-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheffects.h
639 lines (499 loc) · 15.8 KB
/
effects.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
// Graphical effects to run on the RGB Shades LED array
// Each function should have the following components:
// * Must be declared void with no parameters or will break function pointer array
// * Check effectInit, if false then init any required settings and set effectInit true
// * Set effectDelay (the time in milliseconds until the next run of this effect)
// * All animation should be controlled with counters and effectDelay, no delay() or loops
// * Pixel data should be written using leds[XY(x,y)] to map coordinates to the RGB Shades layout
// Triple Sine Waves
void threeSine() {
static byte sineOffset = 0; // counter for current position of sine waves
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 20;
}
// Draw one frame of the animation into the LED array
for (byte x = 0; x < kMatrixWidth; x++) {
for (int y = 0; y < kMatrixHeight; y++) {
// Calculate "sine" waves with varying periods
// sin8 is used for speed; cos8, quadwave8, or triwave8 would also work here
byte sinDistanceR = qmul8(abs(y * (255 / kMatrixHeight) - sin8(sineOffset * 9 + x * 16)), 2);
byte sinDistanceG = qmul8(abs(y * (255 / kMatrixHeight) - sin8(sineOffset * 10 + x * 16)), 2);
byte sinDistanceB = qmul8(abs(y * (255 / kMatrixHeight) - sin8(sineOffset * 11 + x * 16)), 2);
leds[XY(x, y)] = CRGB(255 - sinDistanceR, 255 - sinDistanceG, 255 - sinDistanceB);
}
}
sineOffset++; // byte will wrap from 255 to 0, matching sin8 0-255 cycle
}
// RGB Plasma
void plasma() {
static byte offset = 0; // counter for radial color wave motion
static int plasVector = 0; // counter for orbiting plasma center
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 10;
}
// Calculate current center of plasma pattern (can be offscreen)
int xOffset = cos8(plasVector / 256);
int yOffset = sin8(plasVector / 256);
// Draw one frame of the animation into the LED array
for (int x = 0; x < kMatrixWidth; x++) {
for (int y = 0; y < kMatrixHeight; y++) {
byte color = sin8(sqrt(sq(((float)x - 7.5) * 10 + xOffset - 127) + sq(((float)y - 2) * 10 + yOffset - 127)) + offset);
leds[XY(x, y)] = CHSV(color, 255, 255);
}
}
offset++; // wraps at 255 for sin8
plasVector += 16; // using an int for slower orbit (wraps at 65536)
}
// Scanning pattern left/right, uses global hue cycle
void rider() {
static byte riderPos = 0;
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 5;
riderPos = 0;
}
// Draw one frame of the animation into the LED array
for (byte x = 0; x < kMatrixWidth; x++) {
int brightness = abs(x * (256 / kMatrixWidth) - triwave8(riderPos) * 2 + 127) * 3;
if (brightness > 255) brightness = 255;
brightness = 255 - brightness;
CRGB riderColor = CHSV(cycleHue, 255, brightness);
for (byte y = 0; y < kMatrixHeight; y++) {
leds[XY(x, y)] = riderColor;
}
}
riderPos++; // byte wraps to 0 at 255, triwave8 is also 0-255 periodic
}
// Shimmering noise, uses global hue cycle
void glitter() {
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 15;
}
// Draw one frame of the animation into the LED array
for (int x = 0; x < kMatrixWidth; x++) {
for (int y = 0; y < kMatrixHeight; y++) {
leds[XY(x, y)] = CHSV(cycleHue, 255, random8(5) * 63);
}
}
}
// Fills saturated colors into the array from alternating directions
void colorFill() {
static byte currentColor = 0;
static byte currentRow = 0;
static byte currentDirection = 0;
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 45;
currentColor = 0;
currentRow = 0;
currentDirection = 0;
