which authors. With -these data I create an analysis of what seems promising to read in the future. - -I also update the section of "what you've learnt" with the insights of these -books. - -### Task review - -Follow the -[review process of the task management article](life_review.md#year-review). - -## Planning - -### What to read - -With the analysis of what I've read I research for new books and create an -ordered list per genre. - diff --git a/docs/linux/nodejs.md b/docs/linux/nodejs.md index c9de955affb..153802b9fb5 100644 --- a/docs/linux/nodejs.md +++ b/docs/linux/nodejs.md @@ -8,7 +8,25 @@ Node.js is a JavaScript runtime built on Chrome's V8 JavaScript engine. # Install -The debian base repositories are really outdated, so add the NodeSource repository +The debian base repositories are really outdated, install it directly + +## [Using nvm](https://nodejs.org/en/download/package-manager) + +```bash +# installs nvm (Node Version Manager) +curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.40.1/install.sh | bash + +# download and install Node.js (you may need to restart the terminal) +nvm install 22 + +# verifies the right Node.js version is in the environment +node -v # should print `v22.12.0` + +# verifies the right npm version is in the environment +npm -v # should print `10.9.0` +``` + +## Using nodesource ```bash curl -fsSL https://deb.nodesource.com/setup_16.x | bash - diff --git a/docs/linux_snippets.md b/docs/linux_snippets.md index 00fed216fc8..8d51945fea0 100644 --- a/docs/linux_snippets.md +++ b/docs/linux_snippets.md @@ -4,10 +4,53 @@ date: 20200826 author: Lyz --- +# Convert an html to a pdf + +## Using weasyprint + +Install it with `pip install weasyprint PyMuPDF` + +```bash +weasyprint input.html output.pdf +``` + +It gave me better result than `wkhtmltopdf` + +## Using wkhtmltopdf +To convert the given HTML into a PDF with proper styling and formatting using a simple method on Linux, you can use `wkhtmltopdf` with some custom options. + +First, ensure that you have `wkhtmltopdf` installed on your system. If not, install it using your package manager (e.g., Debian: `sudo apt-get install wkhtmltopdf`). + +Then, convert the HTML to PDF using `wkhtmltopdf` with the following command: + +```bash +wkhtmltopdf --page-size A4 --margin-top 15mm --margin-bottom 15mm --encoding utf8 input.html output.pdf +``` + +In this command: +- `--page-size A4`: Sets the paper size to A4. +- `--margin-top 15mm` and `--margin-bottom 15mm`: Adds top and bottom margins of 15 mm to the PDF. + +After running the command, you should have a nicely formatted `output.pdf` file in your current directory. This method preserves most of the original HTML styling while providing a simple way to export it as a PDF on Linux. + +If you need to zoom in, you can use the `--zoom 1.2` flag. For this to work you need your css to be using the `em` sizes. +# Format a drive to use a FAT32 system +```bash +sudo mkfs.vfat -F 32 /dev/sdX +``` +Replace /dev/sdX with your actual drive identifier +# Get the newest file of a directory with nested directories and files + +```bash +find . -type f -printf '%T@ %p\n' | sort -n | tail -1 | cut -f2- -d" " +``` + # How to debug a CPU Throttling high alert It may be because it has hit a limit set by kubernetes or docker. If the metrics don't show that it may be because the machine has run out of CPU credits. +If the docker is using less resources than the limits but they are still small (for example 0.1 CPUs) the issue may be that the CPU spikes are being throttle before they are shown in the CPU usage, the solution is then to increase the CPU limits + # Create a systemd service for a non-root user To set up a systemd service as a **non-root user**, you can create a user-specific service file under your home directory. User services are defined in `~/.config/systemd/user/` and can be managed without root privileges. @@ -1452,11 +1495,19 @@ date echo "Pruning the containers" docker container prune -f --filter "label!=prune=false" echo "Pruning the images" -docker image prune -f --filter "label!=prune=false" +docker image prune -a -f --filter "label!=prune=false" echo "Pruning the volumes" docker volume prune -f ``` +You can check the remaining docker images sorted by size with: + +```bash +docker images --format "{{.Repository}}:{{.Tag}}\t{{.Size}}" | sort -k2 -h +``` + +You can also use the builtin `docker system df -v` to get a better understanding of the usage of disk space. + ### [Set up docker logs rotation](https://medium.com/free-code-camp/how-to-setup-log-rotation-for-a-docker-container-a508093912b2) By default, the stdout and stderr of the container are written in a JSON file diff --git a/docs/ombi.md b/docs/ombi.md index 76726fd59c7..464bdda3343 100644 --- a/docs/ombi.md +++ b/docs/ombi.md @@ -21,3 +21,4 @@ Sometimes one specific user continuously asks for a better quality of the conten - [Homepage](https://ombi.io/) - [Docs](https://docs.ombi.app/guides/installation/) +- [Source](https://github.com/Ombi-app/Ombi) diff --git a/docs/orgzly.md b/docs/orgzly.md index 0c9c55e0e79..242fa6bc176 100644 --- a/docs/orgzly.md +++ b/docs/orgzly.md @@ -1,4 +1,4 @@ -[Orgzly](https://orgzly.com/) is an android application to interact with [orgmode](orgmode.md) files. +[Orgzly](https://www.orgzlyrevived.com/) is an android application to interact with [orgmode](orgmode.md) files. # Troubleshooting @@ -35,9 +35,10 @@ Other interesting solutions: You can force load or force save a single note with a long tap. # References +- [Home](https://www.orgzlyrevived.com/) - [Docs](https://orgzly.com/docs) -- [F-droid page](https://f-droid.org/app/com.orgzly) -- [Source](https://github.com/orgzly/orgzly-android) -- [Home](https://orgzly.com/) +- [F-droid page](https://f-droid.org/en/packages/com.orgzlyrevived/) +- [Source](https://github.com/orgzly-revived/orgzly-android-revived) +- [Old Home](https://orgzly.com/) - [Alternative docs](https://github.com/orgzly/documentation) - [Alternative fork maintained by the community](https://github.com/orgzly-revived/orgzly-android-revived) diff --git a/docs/parkour.md b/docs/parkour.md index 644a8d358b9..34a37ceca59 100644 --- a/docs/parkour.md +++ b/docs/parkour.md @@ -274,6 +274,24 @@ Also check out the [Is parkour killing your joints?](https://www.youtube.com/wat - Make sure that there are no joints with the wall where you want to grab the pipe - Grab first with your arms and then land your feet - Land your feet in a different angle than the pipe (45 degrees askew for example) to prevent each of your legs to go different sides of the pipe if you were to slip + +## Vaults + +## [Safety vault](https://yewtu.be/watch?v=f65H4Rr0oD0) + +I'm going to describe one way of doing it, but it could also be done as a mirror image. + +- Advance towards the fence +- Place your left hand on the fence with your fingers pointing in the direction you're going +- Jump while placing your right foot on the fence +- Pass your left foot over the fence by pulling your knee close to your chest to prevent your foot from catching on the fence +- Once your left foot is over, let go of your right foot +- Advance with your right hand in the direction of movement (not upwards), until it rests on the bar (your hand should be facing opposite to the left, with fingers pointing downwards) +- Once both feet are free and hands supported, push yourself forward. + +## [Thief vault](https://yewtu.be/watch?v=f65H4Rr0oD0) +## [Speed vault](https://yewtu.be/watch?v=f65H4Rr0oD0) +## [Kong vault or Cat](https://yewtu.be/watch?v=f65H4Rr0oD0) # [Learning parkour being an adult](https://learnmoreparkour.com/how-to-parkour-am-i-too-old.htm/) If you're thinking on starting to learn parkour when you're an adult there are some things that you need to take into account: diff --git a/docs/roadmap_adjustment.md b/docs/roadmap_adjustment.md index b35efd26615..b279d9a07e8 100644 --- a/docs/roadmap_adjustment.md +++ b/docs/roadmap_adjustment.md @@ -19,8 +19,9 @@ It's important for the proceses to be light enough that you want to actually do These adjustments have to reflect ourselves and our environment. As we change continuously, so will our adjustment proceses. I've gone for full blown adjustments of locking myself up for a week to not doing any for months. And that is just fine, these tools are there to help us only if we want to use them. -## Heavily orgmode oriented -This article heavily uses [orgmode](orgmode.md), my currently chosen [action tool](roadmap_tools.md), but that doesn't mean that the concepts can be applicable to other tools. +## These guides are heavily orgmode oriented +These guides heavily uses [orgmode](orgmode.md), my currently chosen [action tool](roadmap_tools.md), but that doesn't mean that the concepts can be applicable to other tools. + # Roadmap adjustment types There are three types of roadmap adjustment if we split them by process type: @@ -51,8 +52,6 @@ Reviews can be done at different levels of purpose, each level gives you differe - [Quarter review](#quarter-review) - [Year review](#year-review) ### Reviews guidelines - - #### Review approaches In the past I used the [life logging](life_logging.md) tools to analyze the past in order to understand what I achieved and take it as a base to learn from my mistakes. It was useful when I needed the endorphines boost of seeing all the progress done. Once I assumed that progress speed and understood that we always do the best we can given how we are, I started to feel that the review process was too cumbersome and that it was holding me into the past. @@ -311,6 +310,8 @@ Given the level of control of your life you can do the next adjustments: - [Survive the day](#survive-the-day) - [Survive the week](#survive-the-week) - [Ride the month](#ride-the-month) +- [Dream about the quarter](#dream-about-the-quarter) +- [Review the year](#review-the-year) As you master a purpose level you will have more experience and tools to manage more efficiently your life at the same time that you have less stress and mental load due to the reduction of uncertainty. This new state in theory (if life lets you) will eventually give you the energy to jump to the next purpose levels. @@ -472,12 +473,17 @@ There are different paths to discover actionable items: - What did drain your energy or brought you down emotionally this last month? - [ ] + - What month accomplishments are you proud of? + - [ ] + - Where is your mind these days? - [ ] - What did help you most this last month? - [ ] + - What do you want for the next month? + - [ ] Notice that we do not need to review our life logging tools (diary, action manager, ...) to answer these questions. This means that we're doing an analysis of what is in our minds right now, not throughout the month. It's flawed but as we do this analysis often, it's probably fine. We add more importance to the latest events in our life anyway. - Empty the elements you added to the `review box`. @@ -728,6 +734,7 @@ For each axis: - Summarise your insights in an "area intent". ####### Define the areas' objectives + I've had a hard time choosing how must those objectives be defined. Should they be generic? or would it be better for them to be concrete and measurable? Given the mindset of this review, it's better to have generic open goals. As you climb up the abstraction ladder and work with greater time slots you need to reduce the precision because you have more uncertainty. You don't know what's going to happen tomorrow so adding hard [SMART goals](https://en.wikipedia.org/wiki/SMART_criteria) is unrealistic and a certain path to frustration. @@ -799,6 +806,105 @@ In theory all this analysis should be done the month before the planning, so at #### Quarter decide ##### Order, prioritize and choose the area objectives #Gather them in the roadmap document. + +## Review the year + +Year reviews are meant to give you an idea of: + +- How much have you and your workflows evolved +- What roadmap decisions were right, which ones were wrong +- With the context you have now, you can think of how you could have avoided the + bad decisions. + +If you have the year's planning you can analyze it against your task management +tools and life logs and create a review document analyzing all. + +The process then has many phases: + +- [Housekeeping](#housekeeping) +- [Analysis](#analysis) +- [Planning](#planning) + +### Housekeeping + +As they are time expensive, probably lot of time may have passed since your last +year review, it's a good time to do some housekeeping tasks to have a tidy +environment (and data!) before you start analyzing everything. + +- Extract all your media (photos, videos, text) from all your devices (mobiles, + laptops, servers) to your central archive. For the portable devices I use + [`syncthing`](syncthing.md) to sync all the important data to the + [NAS](nas.md), although it's usually untidy. +- Once it's extracted tidy them all. For example you could group the pictures + and videos in a tree of directories (`trips`, `trips/2022-06-Glasgow`, + `trips/2022-06-Glasgow/2022-06-10-hiking-trail-lakes`, ...). As this is an + unpleasant task I've created `claspy` a command line tool that helps you + categorize the files into their desired paths. Do the same for the documents, + music, binaries... everything! until you have an empty mobile and empty + `Downloads` directory. +- Update [your ledger](beancount.md) so that it reflects the reality. +- Update [your task manager](action_management.md) systems so that it reflects the + latest state. +- Update [your digital garden](digital_garden.md) so that you don't have any + uncommited changes. + +### Analysis + +To do it I gather all the information from my +[life logging](https://en.wikipedia.org/wiki/Lifelog) sources and start thinking +of what do I want to change. It helps me to write a markdown document with the +insights gathered in this process. + +#### What you have learned + +It's always interesting to look back and see what you've learned throughout the +year. I have these sources of data: + +- [Digital garden](#digital-garden) +- [Anki](#anki) + +##### Digital garden + +If you happen to have a [digital garden](digital_garden.md) you can look at your +git history to know what has changed since the last year. That's cumbersome and +ugly though, it's better to review +[your newsletters](https://lyz-code.github.io/blue-book/newsletter/0_newsletter_index/), +although you may need to use something like +[`mkdocs-newsletter`](https://lyz-code.github.io/mkdocs-newsletter/). + +While you skim through the newsletters you can add to the analysis report the +highlights of what you've learned. + +You can also check +[your repository insights](git.md#get-interesting-stats-of-the-repo). + +##### Anki + +I use [`anki`](anki.md) to record the knowledge that I need to have in my mind. +The program has a "Stats" tab where you can see your insights of the last years +to understand how are you learning. You can also go to the "Browse" tab to sort +the cards by created and get an idea of which ones have been the most used +decks. + +#### What you've read + +Each time I finish a book I register it in a document with a rating and +optionally a review. When doing the review I check which ones I read, which ones +I liked more, what genres have been the most popular for me, which authors. With +these data I create an analysis of what seems promising to read in the future. + +I also update the section of "what you've learnt" with the insights of these +books. + +### Planning + + +#### What to read +With the analysis of what I've read I research for new books and create an +ordered list per genre. + +## Life review + # References ## Books diff --git a/docs/transcoding.md b/docs/transcoding.md new file mode 100644 index 00000000000..0d33b0d6e59 --- /dev/null +++ b/docs/transcoding.md @@ -0,0 +1,1335 @@ +# Big disclaimer!!! + +I have absolutely no idea of what I'm doing. It's the first time I do this and I'm just recording what I'm learning. Use the contents of this page at your own risk. + +I've made this document thinking mainly of using [AV1](#av1) as a video encoding algorithm, `ffmpeg` to do the transcoding and `jellyfin` to stream it, so the content is heavily + +# Initial guidance into the transcoding world + +## Shall I transcode my library? + +There are some discrepancies whether it makes sense to transcode your library. + +In my case I'm going to do it because disks are expensive (people compare with buying one disk, but to upgrade my NAS I need 5, so it would be around 1400$). + +Here are other opinions: [1](https://www.reddit.com/r/AV1/comments/ymrs5v/id_like_to_encode_my_entire_library_to_av1/) + +## [Do's and don'ts](https://wiki.x266.mov/blog/av1-for-dummies#dos--donts) + +Due to a lot of misunderstandings about codecs and compression, there are a lot of common misconceptions that are held regarding video encoding. We'll start by outlining some bad practices: + +- Don't encode the same video multiple times. This is a common mistake made by people new to video encoding. Every time you encode a video, you lose additional quality due to generation loss. This is because video codecs are lossy, and every time you encode a video, you lose more information. This is why it is important to keep the original video file if you frequently re-encode it. +- Don't blindly copy settings from others without understanding them. What works for one person's content and workflow may not work for yours. Even the default settings on many encoders are not optimal for most content. +- Don't assume that higher bitrate equates to better quality. Inefficient encoding can waste bits without improving visual quality, and efficient encoding can make lower bitrate video look drastically better than higher bitrate video using the same codec. +- Don't assume all encoders/presets/settings/implementations are created equal. Even given two encoding frameworks that use the same underlying encoder, you may achieve different results given encoder version mismatches or subtly different settings used under the hood. +- Don't use unnecessarily slow presets/speeds unless you have a specific need and ample time. W slower presets improve encoding efficiency most of the time, the quality gains reach a point of diminishing returns beyond a certain point. Use the slowest preset you can tolerate, not the slowest preset available. +- Don't blindly trust metric scores. It is unfortunate how trusted VMAF is considering how infrequently it correlates with visual fidelity in practice now that it has become so popular. Even the beloved SSIMULACRA2 is not a perfect one-to-one with the human eye. + +Now, let's move on to some good practices: + +- Experiment with different settings and compare the results. +- Consider your content type when choosing encoding settings. Film, animation, and sports all have different characteristics that benefit from distinct approaches. +- Keep your encoding software up-to-date; the encoding world moves quickly. +## [Types of transcoding](https://jellyfin.org/docs/general/server/transcoding/#types-of-transcoding) + +There are four types of playback in jellyfin; three of which involve transcoding. The type being used will be listed in the dashboard when playing a file. They are ordered below from lowest to highest load on the server: + +- Direct Play: Delivers the file without transcoding. There is no modification to the file and almost no additional load on the server. +- Remux: Changes the container but leaves both audio and video streams untouched. +- Direct Stream: Transcodes audio but leaves original video untouched. +- Transcode: Transcodes the video stream. + +## Shall I use CPU or GPU to do the transcoding? + +The choice between **CPU** or **GPU** for transcoding depends on your specific needs, including speed, quality, and hardware capabilities. Both have their pros and cons, and the best option varies by situation. + +### CPU-Based Transcoding +#### Pros: +- **High Quality**: Software encoders like `libx264`, `libx265`, or `libsvtav1` produce better compression and visual quality at the same bitrate compared to GPU-based encoders. +- **Flexibility**: Supports a wider range of encoding features, tuning options, and codecs. +- **Optimized for Low Bitrates**: CPU encoders handle complex scenes more effectively, producing fewer artifacts at lower bitrates. +- **No Dedicated Hardware Required**: Works on any modern system with a CPU. + +#### Cons: +- **Slower Speed**: CPU encoding is much slower, especially for high-resolution content (e.g., 4K or 8K). +- **High Resource Usage**: Consumes significant CPU resources, leaving less processing power for other tasks. + +#### Best Use Cases: +- High-quality archival or master files. +- Transcoding workflows where quality is the top priority. +- Systems without modern GPUs or hardware encoders. + +### GPU-Based Transcoding +#### Pros: +- **Fast Encoding**: Hardware-accelerated encoders like NVIDIA NVENC, AMD VCE, or Intel QuickSync can encode video much faster than CPUs. +- **Lower Resource Usage**: Frees up the CPU for other tasks during encoding. +- **Good for High-Resolution Video**: Handles 4K or even 8K video with ease. +- **Low Power Consumption**: GPUs are optimized for parallel processing, often consuming less power per frame encoded. + +#### Cons: +- **Lower Compression Efficiency**: GPU-based encoders often produce larger files or lower quality compared to CPU-based encoders at the same bitrate. +- **Limited Features**: Fewer tuning options and sometimes less flexibility in codec support. +- **Artifact Risk**: May introduce visual artifacts, especially in complex scenes or at low bitrates. + +#### Best Use Cases: +- Streaming or real-time encoding. +- High-volume batch transcoding where speed matters more than maximum quality. +- Systems with capable GPUs (e.g., NVIDIA GPUs with Turing or Ampere architecture). + +### **Quality vs. Speed** +| **Factor** | **CPU Encoding** | **GPU Encoding** | +|--------------------------|-------------------------------|--------------------------------| +| **Speed** | Slower | Much faster | +| **Quality** | Higher | Good but not the best | +| **Bitrate Efficiency** | Better | Less efficient | +| **Compatibility** | Broader | Limited by hardware support | +| **Power Consumption** | Higher | Lower | + +--- + +### **Conclusion** +- For **quality-focused tasks** such as a whole library encoding: Use CPU-based encoding. +- For **speed-focused tasks** such as streaming with jellyfin: Use GPU-based encoding. + +For more information read [1](https://www.reddit.com/r/PleX/comments/16w1hsz/cpu_vs_gpu_whats_the_smartest_choice/). +# [Video transcoding algorithms](https://jellyfin.org/docs/general/clients/codec-support/) +[This guide](https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Video_codecs) introduces the video codecs you're most likely to encounter or consider using. I'm only going to analyse the ones that I might use. + +When deciding which one to use check [jellyfin's video compatibility table](https://jellyfin.org/docs/general/clients/codec-support/#video-compatibility) or [test your browser's compatibility for any codec profile](https://cconcolato.github.io/media-mime-support/). + +Without taking into account H264 8Bits AV1 is the one which has more compatibility support except for iOS (but who cares about them?). + +## [AV1](https://wiki.x266.mov/blog/av1-for-dummies) + +[AV1](https://wiki.x266.mov/docs/video/AV1) is a royalty-free video codec developed by the Alliance for Open Media. It is designed to replace VP9 and presently competes with H.266. AV1 is known for its high compression efficiency, which the marketing will have you believe reduces file sizes by up to 50% compared to H.264 and up to 30% compared to H.265 across the board. It is supported by several major browsers and is widely used across many streaming services and video platforms. + +Before we dive in, it is important to understand why you may want to use AV1 instead of other codecs. The reality is that AV1 is not better than H.264/5 in every single scenario; video encoding is a complicated field, and the best codec for you will depend on your specific needs. AV1 excels in: + +- Low to medium-high fidelity encoding +- Higher resolution encoding +- Encoding content with very little grain or noise +- Slow, non-realtime contexts (e.g. offline encoding) + +The enumeration above still consists of broad strokes, but the point is to understand that AV1 is not a silver bullet. It will not automatically make your videos smaller while preserving your desired quality. To make things more difficult, the x264 & x265 encoders are very mature, while AV1 encoding efforts designed to meet the extremely complicated needs of the human eye are still in their infancy. + +### AV1 current problems + +The first problem I've seen is that Unmanic doesn't support AV1 very well, you need to write your own ffmpeg configuration (which is fine). Some issues that track this are [1](https://github.com/Unmanic/unmanic-plugins/issues/333), [2](https://github.com/Unmanic/unmanic/issues/181), [3](https://github.com/Unmanic/unmanic/issues/390), [4](https://github.com/Unmanic/unmanic/issues/471) or [5](https://github.com/Unmanic/unmanic-plugins/issues?q=is%3Aissue+is%3Aopen+av1) +#### [AV1 probably outdated