This repository has been archived by the owner on Feb 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain_synthesis_generator.py
317 lines (280 loc) · 14.6 KB
/
train_synthesis_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# Copyright 2022 The MIDI-DDSP Authors.
# #
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Training code for Synthesis Generator."""
import tensorflow as tf
import time
import os
import sys
import logging
import argparse
from midi_ddsp.data_handling.get_dataset import get_dataset
from midi_ddsp.utils.training_utils import print_hparams, set_seed, \
save_results, str2bool
from midi_ddsp.utils.summary_utils import write_tensorboard_audio
from midi_ddsp.hparams_synthesis_generator import hparams as hp
from midi_ddsp.modules.recon_loss import ReconLossHelper
from midi_ddsp.modules.gan_loss import GANLossHelper
from midi_ddsp.modules.get_synthesis_generator import get_synthesis_generator, \
get_fake_data_synthesis_generator
from midi_ddsp.modules.discriminator import Discriminator
parser = argparse.ArgumentParser(description='Train Synthesis Generator.')
set_seed(hp.seed)
def train(training_data, training_steps, start_step=1):
"""Training loop including evaluation."""
start_time = time.time()
loss_helper.reset_metrics()
for step in range(start_step, training_steps + start_step + 1):
data = next(training_data)
# Run the model and get the loss.
with tf.GradientTape() as tape, tf.GradientTape() as disc_tape:
outputs = model(data, training=True,
run_synth_coder_only=hp.run_synth_coder_only)
loss_dict_recon = loss_helper.compute_loss(data, outputs,
synth_coder_only=
hp.run_synth_coder_only,
add_synth_loss=
hp.add_synth_loss)
if not hp.run_synth_coder_only and hp.use_gan:
cond, real_outputs, fake_outputs = gan_loss_helper.get_disc_input(
outputs)
D_fake = net_D([cond, fake_outputs])
D_real = net_D([cond, real_outputs])
loss_dict_disc = gan_loss_helper.compute_disc_loss(D_fake, D_real)
loss, loss_dict_gen = gan_loss_helper.compute_gen_loss(D_fake, D_real,
loss_dict_recon[
'total_loss'])
else:
loss = loss_dict_recon['total_loss']
# Clip and apply gradients.
grads = tape.gradient(loss, model.trainable_variables)
grads, _ = tf.clip_by_global_norm(grads, hp.clip_grad)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
loss_helper.update_metrics(loss_dict_recon)
loss_helper.write_summary(loss_dict_recon, writer, 'Train', step)
# Train discriminator and update GAN loss.
if not hp.run_synth_coder_only and hp.use_gan:
gradients_of_discriminator = disc_tape.gradient(
loss_dict_disc['disc_loss'], net_D.trainable_variables)
optimizer_disc.apply_gradients(
zip(gradients_of_discriminator, net_D.trainable_variables))
gan_loss_helper.update_metrics(loss_dict_disc)
gan_loss_helper.write_summary(loss_dict_disc, writer, 'Train', step)
gan_loss_helper.update_metrics(loss_dict_gen)
gan_loss_helper.write_summary(loss_dict_gen, writer, 'Train', step)
# Print logging summary.
if step % hp.log_interval == 0:
elapsed = time.time() - start_time
current_lr = optimizer._decayed_lr('float32').numpy()
msg = f'| {step:6d} steps | lr {current_lr:02.2e} ' \
f'| ms/batch {(elapsed * 1000 / hp.log_interval):5.2f} '
msg = msg + loss_helper.get_loss_log()
loss_helper.reset_metrics()
if not hp.run_synth_coder_only:
msg = msg + gan_loss_helper.get_loss_log()
gan_loss_helper.reset_metrics()
logging.info(msg)
start_time = time.time()
# Evaluate.
if step % hp.eval_interval == 0:
evaluate(evaluation_data, step)
# Synthesize training data.
outputs = model(train_sample_batch, training=True,
run_synth_coder_only=hp.run_synth_coder_only)
save_results(outputs['synth_audio'], train_sample_batch['audio'], log_dir,
f'train_{step}_synth',
hp.sample_rate)
if 'midi_audio' in outputs.keys():
save_results(outputs['midi_audio'], train_sample_batch['audio'],
log_dir, f'train_{step}_midi',
hp.sample_rate)
if hp.write_tfrecord_audio:
write_tensorboard_audio(writer, train_sample_batch, outputs, step,
tag='Train')