currentPalette = RainbowColors_p;
}
// test a bitmask to fill up or down when currentDirection is 0 or 2 (0b00 or 0b10)
if (!(currentDirection & 1)) {
effectDelay = 45; // slower since vertical has fewer pixels
for (byte x = 0; x < kMatrixWidth; x++) {
byte y = currentRow;
if (currentDirection == 2) y = kMatrixHeight - 1 - currentRow;
leds[XY(x, y)] = currentPalette[currentColor];
}
}
// test a bitmask to fill left or right when currentDirection is 1 or 3 (0b01 or 0b11)
if (currentDirection & 1) {
effectDelay = 20; // faster since horizontal has more pixels
for (byte y = 0; y < kMatrixHeight; y++) {
byte x = currentRow;
if (currentDirection == 3) x = kMatrixWidth - 1 - currentRow;
leds[XY(x, y)] = currentPalette[currentColor];
}
}
currentRow++;
// detect when a fill is complete, change color and direction
if ((!(currentDirection & 1) && currentRow >= kMatrixHeight) || ((currentDirection & 1) && currentRow >= kMatrixWidth)) {
currentRow = 0;
currentColor += random8(3, 6);
if (currentColor > 15) currentColor -= 16;
currentDirection++;
if (currentDirection > 3) currentDirection = 0;
effectDelay = 300; // wait a little bit longer after completing a fill
}
}
// Emulate 3D anaglyph glasses
void threeDee() {
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 50;
}
for (byte x = 0; x < kMatrixWidth; x++) {
for (byte y = 0; y < kMatrixHeight; y++) {
if (x < 7) {
leds[XY(x, y)] = CRGB::Blue;
} else if (x > 8) {
leds[XY(x, y)] = CRGB::Red;
} else {
leds[XY(x, y)] = CRGB::Black;
}
}
}
leds[XY(6, 0)] = CRGB::Black;
leds[XY(9, 0)] = CRGB::Black;
}
// Random pixels scroll sideways, uses current hue
#define rainDir 0
void sideRain() {
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 30;
}
scrollArray(rainDir);
byte randPixel = random8(kMatrixHeight);
for (byte y = 0; y < kMatrixHeight; y++) leds[XY((kMatrixWidth - 1) * rainDir, y)] = CRGB::Black;
leds[XY((kMatrixWidth - 1)*rainDir, randPixel)] = CHSV(cycleHue, 255, 255);
}
// Pixels with random locations and random colors selected from a palette
// Use with the fadeAll function to allow old pixels to decay
void confetti() {
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 10;
selectRandomPalette();
fadeActive = 2;
fadeBaseColor = CRGB::Black;
}
// scatter random colored pixels at several random coordinates
for (byte i = 0; i < 4; i++) {
leds[XY(random16(kMatrixWidth), random16(kMatrixHeight))] = ColorFromPalette(currentPalette, random16(255), 255); //CHSV(random16(255), 255, 255);
random16_add_entropy(1);
}
}
// Draw slanting bars scrolling across the array, uses current hue
void slantBars() {
static byte slantPos = 0;
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 5;
}
for (byte x = 0; x < kMatrixWidth; x++) {
for (byte y = 0; y < kMatrixHeight; y++) {
leds[XY(x, y)] = CHSV(cycleHue, 255, triwave8(x * 32 + y * 32 + slantPos));
}
}
slantPos -= 4;
}
#define charSpacing 2
// Scroll a text string
void scrollText(byte message, byte style, CRGB fgColor, CRGB bgColor, byte repeats) {
static byte currentMessageChar = 0;
static byte currentCharColumn = 0;
static byte paletteCycle = 0;
static CRGB currentColor;
static byte currentWordCount = 0;
static byte currentChar;
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 35;
currentMessageChar = 0;
currentCharColumn = 0;
selectFlashString(message);
repCount = repeats;
currentChar = loadStringChar(message, currentMessageChar);
loadCharBuffer(currentChar);
if (style == RAINBOW) {
currentPalette = RainbowColors_p;
} else if (style == PALETTEWORDS) {
currentPalette = RainbowColors_p;
}
paletteCycle = 0;
if (style == NORMAL) {
