-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathmain.py
179 lines (141 loc) · 6.98 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
Paper: http://www.vldb.org/pvldb/vol11/p1071-park.pdf
Authors: Mahmoud Mohammadi, Noseong Park Adopted from https://github.com/carpedm20/DCGAN-tensorflow
Created : 07/20/2017
Modified: 10/15/2018
"""
import os
import datetime
import tensorflow as tf
import sys
from model import TableGan
from utils import pp, generate_data, show_all_variables
flags = tf.app.flags
flags.DEFINE_integer("epoch", 10, "Epoch to train [25]")
flags.DEFINE_float("learning_rate", 0.0002, "Learning rate of for adam [0.0002]")
flags.DEFINE_float("beta1", 0.5, "Momentum term of adam [0.5]")
flags.DEFINE_integer("train_size", sys.maxsize, "The size of train images [np.inf]")
flags.DEFINE_integer("y_dim", 2, "Number of unique labels")
flags.DEFINE_integer("batch_size", 500, "The size of batch images [64]")
flags.DEFINE_integer("input_height", 16, "The size of image to use (will be center cropped). [108]")
flags.DEFINE_integer("input_width", None,
"The size of image to use (will be center cropped). If None, same value as input_height [None]")
flags.DEFINE_integer("output_height", 16, "The size of the output images to produce [64]")
flags.DEFINE_integer("output_width", None,
"The size of the output images to produce. If None, same value as output_height [None]")
flags.DEFINE_string("dataset", "celebA", "The name of dataset [celebA, mnist, lsun]")
# flags.DEFINE_string("input_fname_pattern", "*.jpg", "Glob pattern of filename of input images [*]")
flags.DEFINE_string("checkpoint_par_dir", "checkpoint", "Parent Directory name to save the checkpoints [checkpoint]")
flags.DEFINE_string("checkpoint_dir", "", "Directory name to save the checkpoints [checkpoint]")
flags.DEFINE_string("sample_dir", "samples", "Directory name to save the image samples [samples]")
flags.DEFINE_boolean("train", False, "True for training, False for testing [False]")
flags.DEFINE_boolean("crop", False, "True for training, False for testing [False]")
flags.DEFINE_boolean("generate_data", False, "True for visualizing, False for nothing [False]")
flags.DEFINE_float("alpha", 0.5, "The weight of original GAN part of loss function [0-1.0]")
flags.DEFINE_float("beta", 0.5, "The weight of information loss part of loss function [0-1.0]")
flags.DEFINE_float("delta_m", 0.5, "")
flags.DEFINE_float("delta_v", 0.5, "")
flags.DEFINE_string("test_id", "5555",
"The experiment settings ID.Affecting the values of alpha, beta, delta_m and delta_v.")
# flags.DEFINE_integer("maxcol", "0", " The maximum number of columns in ")
flags.DEFINE_integer("label_col", -1,
"The column used in the dataset as the label column (from 0). Used if the Classifer NN is active.")
flags.DEFINE_integer("attrib_num", 0, "The number of columns in the dataset. Used if the Classifer NN is active.")
flags.DEFINE_integer("feature_size", 266, "Size of last FC layer to calculate the Hinge Loss fucntion.")
