-
Notifications
You must be signed in to change notification settings - Fork 0
/
cifarClassifier - Copy.py
134 lines (108 loc) · 4.63 KB
/
cifarClassifier - Copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import torch.nn as nn # object oriented programming
import torch.nn.functional as F # functions
import torch.optim as optim
import torchvision
from torchvision import transforms
import os
import argparse
import numpy as np
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-lr', '--learning_rate', help="Learning rate", default='0.001', type=float)
parser.add_argument('-e', '--epochs', help="Number of Epochs", default='10', type=int)
parser.add_argument('-b', '--batch_size', help="Batch size", default='4', type=int)
parser.add_argument('-m', '--momentum', help="Momentum", default='0.9', type=float)
args = parser.parse_args()
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
batch_size = args.batch_size # 4
EPOCHS = args.epochs # 7
lr = args.learning_rate # 0.001
momentum = args.momentum # 0.9
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=0)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=0)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum)
for epoch in range(EPOCHS): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
accuracy = str(100 * correct / total)
cwd = os.getcwd()
folder = "cifar_runs"
path = os.path.join(cwd, folder)
if not os.path.exists(path):
os.mkdir(path)
batch_size = str(batch_size) # 4
EPOCHS = str(EPOCHS) # 7
lr = str(lr) # 0.001
momentum = str(momentum) # 0.9
loss = str(loss)
print(type(momentum)) # prints str
print(type(loss)) #
PATH = './cifar_runs/cifar_' + lr + '_' + EPOCHS + '.pth'
torch.save(net.state_dict(), PATH)
filename = "lr" + lr + "_epochs" + EPOCHS + ".txt"
filepath = os.path.join(path, filename)
if not os.path.exists(filepath):
with open(filepath, "w") as f:
f.write("Learning-rate = " + lr +
"\n\nEpochs = " + EPOCHS +
"\n\nLoss = " + loss +
"\n\nMomentum = " + momentum +
"\n\nAccuracy = " + accuracy)