problems](https://gist.github.com/dvaupel/716598fc9e7c2d436b54ae00f7a34b95#current-problems) + +The original article is dated of early 2022 so it's probably outdated given the speed of this world. + +- 10 bit playback performance is not reliable enough on average consumer hardware. +- AV1 tends to smooth video noticeably, even at high bitrates. This is especially appearant in scenes with rain, snow etc, where it is very hard to conserve details. +- Grainy movies are a weakpoint of AV1. Even with film grain synthesis enabled, it is very hard to achieve satisfying results. + +At the moment (early 2022, SVT-AV1 v0.9.0) it is a fairly promising, but not perfect, codec. It is great for most regular content, achieves great quality at small file sizes and appearantly keeps its promise of being considerably more efficient than HEVC. + +The only area where it must still improve is grainy, detailed movie scenes. With such high-bitrate, bluray-quality source material it's hard to achieve visual transparency. If grain synthesis has improved enough and smooth decoding is possible in most devices, it can be generally recommended. For now, it is still in the late experimental phase. + +### [AV1 encoders](https://wiki.x266.mov/blog/av1-for-dummies#encoders) +The world of AV1 encoding is diverse and complex, with several open-source encoders available, each bringing its own set of strengths, weaknesses, and unique features to the table. + + +- SVT-AV1 +- rav1e +- aomenc (libaom) +- SVT-AV1-PSY + +Understanding these encoders is crucial for making informed decisions about what best suits your specific encoding needs. + +#### SVT-AV1 + +[SVT-AV1](https://wiki.x266.mov/docs/encoders/SVT-AV1) (Scalable Video Technology for AV1) is an AV1 encoder library and application developed by Intel, Netflix, and others. It has gained significant popularity in the encoding community due to its impressive balance of speed, quality, and scalability. + +Links: +- Wiki page: [SVT-AV1](https://wiki.x266.mov/docs/encoders/SVT-AV1) +- Git repository: https://gitlab.com/AOMediaCodec/SVT-AV1 +- Documentation: https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/README.md + +1. **Performance & Scalability** + - SVT-AV1 is renowned for its encoding speed, particularly at higher speed presets. + - It leverages parallel processing, making it exceptionally efficient on multi-core systems. Fun fact: SVT-AV1's parallel processing is lossless, so it doesn't compromise quality for speed. + +2. **Quality-to-Speed Ratio** + - SVT-AV1 strikes an impressive balance between encoding speed and output quality. + - At faster presets, it usually outperforms other encoders in quality per unit of encoding time. + - While it may not achieve the absolute highest *quality per bit* possible, its quality is generally considered impressive for its speed. + +3. **Flexibility** + - SVT-AV1 offers a wide range of encoding options and presets, allowing fine-tuned control over the encoding process. + - It provides 14 presets (0-13), with 0 being the slowest and highest quality, and 13 being the fastest but lowest quality. + - Advanced options allow users to adjust parameters like hierarchical levels, intra-refresh type, and tuning modes. + +4. **Continuous Development** + - SVT-AV1 receives frequent updates and optimizations, with new releases often coming alongside big changes. + - The open-source nature of the project encourages community contributions and rapid feature development. + +SVT-AV1 is an excellent choice for a wide range of encoding scenarios. It's particularly well-suited for: +- High-volume encoding operations where speed is crucial +- Live or near-live encoding of high-resolution content +- Scenarios where a balance between quality and encoding speed is required +- Users with multi-core systems who want to leverage their hardware efficiently + +Some downsides include: +- Higher memory usage compared to other encoders +- The developers assess quality via its performance on traditional legacy metrics, which harms its perceptual fidelity ceiling. + +#### rav1e + +[rav1e](https://wiki.x266.mov/docs/encoders/rav1e) is an AV1 encoder written in Rust & Assembly. Developed by the open-source community alongside Xiph, it brings a unique approach to AV1 encoding with its focus on safety and correctness. + +Links: +- Wiki page: [rav1e](https://wiki.x266.mov/docs/encoders/rav1e) +- Git repository: https://github.com/xiph/rav1e +- Documentation: https://github.com/xiph/rav1e/tree/master/doc#readme + +1. **Safety & Reliability** + - Being written in Rust, rav1e emphasizes memory safety and thread safety. + - This focus on safety translates to a more stable and reliable encoding process, with reduced risks of crashes or undefined behavior. + +2. **High Fidelity** + - At high fidelity targets - an area where AV1 usually lacks - rav1e is a strong contender compared to other encoders. + - It excels in preserving fine details and textures, making it a good choice for high-fidelity encoding. + +3. **Quality** + - While not typically matching aomenc or SVT-AV1 in pure compression efficiency, rav1e can produce high-quality output videos. + - It often achieves a good balance between quality and encoding time, especially at medium-speed settings. + +4. **Perceptually Driven** + - rav1e's development is driven by visual fidelity, without relying heavily on metrics. + - This focus on perceptual quality leads to a stronger foundation for future potential improvements in visual quality, as well as making the encoder very easy to use as it does not require excessive tweaking. + +rav1e is well-suited for: +- Projects where stability is paramount +- Users who prioritize a community-driven, open-source development approach +- Encoding tasks where a balance between quality and speed is needed, but the absolute fastest speeds are not required + +Some limitations of rav1e include: +- Lagging development compared to other encoders +- Slower encoding speeds compared to SVT-AV1 at similar quality & size +- Fewer advanced options compared to other encoders + +#### aomenc (libaom) + +[aomenc](https://wiki.x266.mov/docs/encoders/aomenc), based on the libaom library, is the reference encoder for AV1. Developed by the Alliance for Open Media (AOM), it is the benchmark for AV1 encoding quality and compliance. + +Links: +- Wiki page: [aomenc](https://wiki.x266.mov/docs/encoders/aomenc) +- Git repository: https://aomedia.googlesource.com/aom/ + +1. **Encoding Quality** + - aomenc is widely regarded as the gold standard for AV1 encoding quality. + - It often achieves high compression efficiency among AV1 encoders, especially at slower speed settings. + - The encoder squeezes out nearly every last bit of efficiency from the AV1 codec, making it ideal for archival purposes or when quality per bit is critical. + +2. **Encoding Speed** + - aomenc is generally the slowest among major AV1 encoders. + - It offers 13 CPU speed levels (0-12), but even at its fastest settings, it's typically slower than other encoders at their slower settings. + - The slow speed is often considered a trade-off for its high compression efficiency. + +3. **Extensive Options** + - As the reference implementation, aomenc offers the most comprehensive encoding options. + - It provides fine-grained control over nearly every aspect of the AV1 encoding process. + - Advanced users can tweak many parameters to optimize for specific content types or encoding scenarios. + +4. **Flexibility** + - Being the reference encoder, aomenc produces highly standards-compliant AV1 bitstreams that take advantage of the full arsenal of AV1 features. + - It supports 4:2:0 and 4:4:4 chroma subsampling, 8- to 12-bit color depth, and various other advanced features that more specialized encoders like SVT-AV1 do not support. + +aomenc is ideal for: +- Scenarios where achieving the highest possible quality is the primary goal +- Archival encoding where compression efficiency is crucial +- Research and development in video compression +- Encoding projects where encoding time is not a significant constraint + +Some drawbacks of aomenc include: +- Unresponsive development driven by legacy metrics, leading to slower adoption of new techniques and ignoring improvements communicated by people outside the Google development team +- Cripplingly difficult to use for beginners, with a culture of cargo-culting settings +- Slow encoding speeds compared to other AV1 encoders, which has less of an impact on the quality of the output than it used to compared to maturing encoders like SVT-AV1 + +#### SVT-AV1-PSY + +[SVT-AV1-PSY](https://wiki.x266.mov/docs/encoders/svt-av1-psy) is a community fork of the SVT-AV1 encoder focused on psychovisual optimizations to enhance perceived visual quality. It aims at closing the distance between SVT-AV1's high speeds and the perceptual quality of aomenc's slow brute force approach. + +Links: +- Wiki page: [SVT-AV1-PSY](https://wiki.x266.mov/docs/encoders/svt-av1-psy) +- Git repository: https://github.com/gianni-rosato/svt-av1-psy +- Documentation: https://github.com/gianni-rosato/svt-av1-psy/blob/master/Docs/PSY-Development.md + +1. **Perceptual Optimizations** + - SVT-AV1-PSY introduces various psychovisual enhancements to improve the perceived quality of encoded video. + - These optimizations often result in output that looks better to the human eye, even if it might not always score as well in objective metrics. + +2. **Additional Features** + - Introduces new options like variance boost, which can help maintain detail in high-contrast scenes. + - Offers alternative curve options for more nuanced control over the encoding process. + - Extends the CRF (Constant Rate Factor) range to 70 (from 63 in mainline SVT-AV1), allowing for extremely low-bitrate encodes. + - Introduces additional tuning options, including a new "SSIM with Subjective Quality Tuning" mode that can improve perceived quality. + +3. **Visual Fidelity Focus** + - Aims to produce more visually pleasing results, sometimes at the expense of metric performance. + - Includes options like sharpness adjustment and adaptive film grain synthesis which can significantly impact the visual characteristics of the output. + - Features modified defaults driven by perceptual quality considerations. + +4. **Extended HDR Support** + - Includes built-in support for Dolby Vision & HDR10+ encoding. + - This makes it particularly useful for encoding HDR content without requiring additional post-processing steps or external tools. + +5. **Performance** + - Based on SVT-AV1, it retains the performance characteristics of its parent encoder. + - Adds super slow presets (-2 and -3) for research purposes and extremely high-quality encoding. These additional presets can be useful for creating reference encodes or applications where encoding time is not a concern. + +SVT-AV1-PSY is particularly well-suited for: +- Encoding scenarios where subjective visual quality is prioritized over pure metric performance +- HDR content encoding in Dolby Vision or HDR10+ +- Users who want fine-grained control over psychovisual aspects of encoding +- Projects that require a balance between the speed of SVT-AV1 and enhanced visual quality +- Encoding challenging content with complex textures or high-contrast scenes + +Some drawbacks are: +- Everything that applies to SVT-AV1, including the lack of support for 4:4:4 chroma subsampling and 12-bit color depth that are useful in specific scenarios +- There are no official ffmpeg builds with this fork, but there are community built binaries: + - https://github.com/Uranite/FFmpeg-Builds + - https://github.com/Nj0be/HandBrake-SVT-AV1-PSY + - https://www.reddit.com/r/AV1/comments/1fppk4d/ffmpeg_with_svtav1_psy_latest_for_windows_10_x64/ + +#### Conclusion + +While SVT-AV1 is known for being fast, aomenc is renowned for its high-quality output, and rav1e is recognized for its safety and reliability, each encoder has strengths and weaknesses. The best encoder for you will depend on your specific needs and priorities. + +I'll go with SVT-AV1 given that is the standard maintained by the community, and that SVT-AV1-PSY is not available by default in the tools that I am going to use (you'd need to compile it, and maintain it), and that I probably won't notice the difference. + +## X265 (HVEC) + +- Is not open source +## Conclusion + +I'll use AV1 because: + +- Is an open source, royalty free codec +- It's one of the most modern encoders +- It has a wide range of compatibility support +- It has better compression rate than x265 and it seems to be faster? +# Transcoding parameter comparison + +## Check the original file transcoding information +To investigate