pip install "paddleocr>=2.3.0.2" # 推荐使用2.3.0.2+版本
pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
# 安装 PaddleNLP
git clone https://github.com/PaddlePaddle/PaddleNLP -b develop
cd PaddleNLP
pip3 install -e .
- 版面分析+表格识别
paddleocr --image_dir=../doc/table/1.png --type=structure
- VQA
coming soon
- 版面分析+表格识别
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res
table_engine = PPStructure(show_log=True)
save_folder = './output/table'
img_path = '../doc/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
from PIL import Image
font_path = '../doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
- VQA
comming soon
PP-Structure的返回结果为一个dict组成的list,示例如下
- 版面分析+表格识别
[
{ 'type': 'Text',
'bbox': [34, 432, 345, 462],
'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
[('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent ', 0.465441)])
}
]
dict 里各个字段说明如下
字段 | 说明 |
---|---|
type | 图片区域的类型 |
bbox | 图片区域的在原图的坐标,分别[左上角x,左上角y,右下角x,右下角y] |
res | 图片区域的OCR或表格识别结果。 表格: 表格的HTML字符串; OCR: 一个包含各个单行文字的检测坐标和识别结果的元组 |
- VQA
comming soon
字段 | 说明 | 默认值 |
---|---|---|
output | excel和识别结果保存的地址 | ./output/table |
table_max_len | 表格结构模型预测时,图像的长边resize尺度 | 488 |
table_model_dir | 表格结构模型 inference 模型地址 | None |
table_char_type | 表格结构模型所用字典地址 | ../ppocr/utils/dict/table_structure_dict.txt |
model_name_or_path | VQA SER模型地址 | None |
max_seq_length | VQA SER模型最大支持token长度 | 512 |
label_map_path | VQA SER 标签文件地址 | ./vqa/labels/labels_ser.txt |
mode | pipeline预测模式,structure: 版面分析+表格识别; vqa: ser文档信息抽取 | structure |
大部分参数和paddleocr whl包保持一致,见 whl包文档
运行完成后,每张图片会在output
字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。
- 版面分析+表格识别
cd ppstructure
# 下载模型
mkdir inference && cd inference
# 下载超轻量级中文OCR模型的检测模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar
# 下载超轻量级中文OCR模型的识别模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
# 下载超轻量级英文表格英寸模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd ..
python3 predict_system.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
--rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
--table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer \
--image_dir=../doc/table/1.png \
--rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \
--table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt \
--output=../output/table \
--vis_font_path=../doc/fonts/simfang.ttf
运行完成后,每张图片会在output
字段指定的目录下的talbe
目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。
- VQA
cd ppstructure
# 下载模型
mkdir inference && cd inference
# 下载SER xfun 模型并解压
wget https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_ser_pretrained.tar && tar xf PP-Layout_v1.0_ser_pretrained.tar
cd ..
python3 predict_system.py --model_name_or_path=vqa/PP-Layout_v1.0_ser_pretrained/ \
--mode=vqa \
--image_dir=vqa/images/input/zh_val_0.jpg \
--vis_font_path=../doc/fonts/simfang.ttf
运行完成后,每张图片会在output
字段指定的目录下的vqa
目录下存放可视化之后的图片,图片名和输入图片名一致。