-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
56 lines (49 loc) · 2.65 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import torch.nn as nn
import torchvision.models as models
from torch.nn.utils.rnn import pack_padded_sequence
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
"""Load the pretrained ResNet-152 and replace top fc layer."""
super(EncoderCNN, self).__init__()
resnet = models.resnet152(pretrained=True)
modules = list(resnet.children())[:-1] # delete the last fc layer.
self.resnet = nn.Sequential(*modules)
self.linear = nn.Linear(resnet.fc.in_features, embed_size)
self.bn = nn.BatchNorm1d(embed_size, momentum=0.01)
def forward(self, images):
"""Extract feature vectors from input images."""
with torch.no_grad():
features = self.resnet(images)
features = features.reshape(features.size(0), -1)
features = self.bn(self.linear(features))
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers, max_seq_length=20):
"""Set the hyper-parameters and build the layers."""
super(DecoderRNN, self).__init__()
self.embed = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
self.linear = nn.Linear(hidden_size, vocab_size)
self.max_seg_length = max_seq_length
def forward(self, features, captions, lengths):
"""Decode image feature vectors and generates captions."""
embeddings = self.embed(captions)
embeddings = torch.cat((features.unsqueeze(1), embeddings), 1)
packed = pack_padded_sequence(embeddings, lengths, batch_first=True)
hiddens, _ = self.lstm(packed)
outputs = self.linear(hiddens[0])
return outputs
def sample(self, features, states=None):
"""Generate captions for given image features using greedy search."""
sampled_ids = []
inputs = features.unsqueeze(1)
for i in range(self.max_seg_length):
hiddens, states = self.lstm(inputs, states) # hiddens: (batch_size, 1, hidden_size)
outputs = self.linear(hiddens.squeeze(1)) # outputs: (batch_size, vocab_size)
_, predicted = outputs.max(1) # predicted: (batch_size)
sampled_ids.append(predicted)
inputs = self.embed(predicted) # inputs: (batch_size, embed_size)
inputs = inputs.unsqueeze(1) # inputs: (batch_size, 1, embed_size)
sampled_ids = torch.stack(sampled_ids, 1) # sampled_ids: (batch_size, max_seq_length)
return sampled_ids