the encoding details of an existing video file, you can use FFprobe (which comes with FFmpeg). + +```bash +ffprobe -v quiet -print_format json -show_streams -show_format file_to_test.mp4 +``` + +The metadata isn't always perfectly reliable, especially if the file has been modified or re-encoded multiple times. + +## CRF comparison + +Try to use CRF (Constant Rate Factor) for offline encoding, as opposed to CBR (onstant Bitrate) or VBR (Variable Bitrate). While the latter two are effective for precisely targeting a particular bitrate, CRF is more effective at targeting a specific quality level efficiently. So avoid the `-b:v 0` `ffmpeg` flag. + +Check these articles [1](https://ottverse.com/analysis-of-svt-av1-presets-and-crf-values/), [2](https://academysoftwarefoundation.github.io/EncodingGuidelines/EncodeAv1.html#crf-comparison-for-libsvtav1) and [3](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/Ffmpeg.md) for an interesting comparison between `presets` and `crf` when encoding in AV1. + +A good starting point for 1080p video is `crf=30`. +### Can you compare values of CRF between video algorithms? + +No, CRF (Constant Rate Factor) values are not directly comparable between different encoding algorithms like AV1 and H.265. Each codec has its own unique compression characteristics, so a CRF of 32 in AV1 will look different from a CRF of 32 in H.265, and similarly, a CRF of 21 will have different visual qualities. + +Here's a more detailed explanation: + +1. Codec-Specific Compression: + - Each codec (AV1, H.265, H.264, etc.) has its own compression algorithm and efficiency + - AV1 is generally more efficient at compression compared to H.265 + - This means a higher CRF value in AV1 might produce similar or better quality compared to a lower CRF in H.265 + +2. Rough Equivalence Guidelines: + While not exact, here are some rough comparative CRF ranges: + - H.264: CRF 18-28 + - H.265: CRF 20-28 + - AV1: CRF 25-35 + +### Script to see the quality difference by changing the CRF + +It's recommended to test encodes at different CRF values and compare for your specific content: + +- File size versus visual quality +- Review objective quality metrics + +You can use the next script for that: + +```bash +#!/bin/bash + +# Input video file +input_video="$1" +initial_time="00:15:00" +probe_length="00:01:00" + +# Extract original segment +ffmpeg -i "$input_video" -ss $initial_time -t "$probe_length" -c copy original_segment.mkv + +# Array of CRF values to test +crfs=(28 30 32 34 36) + +# Create a size comparison log +echo "CRF Comparison:" >size_comparison.log +echo "Original Segment Size:" >>size_comparison.log +original_size=$(du -sh original_segment.mkv) +echo "$original_size" >>size_comparison.log +echo "-------------------" >>size_comparison.log + +# Create a quality metrics log +echo "CRF Quality Metrics Comparison:" >quality_metrics.log +echo "-------------------" >>quality_metrics.log + +for crf in "${crfs[@]}"; do + # Encode test segments + ffmpeg -i "$input_video" \ + -ss "$initial_time" -t "$probe_length" \ + -c:v libsvtav1 \ + -preset 5 \ + -crf $crf \ + -g 240 \ + -pix_fmt yuv420p10le \ + preview_crf_${crf}.mkv + + # Create a side by side comparison to see the differences + ffmpeg -i original_segment.mkv -i preview_crf_${crf}.mkv \ + -filter_complex \ + "[0:v][1:v]hstack=inputs=2[v]" \ + -map "[v]" \ + -c:v libx264 \ + side_by_side_comparison_original_vs_crf_${crf}.mkv + + # Log file size + size=$(du -h preview_crf_${crf}.mkv | cut -f1) + echo "CRF $crf: $size" >>size_comparison.log + + # Measure PSNR and SSIM + ffmpeg -i original_segment.mkv -i preview_crf_${crf}.mkv \ + -filter_complex "[0:v][1:v]psnr=stats_file=psnr_${crf}.log;[0:v][1:v]ssim=stats_file=ssim_${crf}.log" -f null - + psnr_value=$(grep "psnr_avg:" psnr_${crf}.log | awk -F'psnr_avg:' '{sum += $2; count++} END {if (count > 0) print sum / count; else print "N/A"}') + ssim_value=$(grep "All:" ssim_${crf}.log | awk -F'All:' '{sum += $2; count++} END {if (count > 0) print sum / count; else print "N/A"}') + + # Log the results + echo "CRF $crf:" >>quality_metrics.log + echo " PSNR: ${psnr_value:-N/A}" >>quality_metrics.log + echo " SSIM: ${ssim_value:-N/A}" >>quality_metrics.log + echo "-------------------" >>quality_metrics.log +done + +# Create a side by side comparison of the most compressed versus the least +ffmpeg -i preview_crf_${crfs[1]}.mkv -i preview_crf_${crfs[-1]}.mkv \ + -filter_complex \ + "[0:v][1:v]hstack=inputs=2[v]" \ + -map "[v]" \ + -c:v libx264 \ + side_by_side_comparison_crf_${crfs[1]}_vs_crf_${crfs[-1]}.mkv + +# Measure PSNR and SSIM between the different crfs +ffmpeg -i preview_crf_${crfs[1]}.mkv -i preview_crf_${crfs[-1]}.mkv \ + -filter_complex "[0:v][1:v]psnr=stats_file=psnr_crfs_max_difference.log;[0:v][1:v]ssim=stats_file=ssim_crfs_max_difference.log" -f null - +psnr_value=$(grep "psnr_avg:" psnr_crfs_max_difference.log | awk -F'psnr_avg:' '{sum += $2; count++} END {if (count > 0) print sum / count; else print "N/A"}') +ssim_value=$(grep "All:" ssim_crfs_max_difference.log | awk -F'All:' '{sum += $2; count++} END {if (count > 0) print sum / count; else print "N/A"}') + +# Log the results +echo "CRF ${crfs[1]} vs CRF ${crfs[-1]}:" >>quality_metrics.log +echo " PSNR: ${psnr_value:-N/A}" >>quality_metrics.log +echo " SSIM: ${ssim_value:-N/A}" >>quality_metrics.log +echo "-------------------" >>quality_metrics.log + +# Display results +cat size_comparison.log +cat quality_metrics.log +``` + +It will: +- Create a `original_segment.mp4` segment so you can compare the output +- Create a series of `preview_crf_XX.mkv` files with a 1 minute preview of the content +- Create a list of `side_by_side_comparison` files to visually see the difference between the CRF factors +- Create a quality metrics report `quality_metrics.log` by analysing the SSIM and PSNR tests (explained below) +- A `size_comparison.log` file to see the differences in size. + +#### Results + +##### CRF vs file size + +I've run this script against three files with the next results: +- Big non animation file: "H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10", 1920x1080, profile high, bit rate 23439837 + + ``` + Original Segment Size: + 152M original_segment.mp4 + ------------------- + CRF 28: 12M + CRF 30: 9.9M + CRF 32: 8.5M + CRF 34: 7.4M + CRF 36: 6.6M + ``` + +- Big animation file: "H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10", 1920x1038, profile high + + ``` + Original Segment Size: + 136M original_segment.mp4 + ------------------- + CRF 28: 12M + CRF 30: 9.5M + CRF 32: 8.0M + CRF 34: 6.8M + CRF 36: 6.0M + ``` + +- small non animation file: + + ``` + Original Segment Size: + 5.9M original_segment.mp4 + ------------------- + CRF 28: 5.4M + CRF 30: 4.9M + CRF 32: 4.5M + CRF 34: 4.1M + CRF 36: 3.7M + + ``` +##### Compare the SSIM and PSNR results + +PSNR (Peak Signal-to-Noise Ratio) measures the quality of the reconstruction of the image. It calculates the ratio between the maximum possible signal (pixel values) and the noise (the error between the original and reconstructed image). Higher PSNR means better quality. + +The range typically goes between 30-50dB, where 40 dB is considered excellent and 35dB is good, while less than 30 dB indicates noticeable quality loss + +[SSIM (Structural Similarity Index Measure)](https://en.wikipedia.org/wiki/Structural_similarity_index_measure) evaluates the perceptual similarity between two images by considering luminance, contrast, and structure. It ranges from -1 to 1, where 1 means identical images. Typically, > 0.95 is considered very good + +- Big non animation file: + + ``` + CRF Quality Metrics Comparison: + ------------------- + CRF 28: + PSNR: 37.6604 + SSIM: 0.963676 + ------------------- + CRF 30: + PSNR: 37.6572 + SSIM: 0.96365 + ------------------- + CRF 32: + PSNR: 37.6444 + SSIM: 0.963535 + ------------------- + CRF 34: + PSNR: 37.6306 + SSIM: 0.963408 + ------------------- + CRF 36: + PSNR: 37.6153 + SSIM: 0.963276 + ------------------- + CRF 30 vs CRF 36: + PSNR: 51.0188 + SSIM: 0.996617 + ------------------- + ``` + +- Big animation file: + + ``` + CRF Quality Metrics Comparison: + ------------------- + CRF 28: + PSNR: 34.6944 + SSIM: 0.904112 + ------------------- + CRF 30: + PSNR: 34.6695 + SSIM: 0.903986 + ------------------- + CRF 32: + PSNR: 34.6388 + SSIM: 0.903787 + ------------------- + CRF 34: + PSNR: 34.612 + SSIM: 0.903616 + ------------------- + CRF 36: + PSNR: 34.5822 + SSIM: 0.903423 + ------------------- + CRF 30 vs CRF 36: + PSNR: 49.5002 + SSIM: 0.99501 + ------------------- + ``` + +- small non animation file: + + ``` + CRF Quality Metrics Comparison: + ------------------- + CRF 28: + PSNR: 35.347 + SSIM: 0.957198 + ------------------- + CRF 30: + PSNR: 35.3302 + SSIM: 0.957124 + ------------------- + CRF 32: + PSNR: 35.3035 + SSIM: 0.956993 + ------------------- + CRF 34: + PSNR: 35.2767 + SSIM: 0.956848 + ------------------- + CRF 36: + PSNR: 35.2455 + SSIM: 0.95666 + ------------------- + CRF 30 vs CRF 36: + PSNR: 49.4795 + SSIM: 0.995958 + ------------------- + ``` + +### CRF conclusion + +In all cases the PSNR and SSIM values are very good, there is not much variability between the different CRF and it looks it changes more based on the type of video, working worse for animation. + +The side by side comparisons in the three cases returned similar results that my untrained eye was not able to catch big issues. I have to say that my screens are not very good and I'm not very picky. + +The size reduction is in fact astonishing being greater as the size of the original file increases. So it will make sense to transcode first the biggest ones. + +As I don't see many changes, and the recommended setting is CRF 30 I'll stick with it. + +## Preset comparison + +This parameter governs the efficiency/encode-time trade-off. Lower presets will result in an output with better quality for a given file size, but will take longer to encode. Higher presets can result in a very fast encode, but will make some compromises on visual quality for a given crf value. Since SVT-AV1 0.9.0, supported presets range from 0 to 13, with higher numbers providing a higher encoding speed. + +Note that preset 13 is only meant for debugging and running fast convex-hull encoding. In versions prior to 0.9.0, valid presets are 0 to 8. + +After checking above articles [1](https://ottverse.com/analysis-of-svt-av1-presets-and-crf-values/), [2](https://academysoftwarefoundation.github.io/EncodingGuidelines/EncodeAv1.html#crf-comparison-for-libsvtav1), [3](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/Ffmpeg.md) and [4](https://wiki.x266.mov/blog/svt-av1-third-deep-dive) I feel that a preset of `4` is the sweet spot, going to `3` for a little better quality or `5` for a little worse. AOMediaCodec people agrees: "Presets between 4 and 6 offer what many people consider a reasonable trade-off between quality and encoding time". + +And [wiki x266 also agrees](https://wiki.x266.mov/blog/svt-av1-third-deep-dive): It appears as if once again preset 2 through preset 4 remain the most balanced presets all-around in an efficient encoding scenario, with preset 3 not offering much improvements over preset 4 in average scores but nicely improving on consistency instead, and preset 2 offering a nice efficiency and consistency uplift on top. + +Clear quality gains can be observed as we decrease presets, until preset 2, however the effectiveness of dropping presets is noticeably less and less important as quality is increased. + +## [keyframe interval](https://trac.ffmpeg.org/wiki/Encode/AV1#Keyframeplacement) + +`-g` flag in ffmpeg. This parameter governs how many frames will pass before the encoder will add a key frame. Key frames include all information about a single image. Other (delta) frames store only differences between one frame and another. Key frames are necessary for seeking and for error-resilience (in VOD applications). More frequent key frames will make the video quicker to seek and more robust, but it will also increase the file size. For VOD, a setting a key frame once per second or so is a common choice. In other contexts, less frequent key frames (such as 5 or 10 seconds) are preferred. Anything up to 10 seconds is considered reasonable for most content, so for 30 frames per second content one would use -g 300, for 60 fps content -g 600, etc. + +By default, SVT-AV1's keyframe interval is 2-3 seconds, which is quite short for most use cases. Consider changing this up to 5 seconds (or higher) with the -g option ; `-g 120` for 24 fps content, `-g 150` for 30 fps, etc. + +Using a higher GOP via the `-g` ffmpeg parameter results in a more efficient