# Synthesize evaluation data.
outputs = model(eval_sample_batch, training=False,
run_synth_coder_only=hp.run_synth_coder_only)
save_results(outputs['synth_audio'], eval_sample_batch['audio'], log_dir,
f'eval_{step}_synth',
hp.sample_rate)
if 'midi_audio' in outputs.keys():
save_results(outputs['midi_audio'], eval_sample_batch['audio'], log_dir,
f'eval_{step}_midi',
hp.sample_rate)
if hp.write_tfrecord_audio:
write_tensorboard_audio(writer, eval_sample_batch, outputs, step,
tag='Eval')
# DDSP Inference training finished.
# Start training Synthesis Generator and
# dump dataset for expression generator.
if (step - start_step + 1) == hp.synth_coder_training_steps:
hp.run_synth_coder_only = False
if not hp.add_synth_loss:
model.freeze_synth_coder()
# Save weights for the whole model.
if step % hp.checkpoint_save_interval == 0:
model.save_weights(f'{log_dir}/{step}')
def evaluate(evaluation_data, step):
"""Evaluating the test set."""
eval_loss_helper = ReconLossHelper(hp, eval_recon_loss=True)
start_time = time.time()
for data in evaluation_data:
outputs = model(data, training=False,
run_synth_coder_only=hp.run_synth_coder_only)
loss_dict = eval_loss_helper.compute_loss(data, outputs,
synth_coder_only=
hp.run_synth_coder_only)
eval_loss_helper.update_metrics(loss_dict)
eval_loss_helper.write_mean_summary(writer, 'Eval', step)
msg = f'eval: | step {step:6d} | eval time: {(time.time() - start_time):3.3f}'
msg = msg + eval_loss_helper.get_loss_log()
logging.info(msg)
if __name__ == '__main__':
parser.add_argument('--batch_size', type=int, default=hp.batch_size,
help='Batch size to use for training.')
parser.add_argument('--nhid', type=int, default=hp.nhid,
help='Number of hidden dimensions in '
'Synthesis Generator.')
parser.add_argument('--training_steps', type=int, default=hp.training_steps,
help='Number of training steps to take.')
parser.add_argument('--eval_interval', type=int, default=hp.eval_interval,
help='The number of training steps to take '
'evaluation on whole evaluation set.')
parser.add_argument('--checkpoint_save_interval', type=int,
default=hp.checkpoint_save_interval,
help='The number of training steps to take before save '
'the model weights once.')
parser.add_argument('--data_dir', type=str, default=hp.data_dir,
help='The directory to tfrecord data files.')
parser.add_argument('--restore_path', type=str, default=hp.restore_path,
help='The path to the model weights file for restore '
'training.')
parser.add_argument('--midi_audio_loss', type=str2bool, nargs='?', const=True,
default=hp.midi_audio_loss,
help='Whether to use '
'multi-scale spectral loss on audio predicted')
parser.add_argument('--synth_params_loss', type=str2bool, nargs='?',
const=True, default=hp.synth_params_loss,
help='Whether to use L1 loss on synthesis parameters '
'predicted.')
parser.add_argument('--train_synth_coder_first', type=str2bool, nargs='?',
const=True, default=hp.train_synth_coder_first,
help='Whether to train DDSP Inference first or joint '
'training DDSP Inference and Synthesis Generator.')
parser.add_argument('--add_synth_loss', type=str2bool, nargs='?', const=True,
default=hp.add_synth_loss,
help='Whether to add DDSP Inference loss to the '
'total loss for back-prop.')
parser.add_argument('--multi_instrument', type=str2bool, nargs='?',
const=True, default=hp.multi_instrument,
help='Whether to train multi-instrument model or '
'single-instrument model')
parser.add_argument('--position_code', type=str, default=hp.position_code,
help='Whether to use positional encoding in '
'Synthesis Generator, and what type of '
'positional encoding.')
parser.add_argument('--midi_decoder_type', type=str,
default=hp.midi_decoder_type,
help='The type of Synthesis Generator.')
parser.add_argument('--midi_decoder_decoder_net', type=str,
default=hp.midi_decoder_decoder_net,
help='The network type for Synthesis Generator.')
