-
Notifications
You must be signed in to change notification settings - Fork 1
/
bootstrap
180 lines (155 loc) · 6.13 KB
/
bootstrap
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/bin/bash
set -e
# 0. Choose a Password for Jupyter Server
# -----------------------------------------------------------------
JUPYTER_PASSWORD="jupyter"
# -----------------------------------------------------------------------------
# 1. Check if running on the primary node. If not, there's nothing do.
# -----------------------------------------------------------------------------
grep -q '"isMaster": true' /mnt/var/lib/info/instance.json \
|| { echo "Not running on master node, nothing to do" && exit 0; }
# -----------------------------------------------------------------------------
# 2. Install Miniconda
# -----------------------------------------------------------------------------
echo "Installing Miniconda"
curl https://repo.anaconda.com/miniconda/Miniconda3-py38_4.10.3-Linux-x86_64.sh -o /tmp/miniconda.sh
bash /tmp/miniconda.sh -b -p $HOME/miniconda
rm /tmp/miniconda.sh
echo -e '\nexport PATH=$HOME/miniconda/bin:$PATH' >> $HOME/.bashrc
source $HOME/.bashrc
conda update conda -y
# -----------------------------------------------------------------------------
# 3. Install packages to use in packaged environment
# (add extra packages as desired to list)
# -----------------------------------------------------------------------------
echo "Installing packages via pip"
conda install -y -q pip
pip install \
dask[complete]==2021.8.0 \
dask-yarn==0.9 \
distributed==2021.8.0 \
tornado==6.1 \
pyarrow==5.0.0 \
s3fs==2021.8.0 \
conda-pack==0.6.0 \
fastparquet==0.8.1 \
pandas==1.4.2 \
numpy==1.23.1 \
holoviews[all] \
datashader \
bokeh==2.4.2 \
statsmodels==0.13.1 \
scipy \
patsy \
linearmodels
# -----------------------------------------------------------------------------
# 4. Package the environment to be distributed to worker nodes
# -----------------------------------------------------------------------------
echo "Packaging environment"
conda pack -q -o $HOME/environment.tar.gz
# -----------------------------------------------------------------------------
# 5. List all packages in the worker environment
# -----------------------------------------------------------------------------
echo "Packages installed in the worker environment:"
conda list
# -----------------------------------------------------------------------------
# 6. Configure Dask
#
# This isn't necessary, but for this particular bootstrap script it will make a
# few things easier:
#
# - Configure the cluster's dashboard link to show the proxied version through
# jupyter-server-proxy. This allows access to the dashboard with only an ssh
# tunnel to the notebook.
#
# - Specify the pre-packaged python environment, so users don't have to
#
# - Set the default deploy-mode to local, so the dashboard proxying works
#
# - Specify the location of the native libhdfs library so pyarrow can find it
# on the workers and the client (if submitting applications).
# ------------------------------------------------------------------------------
echo "Configuring Dask"
mkdir -p $HOME/.config/dask
cat <<EOT >> $HOME/.config/dask/config.yaml
distributed:
dashboard:
link: "/proxy/{port}/status"
yarn:
environment: /home/hadoop/environment.tar.gz
deploy-mode: local
port: 8786
worker:
env:
ARROW_LIBHDFS_DIR: /usr/lib/hadoop/lib/native/
client:
env:
ARROW_LIBHDFS_DIR: /usr/lib/hadoop/lib/native/
EOT
# Also set ARROW_LIBHDFS_DIR in ~/.bashrc so it's set for the local user
echo -e '\nexport ARROW_LIBHDFS_DIR=/usr/lib/hadoop/lib/native' >> $HOME/.bashrc
# -----------------------------------------------------------------------------
# 7. Install jupyter notebook server and dependencies
#
# We do this after packaging the worker environments to keep the tar.gz as
# small as possible.
#
# We install the following packages:
#
# - notebook: the Jupyter Notebook Server
# - ipywidgets: used to provide an interactive UI for the YarnCluster objects
# - jupyter-server-proxy: used to proxy the dask dashboard through the notebook server
# -----------------------------------------------------------------------------
echo "Installing Jupyter"
conda install \
-c conda-forge \
-y \
-q \
notebook \
ipywidgets \
jupyter-server-proxy
# -----------------------------------------------------------------------------
# 8. List all packages in the client environment
# -----------------------------------------------------------------------------
echo "Packages installed in the client environment:"
conda list
# -----------------------------------------------------------------------------
# 9. Configure Jupyter Notebook
# -----------------------------------------------------------------------------
echo "Configuring Jupyter"
mkdir -p $HOME/.jupyter
HASHED_PASSWORD=`python -c "from notebook.auth import passwd; print(passwd('$JUPYTER_PASSWORD'))"`
cat <<EOF >> $HOME/.jupyter/jupyter_notebook_config.py
c.NotebookApp.password = u'$HASHED_PASSWORD'
c.NotebookApp.open_browser = False
c.NotebookApp.ip = '0.0.0.0'
EOF
# -----------------------------------------------------------------------------
# 10. Define an upstart service for the Jupyter Notebook Server
#
# This sets the notebook server up to properly run as a background service.
# -----------------------------------------------------------------------------
echo "Configuring Jupyter Notebook Upstart Service"
cat <<EOF > /tmp/jupyter-notebook.service
[Unit]
Description=Jupyter Notebook
[Service]
User=hadoop
ExecStart=$HOME/miniconda/bin/jupyter-notebook --config=$HOME/.jupyter/jupyter_notebook_config.py
Environment=JAVA_HOME=$JAVA_HOME
Type=simple
PIDFile=/run/jupyter.pid
WorkingDirectory=$HOME
Restart=always
RestartSec=10
[Install]
WantedBy=multi-user.target
EOF
sudo mv /tmp/jupyter-notebook.service /etc/systemd/system/
sudo systemctl enable jupyter-notebook
# -----------------------------------------------------------------------------
# 11. Start the Jupyter Notebook Server
# -----------------------------------------------------------------------------
echo "Starting Jupyter Notebook Server"
sudo systemctl daemon-reload
sudo systemctl start jupyter-notebook