encode in terms of quality per bitrate, at the cost of seeking performance. A common rule-of-thumb among hobbyists is to use ten times the framerate of the video, but not more than `300`. + +The 3 files I'm analysing are using 24fps so I'll use a `-g 240` + +## Film grain + +Consider using grain synthesis for grainy content, as AV1 can struggle with preserving film grain efficiently, especially when encoding high-quality content like old films or videos with a lot of grain detail. This is due to the fact that AV1's compression algorithms are optimized for clean, detailed content, and they tend to remove or smooth out film grain to achieve better compression ratios. + +Grain synthesis is the process of adding synthetic grain to a video to simulate or preserve the original grain structure. + +### [SVT-AV1 guidelines](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/Ffmpeg.md) +The film-grain parameter enables this behavior. Setting it to a higher level does so more aggressively. Very high levels of denoising can result in the loss of some high-frequency detail, however. + + +[The film-grain synthesis](https://trac.ffmpeg.org/wiki/Encode/AV1#Filmgrainsynthesis) feature is invoked with `-svtav1-params film-grain=X`, where `X` is an integer from `1` to `50`. Higher numbers correspond to higher levels of denoising for the grain synthesis process and thus a higher amount of grain. + +The grain denoising process can remove detail as well, especially at the high values that are required to preserve the look of very grainy films. This can be mitigated with the `film-grain-denoise=0` option, passed via svtav1-params. While by default the denoised frames are passed on to be encoded as the final pictures (`film-grain-denoise=1`), turning this off will lead to the original frames to be used instead. Passing film-grain-denoise=0 may result in higher fidelity by disabling source denoising. In that case, the correct film-grain level is important because a more conservative smoothing process is used--too high a film-grain level can lead to noise stacking. + +AOMediaCodec people suggests that a value of 8 is a reasonable starting point for live-action video with a normal amount of grain. Higher values in the range of 10-15 enable more aggressive use of this technique for video with lots of natural grain. For 2D animation, lower values in the range of 4-6 are often appropriate. If the original video does not have natural grain, this parameter can be omitted. + +There are two types of video that are called "animation": hand-drawn 2D and 3D animated. Both types tend to be easy to encode (meaning the resulting file will be small), but for different reasons. 2D animation often has large areas that do not move, so the difference between one frame and another is often small. In addition, it tends to have low levels of grain. Experience has shown that relatively high crf values with low levels of film-grain produce 2D animation results that are visually good. + +3D animation has much more detail and movement, but it sometimes has no grain whatsoever, or only small amounts that were purposely added to the image. If the original animated video has no grain, encoding without film-grain will increase encoding speed and avoid the possible loss of fine detail that can sometimes result from the denoising step of the synthetic grain process. + +For more information on the synthetic grain check [this appendix](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/Appendix-Film-Grain-Synthesis.md) + +### Film grain analysis + +Using a similar script as the one for the crf we can see the differences in film grain: + +```bash +#!/bin/bash + +# Input video file +input_video="$1" +initial_time="00:15:00" +probe_length="00:01:00" + +# Extract original segment +ffmpeg -i "$input_video" -ss $initial_time -t "$probe_length" -c copy original_segment.mkv + +# Array of grain values to test +grains=(0 4 8 12) + +# Create a size comparison log +echo "Grain Comparison:" >size_comparison.log +echo "Original Segment Size:" >>size_comparison.log +original_size=$(du -sh original_segment.mkv) +echo "$original_size" >>size_comparison.log +echo "-------------------" >>size_comparison.log + +# Create a quality metrics log +echo "Grain Quality Metrics Comparison:" >quality_metrics.log +echo "-------------------" >>quality_metrics.log + +for grain in "${grains[@]}"; do + # Encode test segments + ffmpeg -i "$input_video" \ + -ss "$initial_time" -t "$probe_length" \ + -c:v libsvtav1 \ + -preset 4 \ + -crf 30 \ + -g 240 \ + -pix_fmt yuv420p10le \ + -c:a libopus \ + -b:a 192k \ + -svtav1-params tune=0:film-grain=${grain} \ + preview_grain_${grain}.mkv + + # Create a side by side comparison to see the differences + ffmpeg -i original_segment.mkv -i preview_grain_${grain}.mkv \ + -filter_complex \ + "[0:v][1:v]hstack=inputs=2[v]" \ + -map "[v]" \ + -c:v libx264 \ + side_by_side_comparison_original_vs_grain_${grain}.mkv + + # Log file size + size=$(du -h preview_grain_${grain}.mkv | cut -f1) + echo "grain $grain: $size" >>size_comparison.log + + # Measure PSNR and SSIM + ffmpeg -i original_segment.mkv -i preview_grain_${grain}.mkv \ + -filter_complex "[0:v][1:v]psnr=stats_file=psnr_${grain}.log;[0:v][1:v]ssim=stats_file=ssim_${grain}.log" -f null - + psnr_value=$(grep "psnr_avg:" psnr_${grain}.log | awk -F'psnr_avg:' '{sum += $2; count++} END {if (count > 0) print sum / count; else print "N/A"}') + ssim_value=$(grep "All:" ssim_${grain}.log | awk -F'All:' '{sum += $2; count++} END {if (count > 0) print sum / count; else print "N/A"}') + + # Log the results + echo "grain $grain:" >>quality_metrics.log + echo " PSNR: ${psnr_value:-N/A}" >>quality_metrics.log + echo " SSIM: ${ssim_value:-N/A}" >>quality_metrics.log + echo "-------------------" >>quality_metrics.log +done + +# Create a side by side comparison of the most compressed versus the least +ffmpeg -i preview_grain_${grains[1]}.mkv -i preview_grain_${grains[-1]}.mkv \ + -filter_complex \ + "[0:v][1:v]hstack=inputs=2[v]" \ + -map "[v]" \ + -c:v libx264 \ + side_by_side_comparison_grain_${grains[1]}_vs_grain_${grains[-1]}.mkv + +# Measure PSNR and SSIM between the different grains +ffmpeg -i preview_grain_${grains[1]}.mkv -i preview_grain_${grains[-1]}.mkv \ + -filter_complex "[0:v][1:v]psnr=stats_file=psnr_grains_max_difference.log;[0:v][1:v]ssim=stats_file=ssim_grains_max_difference.log" -f null - +psnr_value=$(grep "psnr_avg:" psnr_grains_max_difference.log | awk -F'psnr_avg:' '{sum += $2; count++} END {if (count > 0) print sum / count; else print "N/A"}') +ssim_value=$(grep "All:" ssim_grains_max_difference.log | awk -F'All:' '{sum += $2; count++} END {if (count > 0) print sum / count; else print "N/A"}') + +# Log the results +echo "grain ${grains[1]} vs grain ${grains[-1]}:" >>quality_metrics.log +echo " PSNR: ${psnr_value:-N/A}" >>quality_metrics.log +echo " SSIM: ${ssim_value:-N/A}" >>quality_metrics.log +echo "-------------------" >>quality_metrics.log + +# Display results +cat size_comparison.log +cat quality_metrics.log + +``` + +#### Old Anime movie + +The quality results give: + +``` +Grain Quality Metrics Comparison: +------------------- +grain 0: + PSNR: 34.6503 + SSIM: 0.902562 +------------------- +grain 4: + PSNR: 34.586 + SSIM: 0.900882 +------------------- +grain 8: + PSNR: 34.446 + SSIM: 0.897354 +------------------- +grain 12: + PSNR: 34.2961 + SSIM: 0.893525 +------------------- +grain 4 vs grain 12: + PSNR: 52.005 + SSIM: 0.994478 +------------------- +``` + +The quality metrics show that with more grain the output file is less similar than the original, but the side by side comparison shows that even a grain of 12 is less noise than the original. It can be because the movie is old. + +`grain == 0` +![](anime-old-grain-0.jpg) + +`grain == 8` +![](anime-old-grain-8.jpg) + +And I'd say that grain 8 looks better than 0. + +#### Old movie with low quality + +``` +Grain Quality Metrics Comparison: +------------------- +grain 0: + PSNR: 35.3513 + SSIM: 0.957167 +------------------- +grain 4: + PSNR: 35.3161 + SSIM: 0.956516 +------------------- +grain 8: + PSNR: 35.275 + SSIM: 0.955738 +------------------- +grain 12: + PSNR: 35.2481 + SSIM: 0.955299 +------------------- +grain 4 vs grain 12: + PSNR: 59.7537 + SSIM: 0.999178 +------------------- +``` + +With the increase of grain also the metrics differ from the original, but less drastically than the anime movie. I'm not able to see any notable difference in the side by side comparison at any grain level. It can be either because the low quality makes it undetectable or that the scenes of the sample don't represent well the noise contrast. + +#### Conclusion + +Given that I don't notice any notable change by tunning the parameter, I'll go with the suggested `film-grain=8`. + +## `pix_fmt` parameter + +The `pix_fmt` parameter can be used to force encoding to 10 or 8 bit color depth. By default SVT-AV1 will encode 10-bit sources to 10-bit outputs and 8-bit to 8-bit. + +AV1 includes 10-bit support in its Main profile. Thus content can be encoded in 10-bit without having to worry about incompatible hardware decoders. + +To utilize 10-bit in the Main profile, use `-pix_fmt yuv420p10le`. For 10-bit with 4:4:4 chroma subsampling (requires the High profile), use `-pix_fmt yuv444p10le`. 12-bit is also supported, but requires the Professional profile. See ffmpeg -help encoder=libaom-av1 for the supported pixel formats. + +The [dummies guide](https://wiki.x266.mov/blog/av1-for-dummies) suggests to always use 10-bit color, even with an 8-bit source. AV1's internal workings are much more suited to 10-bit color, and you are almost always guaranteed quality improvements with zero compatibility penalty as 10-bit color is part of AV1's baseline profile. + +The AOMediaCodec people say that encoding with 10-bit depth results in more accurate colors and fewer artifacts with minimal increase in file size, though the resulting file may be somewhat more computationally intensive to decode for a given bitrate. + +If higher decoding performance is required, using 10-bit YCbCr encoding will increase efficiency, so a lower average bitrate can be used, which in turn improves decoding performance. In addition, passing the parameter `fast-decode=1` can help (this parameter does not have an effect for all presets, so check the parameter description for your preset). Last, for a given bitrate, 8-bit yuv420p can sometimes be faster to encode, albeit at the cost of some fidelity. + +I'll then use `-pix_fmt yuv420p10le` + +## [Tune parameter](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/CommonQuestions.md#options-that-give-the-best-encoding-bang-for-buck) + +This parameter changes some encoder settings to produce a result that is optimized for subjective quality (tune=0) or PSNR (tune=1). Tuning for subjective quality can result in a sharper image and higher psycho-visual fidelity. + +This is invoked with `-svtav1-params tune=0`. The default value is 1. + +The use of subjective mode (--tune=0) often results in an image with greater sharpness and is intended to produce a result that appears to humans to be of high quality (as opposed to doing well on basic objective measures, such as PSNR). So I'll use it + +## [Multipass encoding](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/CommonQuestions.md#multi-pass-encoding) +PSY people suggest not to encode the same video multiple times. This is a common mistake made by people new to video encoding. Every time you encode a video, you lose additional quality due to generation loss. This is because video codecs are lossy, and every time you encode a video, you lose more information. This is why it is important to keep the original video file if you frequently re-encode it. + +AV1 people says some encoder features benefit from or require the use of a multi-pass encoding approach. In SVT-AV1, in general, multi-pass encoding is useful for achieving a target bitrate when using VBR (variable bit rate) encoding, although both one-pass and multi-pass modes are supported. + +When using CRF (constant visual rate factor) mode, multi-pass encoding is designed to improve quality for corner case videos--it is particularly helpful in videos with high motion because it can adjust the prediction structure (to use closer references, for example). Multi-pass encoding, therefore, can be said to have an impact on quality in CRF mode, but is not critical in most situations. In general, multi-pass encoding is not as important for SVT-AV1 in CRF mode than it is for some other encoders. + +CBR (constant bit rate) encoding is always one-pass. + +I won't use multipass encoding then. + +## [Select the audio