parser.add_argument('--reverb', type=str2bool, nargs='?', const=True,
default=hp.reverb, help='Whether to use reverb.')
parser.add_argument('--reverb_length', type=int, default=hp.reverb_length,
help='The length for the reverb impulse response.')
parser.add_argument('--instrument', type=str, default=hp.instrument,
help='The instrument to train on for single instrument '
'setting.')
parser.add_argument('--synth_coder_training_steps', type=int,
default=hp.synth_coder_training_steps,
help='The number of steps for training DDSP Inference.')
parser.add_argument('--use_gan', type=str2bool, nargs='?', const=True,
default=hp.use_gan, help='Whether to use GAN training '
'for Synthesis Generator.')
parser.add_argument('--lambda_recon', type=float, default=hp.lambda_recon,
help='The weight for the reconstruction loss.')
parser.add_argument('--lambda_G', type=float, default=hp.lambda_G,
help='The weight for the discriminator loss '
'for generator.')
parser.add_argument('--sg_z', type=str2bool, nargs='?', const=True,
default=hp.sg_z, help='Whether to stop the gradient for'
'conditioning sequence (z) in '
'discriminator.')
parser.add_argument('--lr_disc', type=float, default=hp.lr_disc,
help='The learning rate for discriminator.')
parser.add_argument('--without_note_expression', type=str2bool, nargs='?',
const=True, default=hp.without_note_expression,
help='Whether to train Synthesis Generator using no note '
'expression controls. Used in paper rebuttal.')
parser.add_argument('--mode', type=str, default=hp.mode,
help='The mode to run, train or eval.')
parser.add_argument('--name', type=str, default='logs_synthesis_generator',
help='The name of the log folder.')
# Change hp according to argparse.
args = parser.parse_args()
for k, v in vars(args).items():
setattr(hp, k, v)
# Create Synthesis Generator
model = get_synthesis_generator(hp)
model._build(get_fake_data_synthesis_generator(hp))
# Create optimizer, loss helper and discriminator.
scheduler = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate=hp.lr, decay_steps=1000,
decay_rate=0.99)
optimizer = tf.keras.optimizers.Adam(learning_rate=scheduler)
loss_helper = ReconLossHelper(hp)
gan_loss_helper = GANLossHelper(lambda_recon=hp.lambda_recon,
lambda_G=hp.lambda_G, sg_z=hp.sg_z)
optimizer_disc = tf.keras.optimizers.Adam(learning_rate=hp.lr_disc)
net_D = Discriminator(nhid=hp.discriminator_dim)
# 64=instrument_emb_dim
z_dim = hp.discriminator_dim + int(hp.multi_instrument) * 64
# synth_params_dim = dim(nharmonic + nnoise + amplitude + f0)
synth_params_dim = hp.nhramonic + hp.nnoise + 2
_ = net_D((tf.random.normal([4, 1000, z_dim]),
tf.random.normal([4, 1000, synth_params_dim])))
# Load model, create log directory and log file.
log_dir = f'logs/{args.name}'
if hp.restore_path:
model.load_weights(hp.restore_path)
log_dir = os.path.dirname(hp.restore_path)
writer = tf.summary.create_file_writer(log_dir)
log_path = os.path.join(log_dir, 'train.log')
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s: %(message)s',
handlers=[
logging.FileHandler(log_path),
logging.StreamHandler(sys.stdout)]
)
# Load dataset.
training_data, length_training_data, \
evaluation_data, length_evaluation_data = get_dataset(hp)
eval_sample_batch = next(iter(evaluation_data))
train_sample_batch = next(training_data)
logging.info('Data loaded! Data size: %s', str(length_training_data))
# Print model summary and hyperparameters.
model.summary(print_fn=logging.info)
logging.info(str(print_hparams(hp)))
# Start training loop
start_step = int(os.path.basename(hp.restore_path)) if hp.restore_path else 1
if hp.mode == 'train':
if hp.train_synth_coder_first:
hp.run_synth_coder_only = True
model.train_synth_coder_only()
else:
hp.run_synth_coder_only = False
train(training_data, hp.training_steps, start_step=start_step)
elif hp.mode == 'eval':
hp.run_synth_coder_only = False
evaluate(evaluation_data, start_step)