This repository has been archived by the owner on Feb 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathdump_expression_generator_dataset.py
58 lines (50 loc) · 2.26 KB
/
dump_expression_generator_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Copyright 2022 The MIDI-DDSP Authors.
# #
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dump the dataset for training expression generator."""
import os
import argparse
from midi_ddsp.utils.training_utils import set_seed, get_hp
from midi_ddsp.utils.create_expression_generator_dataset_utils import \
dump_expression_generator_dataset
from midi_ddsp.hparams_synthesis_generator import hparams as hp
from midi_ddsp.modules.get_synthesis_generator import get_synthesis_generator, \
get_fake_data_synthesis_generator
parser = argparse.ArgumentParser(description='Dump expression generator '
'dataset.')
set_seed(1234)
def main():
parser.add_argument('--model_path', type=str,
default=None,
help='The path to the model checkpoint.')
parser.add_argument('--data_dir', type=str,
default=None,
help='The directory to the unbatched tfrecord dataset.')
parser.add_argument('--output_dir', type=str,
default=None,
help='The output directory for dumping the expression '
'generator dataset.')
# TODO: (yusongwu) add automatic note expression scaling
args = parser.parse_args()
model_path = args.model_path
hp_dict = get_hp(os.path.join(os.path.dirname(model_path), 'train.log'))
for k, v in hp_dict.items():
setattr(hp, k, v)
model = get_synthesis_generator(hp)
model._build(get_fake_data_synthesis_generator(hp))
model.load_weights(model_path)
print('Creating dataset for expression generator!')
dump_expression_generator_dataset(model, data_dir=args.data_dir,
output_dir=args.output_dir)
if __name__ == '__main__':
main()