codec](https://jellyfin.org/docs/general/clients/codec-support/#audio-compatibility) +If the audio codec is unsupported or incompatible (such as playing a 5.1 channel stream on a stereo device), the audio codec must be transcoded. This is not nearly as intensive as video transcoding. + +When comparing audio encodings from a **compatibility** and **open-source** perspective, here are the key aspects to consider: + +### MP3 (MPEG-1 Audio Layer III) + +#### Compatibility +- **Highly Compatible**: Supported on virtually all devices and platforms, including legacy systems. +- **Wide Adoption**: Default choice for audio streaming, portable devices, and browsers. + +#### Open Source +- **Patented (Previously)**: MP3 was heavily patented until 2017. After patent expiration, it is now open for unrestricted use. +- **Decoders/Encoders**: Open-source implementations exist (e.g., `LAME`), but the format's history with patents may make some projects hesitant. + +### AAC (Advanced Audio Codec) + +#### Compatibility +- **Widely Compatible**: Supported on most modern devices and platforms, including smartphones, streaming services, and browsers. +- **Less Legacy Support**: Older devices may not support AAC compared to MP3. + +#### Open Source +- **Partially Proprietary**: AAC is still patent-encumbered, requiring licensing for certain use cases. +- **Limited Open Implementations**: While open-source decoders like `FAAD` exist, licensing concerns can restrict adoption. + +### Opus + +#### Compatibility +- **Growing Adoption**: Supported by major browsers (via WebRTC), VoIP platforms (e.g., Zoom, Discord), and some hardware devices. +- **Not Universally Supported**: Fewer consumer devices support Opus natively compared to MP3/AAC. +- But jellyfin's compatible table shows that it does have good compatibility already + +#### Open Source +- **Fully Open Source**: Created by the Xiph.Org Foundation and standardized by IETF as an open format. +- **Royalty-Free**: No patent restrictions, making it ideal for open-source projects and licensing-sensitive environments. + +### Vorbis + +#### Compatibility +- **Limited Adoption**: Compatible with platforms that support Ogg containers, such as many Linux-based systems, but lacks broad support on consumer devices (e.g., smartphones, car stereos). +- **Niche Use**: Often used in gaming and certain open-source projects. + +#### Open Source +- **Fully Open Source**: Also by Xiph.Org, Vorbis is royalty-free and patent-unencumbered. +- **Less Modern**: Lacks the efficiency and versatility of Opus. + +### FLAC (Free Lossless Audio Codec) + +#### Compatibility +- **Good Adoption**: Supported on most modern devices, but not universally (e.g., some older car stereos or basic devices). +- **Lossless Focus**: Typically used in archival and audiophile applications, rather than streaming or portable audio. + +#### Open Source +- **Fully Open Source**: Another Xiph.Org project, FLAC is royalty-free and widely used in open-source ecosystems. +- **High Integrity**: Preferred for open-source projects requiring exact replication of audio data. + +### Summary Table + +| Format | Compatibility | Open Source Status | Notes | +|---------|----------------------------|--------------------------------|---------------------------------------------| +| **MP3** | Ubiquitous | Open after 2017 | Excellent legacy and modern support. | +| **AAC** | Broad (modern only) | Partially proprietary | Better efficiency than MP3; patent-encumbered. | +| **Opus**| Growing (modern) | Fully open source | Best for VoIP, streaming; highly efficient. | +| **Vorbis** | Limited (niche) | Fully open source | Predecessor of Opus; less efficient. | +| **FLAC** | Good (lossless niche) | Fully open source | Ideal for archival and audiophile use. | + +### Conclusion + +I doubted between flac and opus, but given that I want to reduce disk space I'd go with opus. + +`-c:a libopus` + +## Select the audio bitrate + +The Opus codec is highly efficient and flexible, with settings that can be adjusted depending on your specific use case (e.g., speech, music, or general-purpose audio). + +Bitrate (`-b:a`) suggested values are: +- **Speech**: 16–32 kbps. +- **Music**: 64–128 kbps. +- **General-purpose**: 48–96 kbps. +- For high-quality music or critical listening: 128–256 kbps. + +Typical values are 128 or 192 kbps. The file size will change, but the difference might not be as dramatic as you might expect, especially with Opus. + +So, for a **1-minute audio file**: +- At **128 kbps**, the file size would be around **960 KB**. +- At **192 kbps**, the file size would be around **1.44 MB**. + +This means the file size increases by about **50%** when you increase from 128 kbps to 192 kbps. For a 3h movie it would be 259MB at 192 and 173MB at 128, so there is not much difference + +- **128 kbps** will still provide a good balance of quality for most use cases, particularly for spoken audio or general movie soundtracks where the main focus is not the high-fidelity music or sound effects. +- **192 kbps** will offer a noticeable increase in quality, especially for music and sound effects in movies, but the file size increase is moderate compared to the improvement in audio quality. + +So, if you are looking for better quality and are okay with the slightly larger file size, 192 kbps is a good choice and the increase in size is not that noticeable. + +I'll then use `-b:a 192k`. Be careful to set it because `ffmpeg` default value is 96kbps which is way too low. + +## Select the video container +### Decide whether to use mkv or mp4 + +MP4 (MPEG-4 Part 14): + +1. Characteristics + - Closed sourced + - Developed by MPEG group + - Widely supported across devices + - Smaller file size + - Preferred for streaming platforms + - Standard for web and mobile video + - Not truly open source + - Controlled by MPEG LA (Licensing Administration) + - Requires patent licensing for commercial use + - Royalty-based format + - Closed technical specifications + - Limited by patent restrictions + +2. Technical Details + - Limited to specific codecs + - Better compression + - Simpler metadata support + - Lower overhead + - Maximum file size of 4GB + +MKV (Matroska Video): +1. Characteristics + - Open-source container format + - Highly flexible + - Supports virtually unlimited tracks + - No practical file size limitations + - Better for complex multimedia content + - Fully open-source standard + - Free and open-source software (FOSS) + - No licensing fees + - Open technical specifications + - Community-driven development + - Uses Creative Commons licensing + - Maintained by the Matroska Open Source project + - Completely royalty-free + +2. Technical Details + - Supports multiple audio/subtitle tracks + - Can include chapters + - Supports virtually any codec + - More metadata capabilities + - Larger file sizes + - Lossless audio/video preservation + +Comparison Points: + +From an open-source perspective, MKV is significantly more aligned with open-source principles and provides maximum flexibility for developers and users. + +Compatibility: +- MP4: Highest device/platform support +- MKV: Less universal, requires specific players + +Codec Support: +- MP4: Limited (H.264, AAC primarily) +- MKV: Virtually unlimited + +Use Cases: +- MP4: Streaming, mobile, web +- MKV: Archiving, high-quality collections, complex multimedia + +Recommended Usage: +- MP4: Sharing, streaming, compatibility +- MKV: Archival, preservation, complex multimedia projects + +Performance: +- MP4: Faster processing, smaller size +- MKV: More flexible, potentially larger size + +### MKV vs TS + +**TS (Transport Stream)** and **MKV (Matroska)** are two different video container formats, each designed for specific use cases. Here’s a detailed comparison: + +TS is one of the primary containers for streaming for Jellyfin. + +#### **Purpose and Use Case** +| **Aspect** | **TS** | **MKV** | +|--------------------------|-----------------------------------------|------------------------------------------| +| **Primary Use** | Designed for broadcasting and streaming (e.g., live TV, IPTV). | Versatile container for storage and playback of multimedia files. | +| **Streaming** | Optimized for real-time streaming; handles packet loss well. | Less optimized for live streaming, better for local storage and playback. | +| **Editing/Archiving** | Less suitable for editing or archiving. | Popular for editing, archiving, and general media distribution. | + +#### **Technical Differences** +| **Aspect** | **TS** | **MKV** | +|--------------------------|-----------------------------------------|------------------------------------------| +| **Structure** | Packet-based (fixed 188-byte packets). | Flexible and extensible structure. | +| **Codec Support** | Limited (commonly MPEG-2, H.264). | Broad codec support (H.264, H.265, VP9, AV1, FLAC, etc.). | +| **Error Resilience** | Designed to handle errors in transmission (e.g., packet loss). | No native error handling for streaming. | +| **Metadata Support** | Limited. | Rich metadata support (subtitles, chapters, tags). | + +#### **Features** +| **Aspect** | **TS** | **MKV** | +|--------------------------|-----------------------------------------|------------------------------------------| +| **File Size Overhead** | Slightly larger due to packetized structure. | Efficient, with minimal overhead. | +| **Subtitles** | Limited (basic support for teletext or DVB subtitles). | Comprehensive (supports SRT, ASS, PGS, etc.). | +| **Chapters** | No native support. | Full support for chapter markers. | +| **Compatibility** | Widely supported in streaming and broadcast systems. | Widely supported in media players. | + +#### **Pros and Cons** + +##### **TS (Transport Stream)** +Pros: +- Ideal for **real-time streaming** (e.g., live TV, IPTV). +- Handles **packet loss** effectively. +- Simple and efficient for broadcast systems. + +Cons: +- Limited codec and metadata support. +- Less efficient for storage (higher overhead). +- Poor support for advanced features like subtitles and chapters. + +##### **MKV (Matroska)** +Pros: +- Highly **versatile** and feature-rich. +- Supports almost any modern codec and **advanced features** like chapters, subtitles, and rich metadata. +- Efficient for **storage and playback**. + +Cons: +- Not optimized for real-time streaming. +- Slightly more complex structure, which might increase processing overhead. + +#### **When to Use Which?** +- **Use TS**: + - For **live streaming**, broadcast applications, or situations where error resilience is critical. + - When the source content is already in TS format (e.g., recorded TV streams). + +- **Use MKV**: + - For **local storage**, playback, or archiving of multimedia files. + - When advanced features like **subtitles, chapters, and multiple audio tracks** are needed. + - For transcoding or converting video into a more flexible and efficient format. + +### Conclusion + +I'll use mkv although there is a [compatibility issue with most common browsers](https://jellyfin.org/docs/general/clients/codec-support/#container-compatibility) as neither Chrome nor Firefox nor Safari supports it, this will result in remuxing. The video and audio codec will remain intact but wrapped in a supported container. This is the least intensive process. Most video containers will be remuxed to use the HLS streaming protocol and TS containers. Remuxing shouldn't be a concern even for an RPi3. + +It makes then sense to store it in mkv and let jellyfin remux it to TS. + +## [Select the subtitle format](https://jellyfin.org/docs/general/clients/codec-support/#container-compatibility) +Subtitles can be a subtle issue for transcoding. Containers have a limited number of subtitles that are supported. If subtitles need to be transcoded, it will happen one of two ways: they can be converted into another format that is supported, or burned into the video due to the subtitle transcoding not being supported. Burning in subtitles is the most intensive method of transcoding. This is due to two transcodings happening at once; applying the subtitle layer on top of the video layer. + +### Decide whether to use SRT or ASS for your subtitles + +Here's a comparison of ASS (Advanced SubStation Alpha) and SRT (SubRip Text) subtitle formats: + +ASS: Advanced formatting capabilities +- Complex styling options +- Supports multiple text colors within same subtitle +- Allows advanced positioning +- Supports animations and special effects +- Can include font styles, sizes, and colors +- Supports karaoke-style text highlighting + +SRT: Simple, basic formatting +- Plain text subtitles +- Limited styling options +- Basic positioning +- Primarily used