forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 6
/
rnn.py
245 lines (218 loc) · 8.31 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
from ppocr.modeling.heads.rec_ctc_head import get_para_bias_attr
from ppocr.modeling.backbones.rec_svtrnet import Block, ConvBNLayer, trunc_normal_, zeros_, ones_
class Im2Seq(nn.Layer):
def __init__(self, in_channels, **kwargs):
super().__init__()
self.out_channels = in_channels
def forward(self, x):
B, C, H, W = x.shape
assert H == 1
x = x.squeeze(axis=2)
x = x.transpose([0, 2, 1]) # (NTC)(batch, width, channels)
return x
class EncoderWithRNN(nn.Layer):
def __init__(self, in_channels, hidden_size):
super(EncoderWithRNN, self).__init__()
self.out_channels = hidden_size * 2
self.lstm = nn.LSTM(
in_channels, hidden_size, direction='bidirectional', num_layers=2)
def forward(self, x):
x, _ = self.lstm(x)
return x
class BidirectionalLSTM(nn.Layer):
def __init__(self, input_size,
hidden_size,
output_size=None,
num_layers=1,
dropout=0,
direction=False,
time_major=False,
with_linear=False):
super(BidirectionalLSTM, self).__init__()
self.with_linear = with_linear
self.rnn = nn.LSTM(input_size,
hidden_size,
num_layers=num_layers,
dropout=dropout,
direction=direction,
time_major=time_major)
# text recognition the specified structure LSTM with linear
if self.with_linear:
self.linear = nn.Linear(hidden_size * 2, output_size)
def forward(self, input_feature):
recurrent, _ = self.rnn(input_feature) # batch_size x T x input_size -> batch_size x T x (2*hidden_size)
if self.with_linear:
output = self.linear(recurrent) # batch_size x T x output_size
return output
return recurrent
class EncoderWithCascadeRNN(nn.Layer):
def __init__(self, in_channels, hidden_size, out_channels, num_layers=2, with_linear=False):
super(EncoderWithCascadeRNN, self).__init__()
self.out_channels = out_channels[-1]
self.encoder = nn.LayerList(
[BidirectionalLSTM(
in_channels if i == 0 else out_channels[i - 1],
hidden_size,
output_size=out_channels[i],
num_layers=1,
direction='bidirectional',
with_linear=with_linear)
for i in range(num_layers)]
)
def forward(self, x):
for i, l in enumerate(self.encoder):
x = l(x)
return x
class EncoderWithFC(nn.Layer):
def __init__(self, in_channels, hidden_size):
super(EncoderWithFC, self).__init__()
self.out_channels = hidden_size
weight_attr, bias_attr = get_para_bias_attr(
l2_decay=0.00001, k=in_channels)
self.fc = nn.Linear(
in_channels,
hidden_size,
weight_attr=weight_attr,
bias_attr=bias_attr,
name='reduce_encoder_fea')
def forward(self, x):
x = self.fc(x)
return x
class EncoderWithSVTR(nn.Layer):
def __init__(
self,
in_channels,
dims=64, # XS
depth=2,
hidden_dims=120,
use_guide=False,
num_heads=8,
qkv_bias=True,
mlp_ratio=2.0,
drop_rate=0.1,
attn_drop_rate=0.1,
drop_path=0.,
qk_scale=None):
super(EncoderWithSVTR, self).__init__()
self.depth = depth
self.use_guide = use_guide
self.conv1 = ConvBNLayer(
in_channels, in_channels // 8, padding=1, act=nn.Swish)
self.conv2 = ConvBNLayer(
in_channels // 8, hidden_dims, kernel_size=1, act=nn.Swish)
self.svtr_block = nn.LayerList([
Block(
dim=hidden_dims,
num_heads=num_heads,
mixer='Global',
HW=None,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
act_layer=nn.Swish,
attn_drop=attn_drop_rate,
drop_path=drop_path,
norm_layer='nn.LayerNorm',
epsilon=1e-05,
prenorm=False) for i in range(depth)
])
self.norm = nn.LayerNorm(hidden_dims, epsilon=1e-6)
self.conv3 = ConvBNLayer(
hidden_dims, in_channels, kernel_size=1, act=nn.Swish)
# last conv-nxn, the input is concat of input tensor and conv3 output tensor
self.conv4 = ConvBNLayer(
2 * in_channels, in_channels // 8, padding=1, act=nn.Swish)
self.conv1x1 = ConvBNLayer(
in_channels // 8, dims, kernel_size=1, act=nn.Swish)
self.out_channels = dims
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
def forward(self, x):
# for use guide
if self.use_guide:
z = x.clone()
z.stop_gradient = True
else:
z = x
# for short cut
h = z
# reduce dim
z = self.conv1(z)
z = self.conv2(z)
# SVTR global block
B, C, H, W = z.shape
z = z.flatten(2).transpose([0, 2, 1])
for blk in self.svtr_block:
z = blk(z)
z = self.norm(z)
# last stage
z = z.reshape([0, H, W, C]).transpose([0, 3, 1, 2])
z = self.conv3(z)
z = paddle.concat((h, z), axis=1)
z = self.conv1x1(self.conv4(z))
return z
class SequenceEncoder(nn.Layer):
def __init__(self, in_channels, encoder_type, hidden_size=48, **kwargs):
super(SequenceEncoder, self).__init__()
self.encoder_reshape = Im2Seq(in_channels)
self.out_channels = self.encoder_reshape.out_channels
self.encoder_type = encoder_type
if encoder_type == 'reshape':
self.only_reshape = True
else:
support_encoder_dict = {
'reshape': Im2Seq,
'fc': EncoderWithFC,
'rnn': EncoderWithRNN,
'svtr': EncoderWithSVTR,
'cascadernn': EncoderWithCascadeRNN
}
assert encoder_type in support_encoder_dict, '{} must in {}'.format(
encoder_type, support_encoder_dict.keys())
if encoder_type == "svtr":
self.encoder = support_encoder_dict[encoder_type](
self.encoder_reshape.out_channels, **kwargs)
elif encoder_type == 'cascadernn':
self.encoder = support_encoder_dict[encoder_type](
self.encoder_reshape.out_channels, hidden_size, **kwargs)
else:
self.encoder = support_encoder_dict[encoder_type](
self.encoder_reshape.out_channels, hidden_size)
self.out_channels = self.encoder.out_channels
self.only_reshape = False
def forward(self, x):
if self.encoder_type != 'svtr':
x = self.encoder_reshape(x)
if not self.only_reshape:
x = self.encoder(x)
return x
else:
x = self.encoder(x)
x = self.encoder_reshape(x)
return x