flags.DEFINE_boolean("shadow_gan", False, "True for loading fake data from samples directory[False]")
flags.DEFINE_integer("shgan_input_type", 0, " Input for Discrimiator of shadow_gan. 1=Fake, 2=Test, 3=Train Data")
FLAGS = flags.FLAGS
def main(_):
a = datetime.datetime.now()
if FLAGS.input_width is None:
FLAGS.input_width = FLAGS.input_height
if FLAGS.output_width is None:
FLAGS.output_width = FLAGS.output_height
if not os.path.exists(FLAGS.checkpoint_par_dir):
os.makedirs(FLAGS.checkpoint_par_dir)
if not os.path.exists(FLAGS.sample_dir):
os.makedirs(FLAGS.sample_dir)
test_cases = [
{'id': 'OI_11_00', 'alpha': 1.0, 'beta': 1.0, 'delta_v': 0.0, 'delta_m': 0.0}
, {'id': 'OI_11_11', 'alpha': 1.0, 'beta': 1.0, 'delta_v': 0.1, 'delta_m': 0.1}
, {'id': 'OI_11_22', 'alpha': 1.0, 'beta': 1.0, 'delta_v': 0.2, 'delta_m': 0.2}
, {'id': 'OI_101_00', 'alpha': 1.0, 'beta': 0.1, 'delta_v': 0.0, 'delta_m': 0.0}
, {'id': 'OI_101_11', 'alpha': 1.0, 'beta': 0.1, 'delta_v': 0.1, 'delta_m': 0.1}
, {'id': 'OI_101_22', 'alpha': 1.0, 'beta': 0.1, 'delta_v': 0.2, 'delta_m': 0.2}
, {'id': 'OI_1001_00', 'alpha': 1.0, 'beta': 0.01, 'delta_v': 0.0, 'delta_m': 0.0}
, {'id': 'OI_1001_11', 'alpha': 1.0, 'beta': 0.01, 'delta_v': 0.1, 'delta_m': 0.1}
, {'id': 'OI_1001_22', 'alpha': 1.0, 'beta': 0.01, 'delta_v': 0.2, 'delta_m': 0.2}
]
found = False
for case in test_cases:
if case['id'] == FLAGS.test_id:
found = True
FLAGS.alpha = case['alpha']
FLAGS.beta = case['beta']
FLAGS.delta_m = case['delta_m']
FLAGS.delta_v = case['delta_v']
print(case)
if not found:
print("Using OI_11_00")
FLAGS.test_id = "OI_11_00"
FLAGS.alpha = 1.0
FLAGS.beta = 1.0
FLAGS.delta_m = 0.0
FLAGS.delta_v = 0.0
FLAGS.input_height = 7
FLAGS.input_width = 7
FLAGS.output_height = 7
FLAGS.output_width = 7
if FLAGS.shadow_gan:
checkpoint_folder = FLAGS.checkpoint_par_dir + '/' + FLAGS.dataset + "/" + 'atk_' + FLAGS.test_id
else:
checkpoint_folder = f'{FLAGS.checkpoint_par_dir}/{FLAGS.dataset}/{FLAGS.test_id}'
if not os.path.exists(checkpoint_folder):
os.makedirs(checkpoint_folder)
FLAGS.checkpoint_dir = checkpoint_folder
pp.pprint(flags.FLAGS.__flags)
print(FLAGS.y_dim)
# gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
run_config = tf.ConfigProto()
run_config.gpu_options.allow_growth = True
print("Chekcpoint : " + FLAGS.checkpoint_dir)
with tf.Session(config=run_config) as sess:
tablegan = TableGan(
sess,
input_width=FLAGS.input_width,
input_height=FLAGS.input_height,
output_width=FLAGS.output_width,
output_height=FLAGS.output_height,
batch_size=FLAGS.batch_size,
sample_num=FLAGS.batch_size,
y_dim=FLAGS.y_dim,
dataset_name=FLAGS.dataset,
crop=FLAGS.crop,
checkpoint_dir=FLAGS.checkpoint_dir,
sample_dir=FLAGS.sample_dir,
alpha=FLAGS.alpha,
beta=FLAGS.beta,
delta_mean=FLAGS.delta_m,
delta_var=FLAGS.delta_v,
label_col=FLAGS.label_col,
attrib_num=FLAGS.attrib_num,
is_shadow_gan=FLAGS.shadow_gan,
test_id=FLAGS.test_id
)
show_all_variables()
if FLAGS.train:
tablegan.train(FLAGS)
else:
if not tablegan.load(FLAGS.checkpoint_dir)[0]:
raise Exception("[!] Train a model first, then run test mode")
# Below is codes for visualization
if FLAGS.shadow_gan: # using Disriminator sampler for Membership Attack
OPTION = 5
else:
OPTION = 1
generate_data(sess, tablegan, FLAGS, OPTION)
print('Time Elapsed: ')
b = datetime.datetime.now()
print(b - a)
if __name__ == '__main__':
tf.app.run()