for text translation +- Widely compatible across media players +- Simple structure with timecodes and text + +Technical Differences: +- ASS: More complex XML-like file structure +- SRT: Simple comma-separated text format + +Usage Scenarios: +- ASS: Anime, complex video subtitles, professional translations +- SRT: General video subtitles, simple translations, broad compatibility + +File Size: +- ASS: Larger due to extensive formatting information +- SRT: Smaller, more compact + +Compatibility: +- ASS: Limited to specific media players +- SRT: Near-universal support across platforms + +Recommendation: +- Use SRT for simplicity and compatibility +- Use ASS for advanced styling and professional subtitle work + +### Decide whether to extract the subtitles from the video file + +The choice between embedding subtitles within the file or keeping them as external `.srt` files depends on your specific needs, including convenience, compatibility, and flexibility. Here’s a breakdown of the advantages and disadvantages of each approach: + +#### Embedded Subtitles +Subtitles are included directly in the container file (e.g., MKV) as a separate track. + +##### Advantages +1. **Convenience**: + - All components (video, audio, subtitles) are stored in a single file, reducing the risk of losing or misplacing subtitle files. +2. **Portability**: + - Easier to share or move files without worrying about transferring separate subtitle files. +3. **Compatibility**: + - Modern media players (e.g., VLC, MPV, Plex) handle embedded subtitles well, ensuring smooth playback. +4. **Advanced Features**: + - Supports advanced formats (e.g., ASS, SSA) with styled text, positioning, and effects. +5. **Preservation**: + - Archival purposes benefit from keeping subtitles alongside the video for long-term consistency. + +##### Disadvantages +1. **Flexibility**: + - Harder to edit or replace subtitles without remuxing the file. +2. **Compatibility Issues**: + - Some older or less capable devices might not support embedded subtitles. +3. **File Size**: + - May slightly increase the file size, though the impact is usually minimal. + +#### External Subtitles +Subtitles are stored as separate `.srt`, `.ass`, or other subtitle files alongside the video file. + +##### Advantages +1. **Flexibility**: + - Easy to edit, replace, or update subtitles without altering the video file. +2. **Device Compatibility**: + - Some players and devices may prefer or require external subtitle files. +3. **Smaller File Size**: + - The video file remains slightly smaller without the subtitle track. +4. **Multilingual Support**: + - Easier to provide multiple subtitle files in different languages without duplicating the video file. + +##### Disadvantages +1. **Organization**: + - Managing separate files can be cumbersome, especially with large libraries. +2. **Risk of Loss**: + - Subtitles may become separated or lost over time if not managed properly. +3. **Limited Features**: + - Basic formats like `.srt` lack advanced styling and formatting options. + +#### Which Is Better? + +##### Use Embedded Subtitles If +- You want a **single, portable file** for simplicity and sharing. +- You are archiving your media for **long-term use** and want to preserve all components together. +- The subtitles use advanced formatting (e.g., ASS, SSA) or are graphical (e.g., PGS from Blu-rays). + +##### Use External Subtitles If +- You need to **edit, replace, or add subtitles** frequently. +- You want to support multiple subtitle languages for the same video. +- Compatibility with older devices or specific use cases requires it. + +### Conclusion + +I'll use SRT as the subtitles format as it's the simplest and most widely supported subtitle format. They won't be embedded into the video file for easier post-processing with Bazarr. So I'll configure the unmanic conversion from ASS to SRT and subtitle extraction steps. + +Even if TS doesn't support SRT I think that jellyfin handles this well. + +As I'm going to extract the subtitles with unmanic in a posterior step, I'm going to copy the subtitles streams directly in the transcoding `-c:s copy`. I saw that if you don't set it by default ffmpeg will convert embedded srt to ass, that would mean that in the transcoding I'll convert srt to ass and then in the unmanic post step it will move back to srt, which doesn't make sense. +Read more at [1](https://www.reddit.com/r/jellyfin/comments/qvb5k6/which_is_the_best_format_for_subtitles/). If you want to extract some subtitles from the mkv you can use [this script](https://gist.github.com/majora2007/724354d081627cfd96c24b8eefef4ec3) + +## Decide whether to use HDR or SDR + + +When the source video is in HDR, it will need to be tone-mapped to SDR when transcoding, as [Jellyfin currently doesn't support HDR to HDR tone-mapping](https://jellyfin.org/docs/general/server/transcoding/#hdr-to-sdr-tone-mapping), or passing through HDR metadata. While this can be done in software, it is very slow, and you may encounter situations where no modern consumer CPUs can transcode in real time. Therefore, a GPU is always recommended, where even a basic Intel iGPU can handle as much load as a Ryzen 5800X for this usecase. + +To check if my library contains many files that use HDR I've used this script: + +```python +#!/usr/bin/env python3 +import os +import subprocess +import sys + +# Define the video file extensions to look for +VIDEO_EXTENSIONS = {".mkv", ".mp4", ".avi", ".mov", ".wmv", ".flv"} + + +# Initialize counters +def process_directory(root_path): + total_files = 0 + hdr_files = [] + + # Function to check if a file has HDR metadata + def check_hdr(file_path): + try: + # Run ffprobe and capture output + result = subprocess.run( + ["ffprobe", "-i", file_path, "-hide_banner"], + stderr=subprocess.PIPE, + stdout=subprocess.PIPE, + text=True, + ) + # Search for HDR-related metadata + output = result.stderr + result.stdout + if any( + keyword in output + for keyword in [ + "color_primaries", + "transfer_characteristics", + "HDR_metadata", + ] + ): + return True + except Exception as e: + print(f"Error checking file {file_path}: {e}") + return False + + # Walk through all directories and subdirectories + for root, _, files in os.walk(root_path): + for file in files: + # Check if the file has a valid video extension + if os.path.splitext(file)[1].lower() in VIDEO_EXTENSIONS: + total_files += 1 + file_path = os.path.join(root, file) + print(f"Checking {file_path}") + + # Check for HDR metadata + if check_hdr(file_path): + hdr_files.append(file_path) + + # Display results + hdr_count = len(hdr_files) + if total_files > 0: + hdr_percentage = (hdr_count / total_files) * 100 + else: + hdr_percentage = 0 + + print("\nSummary for:", root_path) + print(f"Total video files checked: {total_files}") + print(f"Files with HDR metadata: {hdr_count}") + print(f"Percentage of HDR files: {hdr_percentage:.2f}%") + + # List all HDR files + if hdr_files: + print("\nHDR Files:") + for hdr_file in hdr_files: + print(hdr_file) + + +# Main script +if __name__ == "__main__": + if len(sys.argv) < 2: + print("Usage: python script.py [ ...]") + sys.exit(1) + + for path in sys.argv[1:]: + if os.path.exists(path) and os.path.isdir(path): + process_directory(path) + else: + print(f"Invalid path: {path}") +``` + +In my library I had no file that matched the HDR check above, so I guess I don't need it + +## Decide the number of workers + +I've seen that with just one worker my 16 CPU threads are fully utilised, so it looks that it makes no sense to increase the worker numbers, but [people suggest](https://www.reddit.com/r/Tdarr/comments/1cv1826/optimal_amount_of_workers/) to use at least two because even if it halves the fps, as there's an efficiency gain because after a transcode completes, it has to move it off the temp cache area, load in the next file, etc. The parallel transcode will just increase in usage until the first worker is transcoding again, and vice versa. + +[Unmanic documentation](https://docs.unmanic.app/docs/configuration/workers_settings/) suggest to start with one worker initially, and then increase this value slowly until you find the right balance of system resource use and task processing speed. They also say that for most people, there is no benefit to running more than 3-5 workers. Depending on the type of tasks you carry out, you may find diminishing returns increasing this value beyond 5. + +You can set schedules to pause and resume workers. This can be interesting if you want to only do transcoding when electricity is cheaper, or stop it when you need the CPU for example if you give service to other users and they have spikes in the resource consumption. + +In my case I'm going to use 3 workers the 24h until I solve the space issue I'm currently facing, and afterwards I'll only do it when the electricity is cheap. + +# Transcoding tools comparison + +- [Unmanic](unmanic.md): open source +- Tdarr: closed sourced +- Handbrake: ([home](https://handbrake.fr/), [source](https://github.com/HandBrake/HandBrake)) +- [ab-av1](https://github.com/alexheretic/ab-av1) +- [FileFlows](https://fileflows.com/) + +I ended up using [unmanic](unmanic.md). + +Read more about the comparison of tools on [1](https://wiki.x266.mov/blog/av1-for-dummies), [2](https://www.reddit.com/r/opensource/comments/1aoxloh/comment/kr4ehvc/) + +# Troubleshooting + + +## Input channel layout 5.1(side) detected, side channels will be mapped to back channels. + +Don't worry you won't loose the 5.1, it will just transform from 5.1(side) to 5.1 + +# References + +- [AV1 for dummies](https://wiki.x266.mov/blog/av1-for-dummies) +- [AOMediaCodec guide](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/Ffmpeg.md) +- [AV1 FAQ](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/CommonQuestions.md#what-presets-do) +- [Analysis on parameters for animation](https://wiki.x266.mov/blog/svt-av1-deep-dive#early-tldr-on-parameters-results) +- [Jellyfin megathread on AV1 configuration](https://forum.jellyfin.org/t-encoding-discussion-megathread-ffmpeg-handbrake-av1-etc) +- [SVT-AV1 parameter reference](https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/Parameters.md) +- [ffmpeg AV1 configuration reference](https://trac.ffmpeg.org/wiki/Encode/AV1) +- [Video encoding guide to AV1](https://forum.level1techs.com/t/video-encoding-to-av1-guide-wip/199694) +- [Comparison between x265 and AV1](https://www.free-codecs.com/guides/is-av1-better-than-h-265.htm) diff --git a/docs/unmanic.md b/docs/unmanic.md new file mode 100644 index 00000000000..248f0d7ab67 --- /dev/null +++ b/docs/unmanic.md @@ -0,0 +1,62 @@ +[Unmanic](https://github.com/Unmanic/unmanic) is a simple tool for optimising your file library. You can use it to convert your files into a single, uniform format, manage file movements based on timestamps, or execute custom commands against a file based on its file size. + + +Simply configure Unmanic pointing it at your library and let it automatically manage that library for you. + +Unmanic provides you with the following main functions: + +- A scheduler built in to scan your whole library for files that do not conform to your configured file presets. Files found requiring processing are then queued. +- A file/directory monitor. When a file is modified, or a new file is added in your library, Unmanic is able to again test that against your configured file presets. Like the first function, if this file requires processing, it is added to a queue for processing. +- A handler to manage running multiple file manipulation tasks at a time. +- A Web UI to easily configure, manage and monitor the progress of your library optimisation. + +You choose how you want your library to be. + +Some examples of how you may use Unmanic: + +- Transcode video or audio files into a uniform format using FFmpeg. +- Identify (and remove if desired) commercials in DVR recordings shortly after they have completed being recorded. +- Move files from one location to another after a configured period of time. +- Automatically execute FileBot rename files in your library as they are added. +- Compress files older than a specified age. +- Run any custom command against files matching a certain extension or above a configured file size. + +# [Installation](https://docs.unmanic.app/docs/installation/docker) + +# Configuration + +## Prioritise the bigger files + +Transcoding of big files yields better results, so it makes sense to prioritise the bigger files. A way to do it is to define different libraries pointing to the same path but using different priorities. For example I'm using: + +- Huge movies: + - path: `/libraries/movies` + - exclude: + - files