本文提供了PaddleOCR表格识别模型的全流程指南,包括数据准备、模型训练、调优、评估、预测,各个阶段的详细说明:
PaddleOCR 表格识别模型数据集格式如下:
img_label # 每张图片标注经过json.dumps()之后的字符串
...
img_label
每一行的json格式为:
{
'filename': PMC5755158_010_01.png, # 图像名
'split': ’train‘, # 图像属于训练集还是验证集
'imgid': 0, # 图像的index
'html': {
'structure': {'tokens': ['<thead>', '<tr>', '<td>', ...]}, # 表格的HTML字符串
'cell': [
{
'tokens': ['P', 'a', 'd', 'd', 'l', 'e', 'P', 'a', 'd', 'd', 'l', 'e'], # 表格中的单个文本
'bbox': [x0, y0, x1, y1] # 表格中的单个文本的坐标
}
]
}
}
训练数据的默认存储路径是 PaddleOCR/train_data
,如果您的磁盘上已有数据集,只需创建软链接至数据集目录:
# linux and mac os
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
# windows
mklink /d <path/to/paddle_ocr>/train_data/dataset <path/to/dataset>
公开数据集下载可参考 table_datasets。
使用TableGeneration可进行扫描表格图像的生成。
TableGeneration是一个开源表格数据集生成工具,其通过浏览器渲染的方式对html字符串进行渲染后获得表格图像。部分样张如下:
类型 | 样例 |
---|---|
简单表格 | |
彩色表格 |
PaddleOCR提供了训练脚本、评估脚本和预测脚本,本节将以 SLANet 模型训练PubTabNet英文数据集为例:
如果您安装的是cpu版本,请将配置文件中的 use_gpu
字段修改为false
# GPU训练 支持单卡,多卡训练
# 训练日志会自动保存为 "{save_model_dir}" 下的train.log
#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/table/SLANet.yml
#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/table/SLANet.yml
正常启动训练后,会看到以下log输出:
[2022/08/16 03:07:33] ppocr INFO: epoch: [1/400], global_step: 20, lr: 0.000100, acc: 0.000000, loss: 3.915012, structure_loss: 3.229450, loc_loss: 0.670590, avg_reader_cost: 2.63382 s, avg_batch_cost: 6.32390 s, avg_samples: 48.0, ips: 7.59025 samples/s, eta: 9 days, 2:29:27
[2022/08/16 03:08:41] ppocr INFO: epoch: [1/400], global_step: 40, lr: 0.000100, acc: 0.000000, loss: 1.750859, structure_loss: 1.082116, loc_loss: 0.652822, avg_reader_cost: 0.02533 s, avg_batch_cost: 3.37251 s, avg_samples: 48.0, ips: 14.23271 samples/s, eta: 6 days, 23:28:43
[2022/08/16 03:09:46] ppocr INFO: epoch: [1/400], global_step: 60, lr: 0.000100, acc: 0.000000, loss: 1.395154, structure_loss: 0.776803, loc_loss: 0.625030, avg_reader_cost: 0.02550 s, avg_batch_cost: 3.26261 s, avg_samples: 48.0, ips: 14.71214 samples/s, eta: 6 days, 5:11:48
log 中自动打印如下信息:
字段 | 含义 |
---|---|
epoch | 当前迭代轮次 |
global_step | 当前迭代次数 |
lr | 当前学习率 |
acc | 当前batch的准确率 |
loss | 当前损失函数 |
structure_loss | 表格结构损失值 |
loc_loss | 单元格坐标损失值 |
avg_reader_cost | 当前 batch 数据处理耗时 |
avg_batch_cost | 当前 batch 总耗时 |
avg_samples | 当前 batch 内的样本数 |
ips | 每秒处理图片的数量 |
PaddleOCR支持训练和评估交替进行, 可以在 configs/table/SLANet.yml
中修改 eval_batch_step
设置评估频率,默认每1000个iter评估一次。评估过程中默认将最佳acc模型,保存为 output/SLANet/best_accuracy
。
如果验证集很大,测试将会比较耗时,建议减少评估次数,或训练完再进行评估。
提示: 可通过 -c 参数选择 configs/table/
路径下的多种模型配置进行训练,PaddleOCR支持的表格识别算法可以参考前沿算法列表:
注意,预测/评估时的配置文件请务必与训练一致。
如果训练程序中断,如果希望加载训练中断的模型从而恢复训练,可以通过指定Global.checkpoints指定要加载的模型路径:
python3 tools/train.py -c configs/table/SLANet.yml -o Global.checkpoints=./your/trained/model
注意:Global.checkpoints
的优先级高于Global.pretrained_model
的优先级,即同时指定两个参数时,优先加载Global.checkpoints
指定的模型,如果Global.checkpoints
指定的模型路径有误,会加载Global.pretrained_model
指定的模型。
PaddleOCR将网络划分为四部分,分别在ppocr/modeling下。 进入网络的数据将按照顺序(transforms->backbones->necks->heads)依次通过这四个部分。
├── architectures # 网络的组网代码
├── transforms # 网络的图像变换模块
├── backbones # 网络的特征提取模块
├── necks # 网络的特征增强模块
└── heads # 网络的输出模块
如果要更换的Backbone 在PaddleOCR中有对应实现,直接修改配置yml文件中Backbone
部分的参数即可。
如果要使用新的Backbone,更换backbones的例子如下:
- 在 ppocr/modeling/backbones 文件夹下新建文件,如my_backbone.py。
- 在 my_backbone.py 文件内添加相关代码,示例代码如下:
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class MyBackbone(nn.Layer):
def __init__(self, *args, **kwargs):
super(MyBackbone, self).__init__()
# your init code
self.conv = nn.xxxx
def forward(self, inputs):
# your network forward
y = self.conv(inputs)
return y
- 在 ppocr/modeling/backbones/_init_.py文件内导入添加的
MyBackbone
模块,然后修改配置文件中Backbone进行配置即可使用,格式如下:
Backbone:
name: MyBackbone
args1: args1
注意:如果要更换网络的其他模块,可以参考文档。
