-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingle_variate.py
executable file
·50 lines (42 loc) · 1.02 KB
/
single_variate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
from theano import *
import theano.tensor as T
import pandas as pd
print("Loading dataset...")
df = pd.read_csv("data/floor.csv", header=0)
data = df.as_matrix(columns=df.columns[:])
# print("Your dataset schema looks like this!")
# print(data[1:10])
#input
# s = raw_input()
# numbers = map(int, s.split())
# print("Input your numbers...")
# a = [int(m) for m in raw_input().split()]
# b = [int(n) for n in raw_input().split()]
# c = [int(o) for o in raw_input().split()]
x = T.dscalar('x')
y = T.dscalar('y')
z = T.dscalar('z')
#we can take x as a shared variable too!!
#eg, x = theano.shared(np.asarray(1000.), 'x')
#model
y = z/x
f = theano.function([z, x], y)
def grade(ans):
if 250<=ans<400:
print 'B'
elif ans>=400:
print 'A'
elif 100<=ans<250:
print 'C'
elif 50<=ans<100:
print 'D'
else:
print 'Wrong Output'
def model():
for i in range(len(data)):
res = f(data[i][2], data[i][0])
a = grade(res)
return a
b = model()
print b