smaller than 10GB + - priority: 1000 +- Big movies: + - path: `/libraries/movies` + - exclude: + - files smaller than 5GB + - files bigger than 10GB + - priority: 100 +- Small movies: + - path: `/libraries/movies` + - exclude: + - files bigger than 5GB + - priority: 1 + +# Troubleshooting + +## [Data panels don't have any data](https://github.com/Unmanic/unmanic/issues/318) + +You need to add the plugin to the worker process + +## [Data Panels give a DataTables warning](https://github.com/Unmanic/unmanic/issues/474) + +If when you open the Data Panel you get this pop up message that says "DataTables warning: table id=history_completed_tasks_table - Invalid JSON response. For more information about this error, please see https://datatables.net/tn/1" uninstall and reinstall the plugin. + +# References +- [Source](https://github.com/Unmanic/unmanic) +- [Docs](https://docs.unmanic.app/docs/) +- [API reference](https://unmanic.internal-services.duckdns.org/unmanic/swagger#/) diff --git a/docs/vim.md b/docs/vim.md index 7752d760fe5..ca5c7654973 100644 --- a/docs/vim.md +++ b/docs/vim.md @@ -42,9 +42,45 @@ Configuring `vim` is a never ending life experience. As such, it deserves it's o When you run into problems run `:checkhealth` to see if it rings a bell. If that doesn't help you maybe [I've encountered your particular problem](vim_troubleshooting.md). +## [Disable autoformat for some buffers](https://www.lazyvim.org/configuration/tips#disable-autoformat-for-some-buffers) + +If you want to disable autoformat for a certain buffer, then set `vim.b.autoformat = false` for that buffer. +```lua +-- Disable autoformat for lua files +vim.api.nvim_create_autocmd({ "FileType" }, { + pattern = { "lua" }, + callback = function() + vim.b.autoformat = false + end, +}) + +``` + +If you change your mind you can do uf to enable autoformat anyway for that buffer. ## [ is not well mapped](https://github.com/neovim/neovim/issues/5916) It's because `` is a synonym of ``. +# Debugging + +## Debugging with prints + +Add `echom` statements. For example: + +```vim +function! himalaya#domain#email#list_with(account, folder, page, query) abort + echom "Account: " . a:account + echom "Folder: " . a:folder + echom "Page: " . a:page + echom "Query: " . a:query + call himalaya#request#plain({ + \ 'cmd': 'envelope list --folder %s --account %s --max-width %d --page-size %d --page %d %s', + \ 'args': [shellescape(a:folder), shellescape(a:account), s:bufwidth(), winheight(0) - 1, a:page, a:query], + \ 'msg': printf('Fetching %s envelopes', a:folder), + \ 'on_data': {data -> s:list_with(a:folder, a:page, data)} + \}) +endfunction + +``` # Resources - [Home](https://neovim.io/) diff --git a/docs/vim_autosave.md b/docs/vim_autosave.md index d6d34601e1a..51546963603 100644 --- a/docs/vim_autosave.md +++ b/docs/vim_autosave.md @@ -27,6 +27,42 @@ It has some nice features }, ``` +## [Disable for specific filetypes](https://github.com/okuuva/auto-save.nvim?tab=readme-ov-file#condition) + +The `condition` field of the configuration allows the user to exclude **auto-save** from saving specific buffers. This can be useful for example if you have a broken LSP that is making editing the markdown files an absolute hell. + +Here is an example that disables auto-save for specified file types: + +```lua +{ + condition = function(buf) + local filetype = vim.fn.getbufvar(buf, "&filetype") + + -- don't save for `sql` file types + if vim.list_contains({ "markdown" }, filetype) then + return false + end + return true + end +} +``` + +You may also exclude `special-buffers` see (`:h buftype` and `:h special-buffers`): + +```lua +{ + condition = function(buf) + -- don't save for special-buffers + if vim.fn.getbufvar(buf, "&buftype") ~= '' then + return false + end + return true + end +} +``` + +Buffers that are `nomodifiable` are not saved by default. + # Usage diff --git a/docs/vim_completion.md b/docs/vim_completion.md new file mode 100644 index 00000000000..2af5e54850e --- /dev/null +++ b/docs/vim_completion.md @@ -0,0 +1,22 @@ + +# [blink](https://github.com/saghen/blink.cmp) + +blink.cmp is a completion plugin with support for LSPs and external sources that updates on every keystroke with minimal overhead (0.5-4ms async). + +Features + +- Works out of the box with no additional configuration +- Updates on every keystroke (0.5-4ms async, single core) +- Typo resistant fuzzy with frecency and proximity bonus +- Extensive LSP support (tracker) +- Native vim.snippet support (including friendly-snippets) +- External sources support (compatibility layer for nvim-cmp sources) +- Auto-bracket support based on semantic tokens +- Signature help (experimental, opt-in) +- Command line completion +- Comparison with nvim-cmp + +## [Installation](https://cmp.saghen.dev/) + +## References +- [Docs]( https://cmp.saghen.dev/) diff --git a/docs/vim_formatters.md b/docs/vim_formatters.md new file mode 100644 index 00000000000..d89f9df89ae --- /dev/null +++ b/docs/vim_formatters.md @@ -0,0 +1,25 @@ + +# Whether to use conform.nvim or none-ls.nvim + +Lazyvim doesn't install it by default since [10.x](https://www.lazyvim.org/news#10x) +- conform.nvim is now the default formatter +- nvim-lint is now the default linter + +## AI answer + +I recommend conform.nvim over none-ls.nvim for code formatting for several key reasons: + +1. conform.nvim is actively maintained and has a clearer future, while none-ls.nvim (formerly null-ls) is in maintenance mode since its original author stepped down + +2. conform.nvim has better performance because it: + - Uses Neovim's built-in LSP client + - Runs formatters in parallel + - Formats code asynchronously + +3. conform.nvim has simpler configuration since it focuses solely on formatting, while none-ls handles multiple concerns (formatting, diagnostics, code actions) + +4. It works seamlessly with LSP formatting and allows you to chain multiple formatters together + +However, if you specifically need diagnostics or code actions that aren't available through regular LSP servers, none-ls.nvim might still be useful as part of your setup. But for pure formatting needs, conform.nvim is the better choice. + + diff --git a/docs/vim_plugin_development.md b/docs/vim_plugin_development.md index a2559510d5c..bf87291b3e1 100644 --- a/docs/vim_plugin_development.md +++ b/docs/vim_plugin_development.md @@ -116,6 +116,8 @@ What this does: backtrace. - Override Neovim's `vim.print`, which is also used by `:= {something = 123}` +You can't use `debug` instead of `dd` because nvim fails to start :( + ![image](https://github.com/user-attachments/assets/0517aed7-fbd0-42ee-8058-c213410d80a7) ## Debugging with prints diff --git a/docs/zfs_storage_planning.md b/docs/zfs_storage_planning.md index 99aeb44b7c9..9da28baa676 100644 --- a/docs/zfs_storage_planning.md +++ b/docs/zfs_storage_planning.md @@ -129,7 +129,7 @@ The last pitfall to avoid is shingled magnetic recording (SMR) technology. ZFS [performs poorly on SMR drives](https://www.servethehome.com/wd-red-smr-vs-cmr-tested-avoid-red-smr/), so if you’re building a NAS, avoid [known SMR drives](https://www.truenas.com/community/resources/list-of-known-smr-drives.141/). -If the drive is labeled as CMR, that’s conventional magnetic recording, which is +If the drive is labeled as CMR ([or PMR](https://en.m.wikipedia.org/wiki/Perpendicular_recording)), that’s conventional magnetic recording, which is fine for ZFS. SMR is well suited for high-capacity, low-cost use where writes are few and @@ -158,6 +158,21 @@ same RPM and size. Disks are going to fail, so it's good to have a good warranty to return them. +### Data disk gas + +Manufacturers have adopted helium as the internal gas for mechanical hard drives with capacities of 4TB and above in a 3.5-inch format. While this change improves energy efficiency by reducing aerodynamic drag, it also introduces a long-term reliability concern. + +Over time (typically around 10 years), helium atoms gradually escape through even perfectly hermetic metal enclosures due to their small size. This causes: + +1. Decreasing internal helium pressure +2. Increased likelihood of head-platter contact and erosion +3. Potential data loss + +External air cannot re-enter the drive to refill these gaps, as air atoms are too large to pass through metal. Consequently, heads require sufficient helium pressure to fly above platters without touching them. Once the internal helium pressure drops too low, heads will land on platters, causing erosion and eventual failure. + +Hard drive manufacturers offer limited warranties (typically 5 years) for helium-sealed drives, acknowledging this gradual performance degradation. While under warranty, these issues are unlikely to manifest; however, all units will eventually succumb to helium escape and increased head-disk interference. + +You can read more of this issue in [1](https://www.truenas.com/community/threads/helium-drives-long-term-use.96649/), [2](https://linustechtips.com/topic/1359644-helium-hdd-health-update-after-5-years/), [3](https://foro.noticias3d.com/vbulletin/showthread.php?t=468562), [4](https://blog.westerndigital.com/helium-hard-drives-explained/) ### [Data disk brands](https://www.nasmaster.com/best-nas-drives/) #### [Western Digital](https://www.nasmaster.com/wd-red-vs-red-plus-vs-red-pro-nas-hdd/) @@ -167,26 +182,26 @@ offering and you should consider these if you can find them at more affordable prices. WD splits its NAS drives into three sub-categories, normal, Plus, and Pro. -| Specs | WD Red | WD Red Plus | WD Red Pro | -| ---------------------- | --------- | ------------------ | --------------- | -| Technology | SMR | CMR | CMR | -| Bays | 1-8 | 1-8 | 1-24 | -| Capacity | 2-6TB | 1-14TB | 2-18TB | -| Speed | 5,400 RPM | 5,400 RPM (1-4TB) | 7200 RPM | -| Speed | 5,400 RPM | 5,640 RPM (6-8TB) | 7200 RPM | -| Speed | 5,400 RPM | 7,200 RPM (8-14TB) | 7200 RPM | -| Speed | ? | 210MB/s | 235MB/s | -| Cache | 256MB | 16MB (1TB) | | -| Cache | 256MB | 64MB (1TB) | 64MB (2TB) | -| Cache | 256MB | 128MB (2-8TB) | 256MB (4-12TB) | -| Cache | 256MB | 256MB (8-12TB) | 512MB (14-18TB) | -| Cache | 256MB | 512MB (14TB) | | -| Workload | 180TB/yr | 180TB/yr | 300TB/yr | -| MTBF | 1 million | 1 million | 1 million | -| Warranty | 3 years | 3 years | 5 years | -| Power Consumption | ? | ? | 8.8 W | -| Power Consumption Rest | ? | ? | 4.6 W | -| Price | From $50 | From $45 | From $78 | +| Specs | WD Red | WD Red Plus | WD Red Pro | WD Ultrastar HC520 | +| ---------------------- | --------- | ------------------ | --------------- | --- | +| Technology | SMR | CMR | CMR | PMR | +| Bays | 1-8 | 1-8 | 1-24 | | +| Capacity | 2-6TB | 1-14TB | 2-18TB | 12TB | +| Speed | 5,400 RPM | 5,400 RPM (1-4TB) | 7200 RPM | 7200 RPM | +| Speed | 5,400 RPM | 5,640 RPM (6-8TB) | 7200 RPM | 7200 RPM | +| Speed | 5,400 RPM | 7,200 RPM (8-14TB) | 7200 RPM | 7200 RPM | +| Speed | ? | 210MB/s | 235MB/s | 255 MB/s | +| Cache | 256MB | 16MB (1TB) | | 256 MB | +| Cache | 256MB | 64MB (1TB) | 64MB (2TB) | 256 MB | +| Cache | 256MB | 128MB (2-8TB) | 256MB (4-12TB) | 256 MB | +| Cache | 256MB | 256MB (8-12TB) | 512MB (14-18TB) | 256 MB | +| Cache | 256MB | 512MB (14TB) | | 256 MB | +| Workload | 180TB/yr | 180TB/yr | 300TB/yr | | +| MTBF | 1 million | 1 million | 1 million | 2.5 M | +| Warranty | 3 years | 3 years | 5 years | 5 years | +| Power Consumption | ? | ? | 8.8 W | 5.0 W | +| Power Consumption Rest | ? | ? | 4.6 W | 6.9 W | +| Price | From $50 | From $45 | From $78 | | #### Seagate diff --git a/mkdocs.yml b/mkdocs.yml index a2093001751..7d0201801c2 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -12,7 +12,9 @@ nav: - antifascism.md - Antifascist Actions: antifascist_actions.md - Hacktivism: - - Gatherings: hacktivist_gatherings.md + - Gatherings: + - hacktivist_gatherings.md + - Chaos Communication Congress: ccc.md - Collectives: hacktivist_collectives.md - Tools: - Mobile Verification Toolkit: mobile_verification_toolkit.md @@ -43,7 +45,6 @@ nav: - Action Management: action_management.md - Roadmap Adjustment: - roadmap_adjustment.md - - Life review: life_review.md - Strategy: strategy.md - Systems Thinking: systems_thinking.md - Roadmap Management Tools: @@ -130,6 +131,9 @@ nav: - Ombi: ombi.md - Mediatracker: mediatracker.md - ffmpeg: ffmpeg.md + - transcoding: + - transcoding.md + - unmanic: unmanic.md - Kodi: kodi.md - News Management: - news_management.md @@ -366,6 +370,8 @@ nav: - Telescope: telescope.md - Editing specific configuration: - vim_editor_plugins.md + - Vim formatters: vim_formatters.md + - Vim autocomplete: vim_completion.md - Vim markdown: vim_markdown.md - Vim spelling: vim_spelling.md - Vim autosave: vim_autosave.md