如果您想进一步加快训练速度,可以使用自动混合精度训练, 以单机单卡为例,命令如下:
python3 tools/train.py -c configs/table/SLANet.yml \
-o Global.pretrained_model=./pretrain_models/SLANet/best_accuracy \
Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
多机多卡训练时,通过 --ips
参数设置使用的机器IP地址,通过 --gpus
参数设置使用的GPU ID:
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/table/SLANet.yml \
-o Global.pretrained_model=./pretrain_models/SLANet/best_accuracy
注意: (1)采用多机多卡训练时,需要替换上面命令中的ips值为您机器的地址,机器之间需要能够相互ping通;(2)训练时需要在多个机器上分别启动命令。查看机器ip地址的命令为ifconfig
;(3)更多关于分布式训练的性能优势等信息,请参考:分布式训练教程。
-
Windows GPU/CPU 在Windows平台上与Linux平台略有不同: Windows平台只支持
单卡
的训练与预测,指定GPU进行训练set CUDA_VISIBLE_DEVICES=0
在Windows平台,DataLoader只支持单进程模式,因此需要设置num_workers
为0; -
macOS 不支持GPU模式,需要在配置文件中设置
use_gpu
为False,其余训练评估预测命令与Linux GPU完全相同。 -
Linux DCU DCU设备上运行需要设置环境变量
export HIP_VISIBLE_DEVICES=0,1,2,3
,其余训练评估预测命令与Linux GPU完全相同。
实际使用过程中,建议加载官方提供的预训练模型,在自己的数据集中进行微调,关于模型的微调方法,请参考:模型微调教程。
训练中模型参数默认保存在Global.save_model_dir
目录下。在评估指标时,需要设置Global.checkpoints
指向保存的参数文件。评估数据集可以通过 configs/table/SLANet.yml
修改Eval中的 label_file_list
设置。
# GPU 评估, Global.checkpoints 为待测权重
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/table/SLANet.yml -o Global.checkpoints={path/to/weights}/best_accuracy
运行完成后,会输出模型的acc指标,如对英文表格识别模型进行评估,会见到如下输出。
[2022/08/16 07:59:55] ppocr INFO: acc:0.7622245132160782
[2022/08/16 07:59:55] ppocr INFO: fps:30.991640622573044
使用 PaddleOCR 训练好的模型,可以通过以下脚本进行快速预测。
默认预测图片存储在 infer_img
里,通过 -o Global.checkpoints
加载训练好的参数文件:
根据配置文件中设置的 save_model_dir
和 save_epoch_step
字段,会有以下几种参数被保存下来:
output/SLANet/
├── best_accuracy.pdopt
├── best_accuracy.pdparams
├── best_accuracy.states
├── config.yml
├── latest.pdopt
├── latest.pdparams
├── latest.states
└── train.log
其中 best_accuracy.* 是评估集上的最优模型;latest.* 是最后一个epoch的模型。
# 预测表格图像
python3 tools/infer_table.py -c configs/table/SLANet.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=ppstructure/docs/table/table.jpg
预测图片:
得到输入图像的预测结果:
['<html>', '<body>', '<table>', '<thead>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '</thead>', '<tbody>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '</tbody>', '</table>', '</body>', '</html>'],[[320.0562438964844, 197.83375549316406, 350.0928955078125, 214.4309539794922], ... , [318.959228515625, 271.0166931152344, 353.7394104003906, 286.4538269042969]]
单元格坐标可视化结果为
inference 模型(paddle.jit.save
保存的模型)
一般是模型训练,把模型结构和模型参数保存在文件中的固化模型,多用于预测部署场景。
训练过程中保存的模型是checkpoints模型,保存的只有模型的参数,多用于恢复训练等。
与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成。
表格识别模型转inference模型与文字检测识别的方式相同,如下:
# -c 后面设置训练算法的yml配置文件
# -o 配置可选参数
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。
python3 tools/export_model.py -c configs/table/SLANet.yml -o Global.pretrained_model=./pretrain_models/SLANet/best_accuracy Global.save_inference_dir=./inference/SLANet/
转换成功后,在目录下有三个文件:
inference/SLANet/
├── inference.pdiparams # inference模型的参数文件
├── inference.pdiparams.info # inference模型的参数信息,可忽略
└── inference.pdmodel # inference模型的program文件
模型导出后,使用如下命令即可完成inference模型的预测
python3.7 table/predict_structure.py \
--table_model_dir={path/to/inference model} \
--table_char_dict_path=../ppocr/utils/dict/table_structure_dict_ch.txt \
--image_dir=docs/table/table.jpg \
--output=../output/table
预测图片:
得到输入图像的预测结果:
['<html>', '<body>', '<table>', '<thead>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '</thead>', '<tbody>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '</tbody>', '</table>', '</body>', '</html>'],[[320.0562438964844, 197.83375549316406, 350.0928955078125, 214.4309539794922], ... , [318.959228515625, 271.0166931152344, 353.7394104003906, 286.4538269042969]]
单元格坐标可视化结果为
Q1: 训练模型转inference 模型之后预测效果不一致?
A:此类问题出现较多,问题多是trained model预测时候的预处理、后处理参数和inference model预测的时候的预处理、后处理参数不一致导致的。可以对比训练使用的配置文件中的预处理、后处理和预测时是否存在差异。