currentColor = fgColor;
} else if (style == PALETTEWORDS) {
currentColor = ColorFromPalette(currentPalette, paletteCycle, 255);
} else if (style == CANDYCANE || style == HOLLY || style == HOLLY2) {
currentColor = colorCycle(style);
}
fillAll(CRGB::Black);
}
CRGB pixelColor;
scrollArray(1);
if (style == RAINBOW) paletteCycle +=10;
for (byte y = 0; y < 5; y++) { // characters are 5 pixels tall
if ((bitRead(charBuffer[currentCharColumn], y) == 1) && currentCharColumn < 5) {
if (style == RAINBOW) {
pixelColor = ColorFromPalette(currentPalette, paletteCycle+y*16, 255);
} else {
pixelColor = currentColor;
}
} else {
pixelColor = bgColor;
}
leds[XY(kMatrixWidth-1, y)] = pixelColor;
}
currentCharColumn++;
if (currentCharColumn > (4 + charSpacing)) {
currentCharColumn = 0;
currentMessageChar++;
char nextChar = loadStringChar(message, currentMessageChar);
if (nextChar == 0) { // null character at end of string
currentMessageChar = 0;
if (repCount > 0) repCount--;
if (repCount == 0) cyclePattern();
nextChar = loadStringChar(message, currentMessageChar);
}
if (currentChar == ' ' && nextChar != ' ') {
if (style == PALETTEWORDS) {
paletteCycle += 15;
currentColor = ColorFromPalette(currentPalette, paletteCycle*15, 255);
} else if (style == CANDYCANE || style == HOLLY) {
currentColor = colorCycle(style);
}
}
if (currentChar != ' ') {
if (style == HOLLY2) currentColor = colorCycle(HOLLY);
}
loadCharBuffer(nextChar);
currentChar = nextChar;
}
}
//leds run around the periphery of the shades, changing color every go 'round
void shadesOutline() {
static uint8_t x = 0;
//startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 25;
FastLED.clear();
currentPalette = RainbowColors_p;
fadeActive = 0;
}
CRGB pixelColor = CHSV(cycleHue, 255, 255);
leds[OutlineMap(x)] = pixelColor;
x++;
if (x > (OUTLINESIZE-1)) x = 0;
}
// RotatingPlasma
void spinPlasma() {
static byte offset = 0; // counter for radial color wave motion
static int plasVector = 0; // counter for orbiting plasma center
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 10;
selectRandomPalette();
fadeActive = 0;
}
// Calculate current center of plasma pattern (can be offscreen)
int xOffset = (cos8(plasVector)-127)/2;
int yOffset = (sin8(plasVector)-127)/2;
//int xOffset = 0;
//int yOffset = 0;
// Draw one frame of the animation into the LED array
for (int x = 0; x < kMatrixWidth; x++) {
for (int y = 0; y < kMatrixHeight; y++) {
byte color = sin8(sqrt(sq(((float)x - 7.5) * 12 + xOffset) + sq(((float)y - 2) * 12 + yOffset)) + offset);
leds[XY(x, y)] = ColorFromPalette(currentPalette, color, 255);
}
}
offset++; // wraps at 255 for sin8
plasVector += 1; // using an int for slower orbit (wraps at 65536)
}
// Display bursts of sparks
void fireworks() {
byte sparksDone = 0;
static int sparkLife = 50;
static boolean boom = false;
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 5;
gSkyburst = 1;
fadeActive = 0;
}
if (boom) {
FastLED.clear();
boom = false;
} else {
fadeAll(40);
}
if (sparkLife > 0) sparkLife--;
for( byte b = 0; b < NUM_SPARKS; b++) {
if (sparkLife <= 0) gSparks[b].show = 0;
gSparks[b].Move();
gSparks[b].Draw();
sparksDone += gSparks[b].show;
}
if (sparksDone == 0) gSkyburst = 1;
//Serial.println(sparksDone);
if( gSkyburst) {
effectDelay = 5;
sparkLife = random(16,150);
CRGB color;
hsv2rgb_rainbow( CHSV( random8(), 255, 255), color);
accum88 sx = random(127-64,127+64)<<8;
accum88 sy = random(127-16,127+16)<<8;
for( byte b = 0; b < NUM_SPARKS; b++) {
gSparks[b].Skyburst(sx, sy, 0, color);
}
gSkyburst = 0;
sparksDone = 0;
fillAll(CRGB::Gray);
boom = true;
}
}
