-
Notifications
You must be signed in to change notification settings - Fork 423
/
Copy pathbasic_predict.js
149 lines (116 loc) · 4.22 KB
/
basic_predict.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
/**
* Author: David Ha <[email protected]>
*
* @fileoverview Basic p5.js sketch to show how to use sketch-rnn
* to complete an unfinished sketch.
*/
var strokes=[[-4,0,1,0,0],[-15,9,1,0,0],[-10,17,1,0,0],[-1,28,1,0,0],[14,13,1,0,0],[12,4,1,0,0],[22,1,1,0,0],[14,-11,1,0,0],[5,-12,1,0,0],[2,-19,1,0,0],[-12,-23,1,0,0],[-13,-7,1,0,0],[-14,-1,0,1,0]];
// sketch_rnn model
var rnn_model;
var rnn_model_data;
var temperature = 0.25;
var min_sequence_length = 5;
var model_pdf; // store all the parameters of a mixture-density distribution
var model_state;
var model_prev_pen;
var model_x, model_y;
// variables for the sketch input interface.
var start_x, start_y;
var end_x, end_y;
// UI
var screen_width, screen_height;
var line_width = 1.0;
var line_color, predict_line_color;
// dom
var model_sel;
var draw_example = function(example, start_x, start_y, line_color) {
var i;
var x=start_x, y=start_y;
var dx, dy;
var pen_down, pen_up, pen_end;
var prev_pen = [1, 0, 0];
for(i=0;i<example.length;i++) {
// sample the next pen's states from our probability distribution
[dx, dy, pen_down, pen_up, pen_end] = example[i];
if (prev_pen[2] == 1) { // end of drawing.
break;
}
// only draw on the paper if the pen is touching the paper
if (prev_pen[0] == 1) {
stroke(line_color);
strokeWeight(line_width);
line(x, y, x+dx, y+dy); // draw line connecting prev point to current point.
}
// update the absolute coordinates from the offsets
x += dx;
y += dy;
// update the previous pen's state to the current one we just sampled
prev_pen = [pen_down, pen_up, pen_end];
}
return [x, y]; // return final coordinates.
};
var encode_strokes = function() {
model_state = rnn_model.zero_state();
// encode strokes
model_state = rnn_model.update(rnn_model.zero_input(), model_state);
for (var i=0;i<strokes.length;i++) {
model_state = rnn_model.update(strokes[i], model_state);
}
};
var setup = function() {
var rnn_model_data = JSON.parse(model_raw_data);
rnn_model = new SketchRNN(rnn_model_data);
rnn_model.set_pixel_factor(2.0);
// make sure we enforce some minimum size of our demo
screen_width = Math.max(window.innerWidth, 480);
screen_height = Math.max(window.innerHeight, 320);
// start drawing from somewhere in middle of the canvas
start_x = screen_width/2.0;
start_y = screen_height/2.0;
// make the canvas and clear the screens
createCanvas(screen_width, screen_height);
frameRate(30);
// reinitialize variables before calling p5.js setu
line_color = color(0, 0, 220);
predict_line_color = color(random(64, 224), random(64, 224), random(64, 224));
// draws original strokes
[end_x, end_y] = draw_example(strokes, start_x, start_y, line_color);
encode_strokes();
// copies over the model
model_x = end_x;
model_y = end_y;
model_prev_pen = [0, 1, 0];
};
var draw = function() {
var model_dx, model_dy;
var model_pen_down, model_pen_up, model_pen_end;
model_pdf = rnn_model.get_pdf(model_state);
[model_dx, model_dy, model_pen_down, model_pen_up, model_pen_end] = rnn_model.sample(model_pdf, temperature);
if (model_pen_end === 1) {
noLoop(); // finish drawing.
} else {
if (model_prev_pen[0] === 1) {
// draw line connecting prev point to current point.
stroke(predict_line_color);
strokeWeight(line_width);
line(model_x, model_y, model_x+model_dx, model_y+model_dy);
}
model_prev_pen = [model_pen_down, model_pen_up, model_pen_end];
model_state = rnn_model.update([model_dx, model_dy, model_pen_down, model_pen_up, model_pen_end], model_state);
model_x += model_dx;
model_y += model_dy;
}
};