void scrollTextZero() {
scrollText(0, NORMAL, CRGB::Crimson, CRGB::Black, 3);
}
void scrollTextOne() {
scrollText(1, NORMAL, CRGB::CRGB(255,64,54), CRGB::Black, 3);
}
void scrollTextTwo() {
scrollText(2, NORMAL, CRGB::Green, CRGB(0, 0, 8), 3);
}
CRGB heart_mask(uint16_t x, uint16_t y, CRGB fg, CRGB bg) {
CRGB color = fg;
if (x < 7) color = blend(bg,fg,heart[y][x]);
else if (x > 8) color = blend(bg,fg,heart[y][x-9]);
else color = bg;
return color;
}
void plasma_heart(void) {
static byte offset = 0; // counter for radial color wave motion
static int plasVector = 0; // counter for orbiting plasma center
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 10;
selectRandomPalette();
offset = 0;
}
// Draw one frame of the animation into the LED array
for (int x = 0; x < kMatrixWidth; x++) {
for (int y = 0; y < kMatrixHeight; y++) {
byte color = inoise8(x*64,y*64,plasVector);
color = qsub8(color,16);
color = qadd8(color,scale8(color,39));
leds[XY(x, y)] = heart_mask(x, y, ColorFromPalette(currentPalette, color, 255, 255), CRGB::Black);
}
}
offset+=1; // wraps at 255 for sin8
plasVector += 8; // using an int for slower orbit (wraps at 65536)
}
void confetti_heart(void) {
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 10;
selectRandomPalette();
}
// scatter random colored pixels at several random coordinates
CRGB color;
for (byte i = 0; i < 4; i++) {
uint16_t x = random16(kMatrixWidth);
uint16_t y = random16(kMatrixHeight);
color = heart_mask(x, y, ColorFromPalette(currentPalette, random16(255), 255), CRGB::Black);
leds[XY(x,y)] = color;
random16_add_entropy(1);
}
}
void strobe_heart(void) {
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 30;
selectRandomPalette();
}
byte color = random8();
for (int x = 0; x < kMatrixWidth; x++) {
for (int y = 0; y < kMatrixHeight; y++) {
leds[XY(x, y)] = heart_mask(x, y, ColorFromPalette(currentPalette, color, 255, 255), ColorFromPalette(currentPalette, color+127, 255, 255));
}
}
}
class Slider {
private:
uint8_t length;
int velocity;
CRGB color;
uint8_t y;
int16_t x;
public:
Slider();
init(void);
render(void);
};
Slider::init(void) {
length = random8(8) + 2;
velocity = random8(2);
if (velocity == 0) velocity = -1;
else velocity = 1;
if (velocity == -1) x = 16;
else x = 0 - length;
y = random8(5);
color = ColorFromPalette(currentPalette, random8(255), 255);
}
Slider::Slider(void) {
init();
}
Slider::render(void) {
x = x + velocity;
int16_t start_x = x;
int16_t end_x = x + length;
if ((velocity == -1 && end_x < -5) || (velocity == 1 && start_x > 20)) {
init();
return;
}
if (start_x < 0) start_x = 0;
if (end_x > (kMatrixWidth-1)) end_x = kMatrixWidth - 1;
for (int i = start_x; i <= end_x; i++) {
leds[XY(i,y)] = color;
}
}
Slider sliders[16];
void slide() {
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 50;
selectRandomPalette();
for (int i = 0; i < 16; i++) {
sliders[i].init();
}
}
fillAll(0);
for (int i = 0; i < 16; i++) {
sliders[i].render();
}
}
void filledWave() {
static byte sineOffset = 0; // counter for current position of sine waves
// startup tasks
if (effectInit == false) {
effectInit = true;
effectDelay = 20;
selectRandomPalette();
}
// Draw one frame of the animation into the LED array
for (byte x = 0; x < kMatrixWidth; x++) {
for (int y = 0; y < kMatrixHeight; y++) {
int16_t brightness = (y+1) * (255 / kMatrixHeight);
brightness -= sin8(sineOffset * 3 + x * 7);
brightness *=2;
if (brightness > 255) brightness = 255;
if (brightness < 0) brightness = 0;
leds[XY(x, y)] = CRGB(brightness,0,0);
}
}
sineOffset++; // byte will wrap from 255 to 0, matching sin8 0-255 cycle
}